Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;94(7):569–574. doi: 10.1111/j.1349-7006.2003.tb01484.x

Roles of pericellular proteolysis by membrane type‐1 matrix metalloproteinase in cancer invasion and angiogenesis

Motoharu Seiki 1,, Ikuo Yana 1
PMCID: PMC11160244  PMID: 12841863

Abstract

Behavior of cancer cells is profoundly affected by their microenvironment, which is often controlled by pericellular proteolysis or the processing of protein components, including extracellular matrices, growth factors, cytokines, receptors, cell adhesion molecules, and so on. Matrix metalloproteinases (MMPs) are a family of zinc‐dependent proteases responsible for the proteolytic events in the extracellular milieu. Among the multiple MMPs expressed in a wide range of tumors, membrane type‐1 MMP (MT1‐MMP), which is expressed especially in tumor cells with significant invasive properties, is thought to be particularly important for pericellular proteolysis. Recent studies have elucidated in part how MT1‐MMP is regulated biologically for the promotion of invasion by tumors or for angiogenesis by endothelial cells. Understanding of the proteolysis by, and the regulation of MT1‐MMP, which probably promotes cell invasion, could provide a therapeutic hint as to how to block or delay the progression of cancer.


Abbreviations:

APC

adenomatous polyposis coli

uPAR, urokinase

urokinase‐type plasminogen activator receptor

Tcf4

transcription factor 4

Wnt

wingless‐type MMTV integration

HGF

hepatocyte growth factor

References

  • 1. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2001; 2: 163–76. [DOI] [PubMed] [Google Scholar]
  • 2. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284: 808–12. [DOI] [PubMed] [Google Scholar]
  • 3. Tryggvason K, Hoyhtya M, Pyke C. Type IV collagenases in invasive tumors. Breast Cancer Res Treat 1993; 24: 209–18. [DOI] [PubMed] [Google Scholar]
  • 4. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994; 370: 61–5. [DOI] [PubMed] [Google Scholar]
  • 5. Cao J, Sato H, Takino T, Seiki M. The C‐terminal region of membrane type matrix metalloproteinase is a functional transmembrane domain required for pro‐gelatinase A activation. J Biol Chem 1995; 270: 801–5. [DOI] [PubMed] [Google Scholar]
  • 6. Pavlaki M, Cao J, Hymowitz M, Chen WT, Bahou W, Zucker S. A conserved sequence within the propeptide domain of membrane type 1 matrix metalloproteinase is critical for function as an intramolecular chaperone. J Biol Chem 2002; 277: 2740–9. [DOI] [PubMed] [Google Scholar]
  • 7. English WR, Holtz B, Vogt G, Knauper V, Murphy G. Characterization of the role of the “MT‐loop”: an eight‐amino acid insertion specific to progelatinase A (MMP2) activating membrane‐type matrix metalloproteinases. J Biol Chem 2001; 276: 42018–26. [DOI] [PubMed] [Google Scholar]
  • 8. Fernandez‐Catalan C, Bode W, Huber R, Turk D, Calvete JJ, Lichte A, Tschesche H, Maskos K. Crystal structure of the complex formed by the membrane type 1‐matrix metalloproteinase with the tissue inhibitor of metalloproteinases‐2, the soluble progelatinase A receptor. EMBO J 1998; 17: 5238–48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Kinoh H, Sato H, Tsunezuka Y, Takino T, Kawashima A, Okada Y, Seiki M. MT‐MMP, the cell surface activator of proMMP‐2 (pro‐gelatinase A), is expressed with its substrate in mouse tissue during embryogenesis. J Cell Sci 1996; 109: 953–9. [DOI] [PubMed] [Google Scholar]
  • 10. Okada A, Tomasetto C, Lutz Y, Bellocq JP, Rio MC, Basset P. Expression of matrix metalloproteinases during rat skin wound healing: evidence that membrane type‐1 matrix metalloproteinase is a stromal activator of pro‐gelatinase A. J Cell Biol 1997; 137: 67–77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 1998; 95: 365–77. [DOI] [PubMed] [Google Scholar]
  • 12. Haas TL, Stitelman D, Davis SJ, Apte SS, Madri JA. Egr‐1 mediates extracellular matrix‐driven transcription of membrane type 1 matrix metalloproteinase in endothelium. J Biol Chem 1999; 274: 22679–85. [DOI] [PubMed] [Google Scholar]
  • 13. Huhtala P, Chow LT, Tryggvason K. Structure of the human type IV collagenase gene. J Biol Chem 1990; 265: 11077–82. [PubMed] [Google Scholar]
  • 14. Lohi J, Lehti K, Westermarck J, Kahari VM, Keski‐Oja J. Regulation of membrane‐type matrix metalloproteinase‐1 expression by growth factors and phorbol 12‐myristate 13‐acetate. Eur J Biochem 1996; 239: 239–47. [DOI] [PubMed] [Google Scholar]
  • 15. Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001; 1: 55–67. [DOI] [PubMed] [Google Scholar]
  • 16. Takahashi M, Tsunoda T, Seiki M, Nakamura Y, Furukawa Y. Identification of membrane‐type matrix metalloproteinase‐1 as a target of the β‐catenin/ Tcf4 complex in human colorectal cancers. Oncogene 2002; 21: 5861–7. [DOI] [PubMed] [Google Scholar]
  • 17. Cha HJ, Okada A, Kim KW, Sato H, Seiki M. Identification of cis‐acting promoter elements that support expression of membrane‐type 1 matrix metalloproteinase (MT1‐MMP) in v‐src transformed Madin‐Darby canine kidney cells. Clin Exp Metastasis 2000; 18: 675–81. [DOI] [PubMed] [Google Scholar]
  • 18. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI. Mechanism of cell surface activation of 72‐kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 1995; 270: 5331–8. [DOI] [PubMed] [Google Scholar]
  • 19. Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M. The membrane‐anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 2001; 107: 789–800. [DOI] [PubMed] [Google Scholar]
  • 20. Nakada M, Yamada A, Takino T, Miyamori H, Takahashi T, Yamashita J, Sato H. Suppression of membrane‐type 1 matrix metalloproteinase (MMP)‐mediated MMP‐2 activation and tumor invasion by testican 3 and its splicing variant gene product, N‐Tes. Cancer Res 2001; 61: 8896–902. [PubMed] [Google Scholar]
  • 21. Miyamori H, Takino T, Kobayashi Y, Tokai H, Itoh Y, Seiki M, Sato H. Claudin promotes activation of pro‐matrix metalloproteinase‐2 mediated by membrane‐type matrix metalloproteinases. J Biol Chem 2001; 276: 28204–11. [DOI] [PubMed] [Google Scholar]
  • 22. Mori H, Tomari T, Koshikawa N, Kajita M, Itoh Y, Sato H, Tojo H, Yana I, Seiki M. CD44 directs membrane‐type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin‐like domain. EMBO J 2002; 21: 3949–59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Stanton H, Gavrilovic J, Atkinson SJ, D'Ortho MP, Yamada KM, Zardi L, Murphy G. The activation of ProMMP‐2 (gelatinase A) by HT1080 fibrosarcoma cells is promoted by culture on a fibronectin substrate and is concomitant with an increase in processing of MT1‐MMP (MMP‐14) to a 45 kDa form. J Cell Sci 1998; 111: 2789–98. [DOI] [PubMed] [Google Scholar]
  • 24. Uekita T, Itoh Y, Yana I, Ohno H, Seiki M. Cytoplasmic tail‐dependent internalization of membrane‐type 1 matrix metalloproteinase is important for its invasion‐promoting activity. J Cell Biol 2001; 155: 1345–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. D'Ortho MP, Will H, Atkinson S, Butler G, Messent A, Gavrilovic J, Smith B, Timpl R, Zardi L, Murphy G. Membrane‐type matrix metalloproteinases 1 and 2 exhibit broad‐spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur J Bio chem 1997; 250: 751–7. [DOI] [PubMed] [Google Scholar]
  • 26. Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M, Robey PG, Poole AR, Pidoux I, Ward JM, Birkedal‐Hansen H. MT1‐MMP‐deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 1999; 99: 81–92. [DOI] [PubMed] [Google Scholar]
  • 27. Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V. Role of cell surface metalloprotease MT1‐MMP in epithelial cell migration over laminin‐5. J Cell Biol 2000; 148: 615–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M. Membranetype 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 2001; 153: 893–904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Deryugina EI, Ratnikov BI, Postnova TI, Rozanov DV, Strongin AY. Processing of integrin alpha v subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem 2002; 277: 9749–56. [DOI] [PubMed] [Google Scholar]
  • 30. Belkin AM, Akimov SS, Zaritskaya LS, Ratnikov BI, Deryugina EI, Strongin AY. Matrix‐dependent proteolysis of surface transglutaminase by membrane‐type metalloproteinase regulates cancer cell adhesion and locomotion. J Biol Chem 2001; 276: 18415–22. [DOI] [PubMed] [Google Scholar]
  • 31. McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark‐Lewis I, Overall CM. Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti‐inflammatory properties in vivo . Blood 2002; 100: 1160–7. [PubMed] [Google Scholar]
  • 32. Seiki M. The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol 2002; 14: 624–32. [DOI] [PubMed] [Google Scholar]
