Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Mar 1;250(2):421–427. doi: 10.1042/bj2500421

Subcellular localization of transglutaminase. Effect of collagen.

M Juprelle-Soret 1, S Wattiaux-De Coninck 1, R Wattiaux 1
PMCID: PMC1148873  PMID: 2895639

Abstract

1. The subcellular distribution of transglutaminase was investigated by using the analytical approach of differential and isopycnic centrifugation as applied to three organs of the rat: liver, kidney and lung. After differential centrifugation by the method of de Duve, Pressman, Gianetto, Wattiaux & Appelmans [(1955) Biochem. J. 63, 604-617], transglutaminase is mostly recovered in the unsedimentable fraction S and the nuclear fraction N. After isopycnic centrifugation of the N fraction in a sucrose density gradient, a high proportion of the enzyme remains at the top of the gradient; a second but minor peak of activity is present in high-density regions, where a small proportion of 5'-nucleotidase, a plasma-membrane marker, is present together with a large proportion of collagen recovered in that fraction. 2. Fractions where a peak of transglutaminase was apparent in the sucrose gradient were examined by electron microscopy. The main components are large membrane sheets with extracellular matrix and free collagen fibers. 3. As these results seem to indicate that some correlation exists between particulate transglutaminase distribution and those of collagen and plasma membranes, the possible binding of transglutaminase by collagen (type I) and by purified rat liver plasma membrane was investigated. 4. The binding studies indicated that collagen is able to bind transglutaminase and to make complexes with plasma-membrane fragments whose density is higher than that of plasma-membrane fragments alone. Transglutaminase cannot be removed from such complexes by 1% Triton X-100, but can be to a relatively large extent by 0.5 M-KCl and by 50% (w/v) glycerol. 5. Such results suggest that the apparent association of transglutaminase with plasma membrane originates from binding in vitro of the cytosolic enzyme to plasma membrane bound to collagen, which takes place during homogenization of the tissue, when the soluble enzyme and extracellular components are brought together.

Full text

PDF
421

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPELMANS F., WATTIAUX R., DE DUVE C. Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 1955 Mar;59(3):438–445. doi: 10.1042/bj0590438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birckbichler P. J., Orr G. R., Patterson M. K., Jr Differential transglutaminase distribution in normal rat liver and rat hepatoma. Cancer Res. 1976 Aug;36(8):2911–2914. [PubMed] [Google Scholar]
  4. Brown A. E., Lok M. P., Elovson J. Improved method for the isolation of rat liver plasma membrane. Biochim Biophys Acta. 1976 Mar 19;426(3):418–432. doi: 10.1016/0005-2736(76)90387-4. [DOI] [PubMed] [Google Scholar]
  5. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies P. J., Davies D. R., Levitzki A., Maxfield F. R., Milhaud P., Willingham M. C., Pastan I. H. Transglutaminase is essential in receptor-mediated endocytosis of alpha 2-macroglobulin and polypeptide hormones. Nature. 1980 Jan 10;283(5743):162–167. doi: 10.1038/283162a0. [DOI] [PubMed] [Google Scholar]
  7. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Griffin M., Barnes R. N., Wynne J., Williams C. The effects of bleomycin and copper bleomycin upon transglutaminase enzymes. Biochem Pharmacol. 1978;27(8):1211–1219. doi: 10.1016/0006-2952(78)90454-9. [DOI] [PubMed] [Google Scholar]
  9. Juprelle-Soret M., Wattiaux-De Coninck S., Wattiaux R. Presence of a transglutaminase activity in rat liver lysosomes. Eur J Cell Biol. 1984 Jul;34(2):271–274. [PubMed] [Google Scholar]
  10. Kapuściński J., Skoczylas B. Simple and rapid fluorimetric method for DNA microassay. Anal Biochem. 1977 Nov;83(1):252–257. doi: 10.1016/0003-2697(77)90533-4. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lorand L., Campbell-Wilkes L. K., Cooperstein L. A filter paper assay for transamidating enzymes using radioactive amine substrates. Anal Biochem. 1972 Dec;50(2):623–631. doi: 10.1016/0003-2697(72)90074-7. [DOI] [PubMed] [Google Scholar]
  13. Nilsson O., Ronist G. Enzyme activities and ultrastructure of a membrane fraction from human erythrocytes. Biochim Biophys Acta. 1969 Jun 3;183(1):1–9. doi: 10.1016/0005-2736(69)90123-0. [DOI] [PubMed] [Google Scholar]
  14. Rojkind M., Pérez-Tamayo R. Liver fibrosis. Int Rev Connect Tissue Res. 1983;10:333–393. doi: 10.1016/b978-0-12-363710-9.50012-5. [DOI] [PubMed] [Google Scholar]
  15. Saito Y., Imada T., Takagi J., Kikuchi T., Inada Y. Platelet factor XIII. The collagen receptor? J Biol Chem. 1986 Jan 25;261(3):1355–1358. [PubMed] [Google Scholar]
  16. Slife C. W., Dorsett M. D., Bouquett G. T., Register A., Taylor E., Conroy S. Subcellular localization of a membrane-associated transglutaminase activity in rat liver. Arch Biochem Biophys. 1985 Sep;241(2):329–336. doi: 10.1016/0003-9861(85)90554-5. [DOI] [PubMed] [Google Scholar]
  17. Slife C. W., Dorsett M. D., Tillotson M. L. Subcellular location and identification of a large molecular weight substrate for the liver plasma membrane transglutaminase. J Biol Chem. 1986 Mar 5;261(7):3451–3456. [PubMed] [Google Scholar]
  18. Slife C. W., Morris G. S., Snedeker S. W. Solubilization and properties of the liver plasma membrane transglutaminase. Arch Biochem Biophys. 1987 Aug 15;257(1):39–47. doi: 10.1016/0003-9861(87)90540-6. [DOI] [PubMed] [Google Scholar]
  19. WOESSNER J. F., Jr The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961 May;93:440–447. doi: 10.1016/0003-9861(61)90291-0. [DOI] [PubMed] [Google Scholar]
  20. Wattiaux R., Wattiaux-De Coninck S., Ronveaux-dupal M. F., Dubois F. Isolation of rat liver lysosomes by isopycnic centrifugation in a metrizamide gradient. J Cell Biol. 1978 Aug;78(2):349–368. doi: 10.1083/jcb.78.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES