Skip to main content
Genetics logoLink to Genetics
. 1997 Nov;147(3):961–977. doi: 10.1093/genetics/147.3.961

Annealing Vs. Invasion in Phage λ Recombination

M M Stahl 1, L Thomason 1, A R Poteete 1, T Tarkowski 1, A Kuzminov 1, F W Stahl 1
PMCID: PMC1208271  PMID: 9383045

Abstract

Genetic recombination catalyzed by λ's Red pathway was studied in rec(+) and recA mutant bacteria by examining both intracellular λ DNA and mature progeny particles. Recombination of nonreplicating phage chromosomes was induced by double-strand breaks delivered at unique sites in vivo. In rec(+) cells, cutting only one chromosome gave nearly maximal stimulation of recombination; the recombinants formed contained relatively short hybrid regions, suggesting strand invasion. In contrast, in recA mutant cells, cutting the two parental chromosomes at non-allelic sites was required for maximal stimulation; the recombinants formed tended to be hybrid over the entire region between the two cuts, implying strand annealing. We conclude that, in the absence of RecA and the presence of non-allelic DNA ends, the Red pathway of λ catalyzes recombination primarily by annealing.

Full Text

The Full Text of this article is available as a PDF (7.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleyard R K. Segregation of New Lysogenic Types during Growth of a Doubly Lysogenic Strain Derived from Escherichia Coli K12. Genetics. 1954 Jul;39(4):440–452. doi: 10.1093/genetics/39.4.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  3. CLARK A. J., MARGULIES A. D. ISOLATION AND CHARACTERIZATION OF RECOMBINATION-DEFICIENT MUTANTS OF ESCHERICHIA COLI K12. Proc Natl Acad Sci U S A. 1965 Feb;53:451–459. doi: 10.1073/pnas.53.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carter D. M., Radding C. M. The role of exonuclease and beta protein of phage lambda in genetic recombination. II. Substrate specificity and the mode of action of lambda exonuclease. J Biol Chem. 1971 Apr 25;246(8):2502–2512. [PubMed] [Google Scholar]
  5. Cassuto E., Lash T., Sriprakash K. S., Radding C. M. Role of exonuclease and beta protein of phage lambda in genetic recombination. V. Recombination of lambda DNA in vitro. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1639–1643. doi: 10.1073/pnas.68.7.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clyman J., Belfort M. Trans and cis requirements for intron mobility in a prokaryotic system. Genes Dev. 1992 Jul;6(7):1269–1279. doi: 10.1101/gad.6.7.1269. [DOI] [PubMed] [Google Scholar]
  7. Echolas H., Gingery R. Mutants of bacteriophage lambda defective in vegetative genetic recombination. J Mol Biol. 1968 Jul 14;34(2):239–249. doi: 10.1016/0022-2836(68)90249-0. [DOI] [PubMed] [Google Scholar]
  8. Enquist L. W., Skalka A. Replication of bacteriophage lambda DNA dependent on the function of host and viral genes. I. Interaction of red, gam and rec. J Mol Biol. 1973 Apr 5;75(2):185–212. doi: 10.1016/0022-2836(73)90016-8. [DOI] [PubMed] [Google Scholar]
  9. Fangman W. L., Novick A. Mutant bacteria showing efficient utilization of thymidine. J Bacteriol. 1966 Jun;91(6):2390–2391. doi: 10.1128/jb.91.6.2390-2391.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feiss M., Kobayashi I., Widner W. Separate sites for binding and nicking of bacteriophage lambda DNA by terminase. Proc Natl Acad Sci U S A. 1983 Feb;80(4):955–959. doi: 10.1073/pnas.80.4.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Franklin N. C. Deletions and functions of the center of the phi80 -lambda phage genome. Evidence for a phage function promoting genetic recombination. Genetics. 1967 Oct;57(2):301–318. doi: 10.1093/genetics/57.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greenstein M., Skalka A. Replication of bacteriophage lambda DNA: in vivo studies of the interaction between the viral gamma protein and the host recBC DNAase. J Mol Biol. 1975 Oct 5;97(4):543–549. doi: 10.1016/s0022-2836(75)80058-1. [DOI] [PubMed] [Google Scholar]
  13. HERSHEY A. D., CHASE M. Genetic recombination and heterozygosis in bacteriophage. Cold Spring Harb Symp Quant Biol. 1951;16:471–479. doi: 10.1101/sqb.1951.016.01.034. [DOI] [PubMed] [Google Scholar]
  14. Hagemann A. T., Rosenberg S. M. Chain bias in Chi-stimulated heteroduplex patches in the lambda ren gene is determined by the orientation of lambda cos. Genetics. 1991 Nov;129(3):611–621. doi: 10.1093/genetics/129.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Heyer W. D. The search for the right partner: homologous pairing and DNA strand exchange proteins in eukaryotes. Experientia. 1994 Mar 15;50(3):223–233. doi: 10.1007/BF01924005. [DOI] [PubMed] [Google Scholar]
  16. Hill S. A., Stahl M. M., Stahl F. W. Single-strand DNA intermediates in phage lambda's Red recombination pathway. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2951–2956. doi: 10.1073/pnas.94.7.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huisman O., Fox M. S. A genetic analysis of primary products of bacteriophage lambda recombination. Genetics. 1986 Mar;112(3):409–420. doi: 10.1093/genetics/112.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karu A. E., Sakaki Y., Echols H., Linn S. The gamma protein specified by bacteriophage gamma. Structure and inhibitory activity for the recBC enzyme of Escherichia coli. J Biol Chem. 1975 Sep 25;250(18):7377–7387. [PubMed] [Google Scholar]
  19. Kmiec E., Holloman W. K. Beta protein of bacteriophage lambda promotes renaturation of DNA. J Biol Chem. 1981 Dec 25;256(24):12636–12639. [PubMed] [Google Scholar]
  20. Kowalczykowski S. C., Eggleston A. K. Homologous pairing and DNA strand-exchange proteins. Annu Rev Biochem. 1994;63:991–1043. doi: 10.1146/annurev.bi.63.070194.005015. [DOI] [PubMed] [Google Scholar]
  21. Krasin F., Hutchinson F. Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J Mol Biol. 1977 Oct 15;116(1):81–98. doi: 10.1016/0022-2836(77)90120-6. [DOI] [PubMed] [Google Scholar]
  22. Kuzminov A., Stahl F. W. Stability of linear DNA in recA mutant Escherichia coli cells reflects ongoing chromosomal DNA degradation. J Bacteriol. 1997 Feb;179(3):880–888. doi: 10.1128/jb.179.3.880-888.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Little J. W. An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. J Biol Chem. 1967 Feb 25;242(4):679–686. [PubMed] [Google Scholar]
  24. Maloy S. R., Nunn W. D. Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol. 1981 Feb;145(2):1110–1111. doi: 10.1128/jb.145.2.1110-1111.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McMilin K. D., Russo V. E. Maturation and recombination of bacteriophage lambda DNA molecules in the absence of DNA duplication. J Mol Biol. 1972 Jul 14;68(1):49–55. doi: 10.1016/0022-2836(72)90261-6. [DOI] [PubMed] [Google Scholar]
  26. Muniyappa K., Radding C. M. The homologous recombination system of phage lambda. Pairing activities of beta protein. J Biol Chem. 1986 Jun 5;261(16):7472–7478. [PubMed] [Google Scholar]
  27. Murphy K. C. Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. J Bacteriol. 1991 Sep;173(18):5808–5821. doi: 10.1128/jb.173.18.5808-5821.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Myers R. S., Kuzminov A., Stahl F. W. The recombination hot spot chi activates RecBCD recombination by converting Escherichia coli to a recD mutant phenocopy. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6244–6248. doi: 10.1073/pnas.92.14.6244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Poteete A. R., Fenton A. C. Efficient double-strand break-stimulated recombination promoted by the general recombination systems of phages lambda and P22. Genetics. 1993 Aug;134(4):1013–1021. doi: 10.1093/genetics/134.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Resnick M. A. Similar responses to ionizing radiation of fungal and vertebrate cells and the importance of DNA doublestrand breaks. J Theor Biol. 1978 Apr 6;71(3):339–346. doi: 10.1016/0022-5193(78)90164-9. [DOI] [PubMed] [Google Scholar]
  31. Resnick M. A. The repair of double-strand breaks in DNA; a model involving recombination. J Theor Biol. 1976 Jun;59(1):97–106. doi: 10.1016/s0022-5193(76)80025-2. [DOI] [PubMed] [Google Scholar]
  32. Roca A. I., Cox M. M. RecA protein: structure, function, and role in recombinational DNA repair. Prog Nucleic Acid Res Mol Biol. 1997;56:129–223. doi: 10.1016/s0079-6603(08)61005-3. [DOI] [PubMed] [Google Scholar]
  33. Russo V. E. On the physical structure of lambda recombinant DNA. Mol Gen Genet. 1973 May 28;122(4):353–366. doi: 10.1007/BF00269436. [DOI] [PubMed] [Google Scholar]
  34. Salaj-Smic E., Marsić N., Trgovcević Z., Lloyd R. G. Modulation of EcoKI restriction in vivo: role of the lambda Gam protein and plasmid metabolism. J Bacteriol. 1997 Mar;179(6):1852–1856. doi: 10.1128/jb.179.6.1852-1856.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shulman M. J., Hallick L. M., Echols H., Signer E. R. Properties of recombination-deficient mutants of bacteriophage lambda. J Mol Biol. 1970 Sep 28;52(3):501–520. doi: 10.1016/0022-2836(70)90416-x. [DOI] [PubMed] [Google Scholar]
  36. Stahl F. W., Fox M. S., Faulds D., Stahl M. M. Break-join recombination in phage lambda. Genetics. 1990 Jul;125(3):463–474. doi: 10.1093/genetics/125.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stahl F. W., Kobayashi I., Stahl M. M. Distance from cohesive end site cos determines the replication requirement for recombination in phage lambda. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6318–6321. doi: 10.1073/pnas.79.20.6318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stahl F. W., Kobayashi I., Stahl M. M. In phage lambda, cos is a recombinator in the red pathway. J Mol Biol. 1985 Jan 20;181(2):199–209. doi: 10.1016/0022-2836(85)90085-3. [DOI] [PubMed] [Google Scholar]
  39. Stahl F. W., Kobayashi I., Thaler D., Stahl M. M. Direction of travel of RecBC recombinase through bacteriophage lambda DNA. Genetics. 1986 Jun;113(2):215–227. doi: 10.1093/genetics/113.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stahl F. W., McMilin K. D., Stahl M. M., Crasemann J. M., Lam S. The distribution of crossovers along unreplicated lambda bacteriophage chromosomes. Genetics. 1974 Jul;77(3):395–408. doi: 10.1093/genetics/77.3.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stahl F. W., McMilin K. D., Stahl M. M., Nozu Y. An enhancing role for DNA synthesis in formation of bacteriophage lambda recombinants. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3598–3601. doi: 10.1073/pnas.69.12.3598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stahl F. W., Stahl M. M. On recombination between close and distant markers in phage lambda. Genetics. 1976 Apr;82(4):577–593. doi: 10.1093/genetics/82.4.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  44. Takahashi N., Kobayashi I. Evidence for the double-strand break repair model of bacteriophage lambda recombination. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2790–2794. doi: 10.1073/pnas.87.7.2790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Thaler D. S., Stahl M. M., Stahl F. W. Double-chain-cut sites are recombination hotspots in the Red pathway of phage lambda. J Mol Biol. 1987 May 5;195(1):75–87. doi: 10.1016/0022-2836(87)90328-7. [DOI] [PubMed] [Google Scholar]
  46. Thomas C. A., Jr Recombination of DNA molecules. Prog Nucleic Acid Res Mol Biol. 1966;5:315–337. doi: 10.1016/s0079-6603(08)60237-8. [DOI] [PubMed] [Google Scholar]
  47. Thomason L. C., Thaler D. S., Stahl M. M., Stahl F. W. In vivo packaging of bacteriophage lambda monomeric chromosomes. J Mol Biol. 1997 Mar 21;267(1):75–87. doi: 10.1006/jmbi.1996.0870. [DOI] [PubMed] [Google Scholar]
  48. Unger R. C., Clark A. J. Interaction of the recombination pathways of bacteriophage lambda and its host Escherichia coli K12: effects on exonuclease V activity. J Mol Biol. 1972 Oct 14;70(3):539–548. doi: 10.1016/0022-2836(72)90558-x. [DOI] [PubMed] [Google Scholar]
  49. Weigle J. Assembly of phage lambda in vitro. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1462–1466. doi: 10.1073/pnas.55.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. White R., Fox M. S. Genetic heterozygosity in unreplicated bacteriophage lambda recombinants. Genetics. 1975 Sep;81(1):33–50. doi: 10.1093/genetics/81.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wilkins A. S., Mistry J. Phage lambda's generalized recombination system. Study of the intracellular DNA pool during lytic infection. Mol Gen Genet. 1974 Apr 3;129(4):275–293. doi: 10.1007/BF00265693. [DOI] [PubMed] [Google Scholar]
  52. van de Putte P., Zwenk H., Rörsch A. Properties of four mutants of Escherichia coli defective in genetic recombination. Mutat Res. 1966 Oct;3(5):381–392. doi: 10.1016/0027-5107(66)90048-0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES