Abstract
Detailed physical mapping of markers from rice chromosome 9, and from syntenous (at the genetic level) regions of other cereal genomes, has resulted in rice yeast artificial chromosome (YAC) contigs spanning parts of rice 9. This physical mapping, together with comparative genetic mapping, has demonstrated that synteny has been largely maintained between the genomes of several cereals at the level of contiged YACs. Markers located in one region of rice chromosome 9 encompassed by the YAC contigs have exhibited restriction fragment length polymorphism (RFLP) using deletion lines for the Ph1 locus. This has allowed demarcation of the region of rice chromosome 9 syntenous with the ph1b and ph1c deletions in wheat chromosome 5B. A group of probes located in wheat homoeologous group 5 and barley chromosome 5H, however, have synteny with rice chromosomes other than 9. This suggests that the usefulness of comparative trait analysis and of the rice genome as a tool to facilitate gene isolation will differ from one region to the next, and implies that the rice genome is more ancestral in structure than those of the Triticeae.
Full Text
The Full Text of this article is available as a PDF (3.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahn S., Tanksley S. D. Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7980–7984. doi: 10.1073/pnas.90.17.7980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. D., Smith J. B. Nuclear dna amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci. 1976 May 27;274(933):227–274. doi: 10.1098/rstb.1976.0044. [DOI] [PubMed] [Google Scholar]
- Chen M., SanMiguel P., de Oliveira A. C., Woo S. S., Zhang H., Wing R. A., Bennetzen J. L. Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3431–3435. doi: 10.1073/pnas.94.7.3431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke B., Stancombe P., Money T., Foote T., Moore G. Targeting deletion (homoeologous chromosome pairing locus) or addition line single copy sequences from cereal genomes. Nucleic Acids Res. 1992 Mar 25;20(6):1289–1292. doi: 10.1093/nar/20.6.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deshpande V. G., Ranjekar P. K. Repetitive DNA in three Gramineae species with low DNA content. Hoppe Seylers Z Physiol Chem. 1980 Aug;361(8):1223–1233. doi: 10.1515/bchm2.1980.361.2.1223. [DOI] [PubMed] [Google Scholar]
- Dunford R. P., Kurata N., Laurie D. A., Money T. A., Minobe Y., Moore G. Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae. Nucleic Acids Res. 1995 Jul 25;23(14):2724–2728. doi: 10.1093/nar/23.14.2724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill K. S., Gill B. S., Endo T. R., Boyko E. V. Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics. 1996 Jun;143(2):1001–1012. doi: 10.1093/genetics/143.2.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill K. S., Gill B. S., Endo T. R., Mukai Y. Fine physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics. 1993 Aug;134(4):1231–1236. doi: 10.1093/genetics/134.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilian A., Kudrna D. A., Kleinhofs A., Yano M., Kurata N., Steffenson B., Sasaki T. Rice-barley synteny and its application to saturation mapping of the barley Rpg1 region. Nucleic Acids Res. 1995 Jul 25;23(14):2729–2733. doi: 10.1093/nar/23.14.2729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurata N., Nagamura Y., Yamamoto K., Harushima Y., Sue N., Wu J., Antonio B. A., Shomura A., Shimizu T., Lin S. Y. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet. 1994 Dec;8(4):365–372. doi: 10.1038/ng1294-365. [DOI] [PubMed] [Google Scholar]
- Moore G. Cereal genome evolution: pastoral pursuits with 'Lego' genomes. Curr Opin Genet Dev. 1995 Dec;5(6):717–724. doi: 10.1016/0959-437x(95)80003-n. [DOI] [PubMed] [Google Scholar]
- Moore G., Devos K. M., Wang Z., Gale M. D. Cereal genome evolution. Grasses, line up and form a circle. Curr Biol. 1995 Jul 1;5(7):737–739. doi: 10.1016/s0960-9822(95)00148-5. [DOI] [PubMed] [Google Scholar]
- Moore G., Foote T., Helentjaris T., Devos K., Kurata N., Gale M. Was there a single ancestral cereal chromosome? Trends Genet. 1995 Mar;11(3):81–82. doi: 10.1016/S0168-9525(00)89005-8. [DOI] [PubMed] [Google Scholar]
- Moore G., Roberts M., Aragon-Alcaide L., Foote T. Centromeric sites and cereal chromosome evolution. Chromosoma. 1997 Apr;105(6):321–323. doi: 10.1007/BF02529746. [DOI] [PubMed] [Google Scholar]
- Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson J. C., Sorrells M. E., Van Deynze A. E., Lu Y. H., Atkinson M., Bernard M., Leroy P., Faris J. D., Anderson J. A. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics. 1995 Oct;141(2):721–731. doi: 10.1093/genetics/141.2.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitkus R., Doebley J., Lee M. Comparative genome mapping of Sorghum and maize. Genetics. 1992 Dec;132(4):1119–1130. doi: 10.1093/genetics/132.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]