  • 33. Wang Z, Juttermann R, Soloway PD. TIMP‐2 is required for efficient activation of proMMP‐2 in vivo . J Biol Chem 2000; 275: 26411–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Itoh Y, Takamura A, Ito N, Maru Y, Sato H, Suenaga N, Aoki T, Seiki M. Homophilic complex formation of MT1‐MMP facilitates proMMP‐2 activation on the cell surface and promotes tumor cell invasion. EMBO J 2001; 20: 4782–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Lehti K, Lohi J, Juntunen MM, Pei D, Keski‐Oja J. Oligomerization through hemopexin and cytoplasmic domains regulates the activity and turnover of membrane‐type 1 matrix metalloproteinase. J Biol Chem 2002; 277: 8440–8. [DOI] [PubMed] [Google Scholar]
  • 36. Tam EM, Wu YI, Butler GS, Stack MS, Overall CM. Collagen binding properties of the membrane type‐1 matrix metalloproteinase (MT1‐MMP) hemopexin C domain. The ectodomain of the 44‐kDa autocatalytic product of MT1‐MMP inhibits cell invasion by disrupting native type I collagen cleavage. J Biol Chem 2002; 277: 39005–14. [DOI] [PubMed] [Google Scholar]
  • 37. Murphy G, Gavrilovic J. Proteolysis and cell migration: creating a path Curr Opin Cell Biol 1999; 11: 614–21. [DOI] [PubMed] [Google Scholar]
  • 38. Giannelli G, Falk‐Marzillier J, Schiraldi O, Stetler‐Stevenson WG, Quaranta V. Induction of cell migration by matrix metalloprotease‐2 cleavage of laminin‐5. Science 1997; 277: 225–8. [DOI] [PubMed] [Google Scholar]
  • 39. Gingras D, Bousquet‐Gagnon N, Langlois S, Lachambre MP, Annabi B, Beliveau R. Activation of the extracellular signal‐regulated protein kinase (ERK) cascade by membrane‐type‐1 matrix metalloproteinase (MT1‐MMP). FEBS Lett 2001; 507: 231–6. [DOI] [PubMed] [Google Scholar]
  • 40. Okamoto I, Kawano Y, Murakami D, Sasayama T, Araki N, Miki T, Wong AJ, Saya H. Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J Cell Biol 2001; 155: 755–62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Ratnikov BI, Rozanov DV, Postnova TI, Baciu PG, Zhang H, DiScipio RG, Chestukhina GG, Smith JW, Deryugina EI, Strongin AY. An alternative processing of integrin alpha v subunit in tumor cells by membrane type‐1 matrix metalloproteinase. J Biol Chem 2002; 277: 7377–85. [DOI] [PubMed] [Google Scholar]
  • 42. Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ. Regulation of cell in vasion and morphogenesis in a three‐dimensional type I collagen matrix by membrane‐type matrix metalloproteinases 1, 2, and 3. J Cell Biol 2000; 149: 1309–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Kadono Y, Shibahara K, Namiki M, Watanabe Y, Seiki M, Sato H. Membrane type 1‐matrix metalloproteinase is involved in the formation of hepatocyte growth factor/scatter factor‐induced branching tubules in Madin‐Darby canine kidney epithelial cells. Biochem Biophys Res Commun 1998; 251: 681–7. [DOI] [PubMed] [Google Scholar]
  • 44. Seftor RE, Seftor EA, Koshikawa N, Meltzer PS, Gardner LM, Bilban M, Stetler‐Stevenson WG, Quaranta V, Hendrix MJ. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase‐2, and membrane type‐1‐matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 2001; 61: 6322–7. [PubMed] [Google Scholar]
  • 45. Haas TL, Davis SJ, Madri JA. Three‐dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1‐MMP and MMP‐2 in microvascular endothelial cells. J Biol Chem 1998; 273: 3604–10. [DOI] [PubMed] [Google Scholar]
  • 46. Pepper MS. Role of the matrix metalloproteinase and plasminogen activatorplasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 2001; 21: 1104–17. [DOI] [PubMed] [Google Scholar]
  • 47. Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K. Impaired endochondral ossification and angiogenesis in mice deficient in membrane‐type matrix metalloproteinase I. Proc Natl Acad Sci USA 2000; 97: 4052–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler‐Stevenson WG, Quigley JP, Cheresh DA. Localization of matrix metalloproteinase MMP‐2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 1996; 85: 683–93. [DOI] [PubMed] [Google Scholar]
  • 49. Brooks PC, Silletti S, von Schalscha TL, Friedlander M, Cheresh DA. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 1998; 92: 391–400. [DOI] [PubMed] [Google Scholar]
  • 50. Sounni NE, Devy L, Hajitou A, Frankenne F, Munaut C, Gilles C, Deroanne C, Thompson EW, Foidart JM, Noel A. MT1‐MMP expression promotes tumor growth and angiogenesis through an up‐regulation of vascular endothelial growth factor expression. FASEB J 2002; 16: 555–64. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES