Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Mar 1;18(5):1357–1366. doi: 10.1093/emboj/18.5.1357

Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH.

F Coin 1, E Bergmann 1, A Tremeau-Bravard 1, J M Egly 1
PMCID: PMC1171225  PMID: 10064601

Abstract

As part of TFIIH, XPB and XPD helicases have been shown to play a role in nucleotide excision repair (NER). Mutations in these subunits are associated with three genetic disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD). The strong heterogeneous clinical features observed in these patients cannot be explained by defects in NER alone. We decided to look at the transcriptional activity of TFIIH from cell lines of XP individuals. We set up an immunopurification procedure to isolate purified TFIIH from patient cell extracts. We demonstrated that mutations in two XP-B/CS patients decrease the transcriptional activity of the corresponding TFIIH by preventing promoter opening. The defect of XPB in transcription can be circumvented by artificial opening of the promoter. Western blot analysis and enzymatic assays indicate that XPD mutations affect the stoichiometric composition of TFIIH due to a weakness in the interaction between XPD-CAK complex and the core TFIIH, resulting in a partial reduction of transcription activity. This work, in addition to clarifying the role of the various TFIIH subunits, supports the current hypothesis that XP-B/D patients are more likely to suffer from transcription repair syndromes rather than DNA repair disorders alone.

Full Text

The Full Text of this article is available as a PDF (449.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Besse S., Vigneron M., Pichard E., Puvion-Dutilleul F. Synthesis and maturation of viral transcripts in herpes simplex virus type 1 infected HeLa cells: the role of interchromatin granules. Gene Expr. 1995;4(3):143–161. [PMC free article] [PubMed] [Google Scholar]
  2. Bootsma D., Hoeijmakers J. H. DNA repair. Engagement with transcription. Nature. 1993 May 13;363(6425):114–115. doi: 10.1038/363114a0. [DOI] [PubMed] [Google Scholar]
  3. Bürglen L., Seroz T., Miniou P., Lefebvre S., Burlet P., Munnich A., Pequignot E. V., Egly J. M., Melki J. The gene encoding p44, a subunit of the transcription factor TFIIH, is involved in large-scale deletions associated with Werdnig-Hoffmann disease. Am J Hum Genet. 1997 Jan;60(1):72–79. [PMC free article] [PubMed] [Google Scholar]
  4. Coin F., Marinoni J. C., Rodolfo C., Fribourg S., Pedrini A. M., Egly J. M. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet. 1998 Oct;20(2):184–188. doi: 10.1038/2491. [DOI] [PubMed] [Google Scholar]
  5. Drapkin R., Le Roy G., Cho H., Akoulitchev S., Reinberg D. Human cyclin-dependent kinase-activating kinase exists in three distinct complexes. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6488–6493. doi: 10.1073/pnas.93.13.6488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drapkin R., Reardon J. T., Ansari A., Huang J. C., Zawel L., Ahn K., Sancar A., Reinberg D. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature. 1994 Apr 21;368(6473):769–772. doi: 10.1038/368769a0. [DOI] [PubMed] [Google Scholar]
  7. Dvir A., Conaway R. C., Conaway J. W. A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9006–9010. doi: 10.1073/pnas.94.17.9006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evans E., Moggs J. G., Hwang J. R., Egly J. M., Wood R. D. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 1997 Nov 3;16(21):6559–6573. doi: 10.1093/emboj/16.21.6559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Feaver W. J., Svejstrup J. Q., Bardwell L., Bardwell A. J., Buratowski S., Gulyas K. D., Donahue T. F., Friedberg E. C., Kornberg R. D. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell. 1993 Dec 31;75(7):1379–1387. doi: 10.1016/0092-8674(93)90624-y. [DOI] [PubMed] [Google Scholar]
  10. Feaver W. J., Svejstrup J. Q., Henry N. L., Kornberg R. D. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell. 1994 Dec 16;79(6):1103–1109. doi: 10.1016/0092-8674(94)90040-x. [DOI] [PubMed] [Google Scholar]
  11. Friedberg E. C. Relationships between DNA repair and transcription. Annu Rev Biochem. 1996;65:15–42. doi: 10.1146/annurev.bi.65.070196.000311. [DOI] [PubMed] [Google Scholar]
  12. Gerard M., Fischer L., Moncollin V., Chipoulet J. M., Chambon P., Egly J. M. Purification and interaction properties of the human RNA polymerase B(II) general transcription factor BTF2. J Biol Chem. 1991 Nov 5;266(31):20940–20945. [PubMed] [Google Scholar]
  13. Goodrich J. A., Tjian R. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell. 1994 Apr 8;77(1):145–156. doi: 10.1016/0092-8674(94)90242-9. [DOI] [PubMed] [Google Scholar]
  14. Guzder S. N., Qiu H., Sommers C. H., Sung P., Prakash L., Prakash S. DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II. Nature. 1994 Jan 6;367(6458):91–94. doi: 10.1038/367091a0. [DOI] [PubMed] [Google Scholar]
  15. Guzder S. N., Sung P., Bailly V., Prakash L., Prakash S. RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription. Nature. 1994 Jun 16;369(6481):578–581. doi: 10.1038/369578a0. [DOI] [PubMed] [Google Scholar]
  16. Hoeijmakers J. H., Egly J. M., Vermeulen W. TFIIH: a key component in multiple DNA transactions. Curr Opin Genet Dev. 1996 Feb;6(1):26–33. doi: 10.1016/s0959-437x(96)90006-4. [DOI] [PubMed] [Google Scholar]
  17. Holstege F. C., van der Vliet P. C., Timmers H. T. Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J. 1996 Apr 1;15(7):1666–1677. [PMC free article] [PubMed] [Google Scholar]
  18. Humbert S., van Vuuren H., Lutz Y., Hoeijmakers J. H., Egly J. M., Moncollin V. p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair. EMBO J. 1994 May 15;13(10):2393–2398. doi: 10.1002/j.1460-2075.1994.tb06523.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hwang J. R., Moncollin V., Vermeulen W., Seroz T., van Vuuren H., Hoeijmakers J. H., Egly J. M. A 3' --> 5' XPB helicase defect in repair/transcription factor TFIIH of xeroderma pigmentosum group B affects both DNA repair and transcription. J Biol Chem. 1996 Jul 5;271(27):15898–15904. doi: 10.1074/jbc.271.27.15898. [DOI] [PubMed] [Google Scholar]
  20. Johnson R. T., Squires S., Elliott G. C., Koch G. L., Rainbow A. J. Xeroderma pigmentosum D-HeLa hybrids with low and high ultraviolet sensitivity associated with normal and diminished DNA repair ability, respectively. J Cell Sci. 1985 Jun;76:115–133. doi: 10.1242/jcs.76.1.115. [DOI] [PubMed] [Google Scholar]
  21. LeRoy G., Drapkin R., Weis L., Reinberg D. Immunoaffinity purification of the human multisubunit transcription factor IIH. J Biol Chem. 1998 Mar 20;273(12):7134–7140. doi: 10.1074/jbc.273.12.7134. [DOI] [PubMed] [Google Scholar]
  22. Lu H., Zawel L., Fisher L., Egly J. M., Reinberg D. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature. 1992 Aug 20;358(6388):641–645. doi: 10.1038/358641a0. [DOI] [PubMed] [Google Scholar]
  23. Marinoni J. C., Roy R., Vermeulen W., Miniou P., Lutz Y., Weeda G., Seroz T., Gomez D. M., Hoeijmakers J. H., Egly J. M. Cloning and characterization of p52, the fifth subunit of the core of the transcription/DNA repair factor TFIIH. EMBO J. 1997 Mar 3;16(5):1093–1102. doi: 10.1093/emboj/16.5.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Park E., Guzder S. N., Koken M. H., Jaspers-Dekker I., Weeda G., Hoeijmakers J. H., Prakash S., Prakash L. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11416–11420. doi: 10.1073/pnas.89.23.11416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Parvin J. D., Sharp P. A. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell. 1993 May 7;73(3):533–540. doi: 10.1016/0092-8674(93)90140-l. [DOI] [PubMed] [Google Scholar]
  26. Reardon J. T., Ge H., Gibbs E., Sancar A., Hurwitz J., Pan Z. Q. Isolation and characterization of two human transcription factor IIH (TFIIH)-related complexes: ERCC2/CAK and TFIIH. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6482–6487. doi: 10.1073/pnas.93.13.6482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rossignol M., Kolb-Cheynel I., Egly J. M. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J. 1997 Apr 1;16(7):1628–1637. doi: 10.1093/emboj/16.7.1628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roy R., Adamczewski J. P., Seroz T., Vermeulen W., Tassan J. P., Schaeffer L., Nigg E. A., Hoeijmakers J. H., Egly J. M. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell. 1994 Dec 16;79(6):1093–1101. doi: 10.1016/0092-8674(94)90039-6. [DOI] [PubMed] [Google Scholar]
  29. Roy R., Schaeffer L., Humbert S., Vermeulen W., Weeda G., Egly J. M. The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/TFIIH. J Biol Chem. 1994 Apr 1;269(13):9826–9832. [PubMed] [Google Scholar]
  30. Schaeffer L., Moncollin V., Roy R., Staub A., Mezzina M., Sarasin A., Weeda G., Hoeijmakers J. H., Egly J. M. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 1994 May 15;13(10):2388–2392. doi: 10.1002/j.1460-2075.1994.tb06522.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schaeffer L., Roy R., Humbert S., Moncollin V., Vermeulen W., Hoeijmakers J. H., Chambon P., Egly J. M. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science. 1993 Apr 2;260(5104):58–63. doi: 10.1126/science.8465201. [DOI] [PubMed] [Google Scholar]
  32. Sung P., Higgins D., Prakash L., Prakash S. Mutation of lysine-48 to arginine in the yeast RAD3 protein abolishes its ATPase and DNA helicase activities but not the ability to bind ATP. EMBO J. 1988 Oct;7(10):3263–3269. doi: 10.1002/j.1460-2075.1988.tb03193.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Takayama K., Salazar E. P., Lehmann A., Stefanini M., Thompson L. H., Weber C. A. Defects in the DNA repair and transcription gene ERCC2 in the cancer-prone disorder xeroderma pigmentosum group D. Cancer Res. 1995 Dec 1;55(23):5656–5663. [PubMed] [Google Scholar]
  34. Taylor E. M., Broughton B. C., Botta E., Stefanini M., Sarasin A., Jaspers N. G., Fawcett H., Harcourt S. A., Arlett C. F., Lehmann A. R. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8658–8663. doi: 10.1073/pnas.94.16.8658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vermeulen W., Scott R. J., Rodgers S., Müller H. J., Cole J., Arlett C. F., Kleijer W. J., Bootsma D., Hoeijmakers J. H., Weeda G. Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3. Am J Hum Genet. 1994 Feb;54(2):191–200. [PMC free article] [PubMed] [Google Scholar]
  36. Weeda G., van Ham R. C., Vermeulen W., Bootsma D., van der Eb A. J., Hoeijmakers J. H. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell. 1990 Aug 24;62(4):777–791. doi: 10.1016/0092-8674(90)90122-u. [DOI] [PubMed] [Google Scholar]
  37. Winkler G. S., Vermeulen W., Coin F., Egly J. M., Hoeijmakers J. H., Weeda G. Affinity purification of human DNA repair/transcription factor TFIIH using epitope-tagged xeroderma pigmentosum B protein. J Biol Chem. 1998 Jan 9;273(2):1092–1098. doi: 10.1074/jbc.273.2.1092. [DOI] [PubMed] [Google Scholar]
  38. van Vuuren A. J., Vermeulen W., Ma L., Weeda G., Appeldoorn E., Jaspers N. G., van der Eb A. J., Bootsma D., Hoeijmakers J. H., Humbert S. Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH). EMBO J. 1994 Apr 1;13(7):1645–1653. doi: 10.1002/j.1460-2075.1994.tb06428.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES