Abstract
Vascular endothelial growth factor (VEGF)‐C and VEGF‐D are potent lymphangiogenic factors produced by tumor and stromal cells. The purpose of this study was to determine whether expression of VEGF‐C and/or VEGF‐D correlates with clinicopathological features of human colorectal carcinoma. Expression of mRNAs for VEGF‐C, VEGF‐D, and their receptor VEGFR‐3 was examined by reverse transcription‐polymerase chain reaction (RT‐PCR) in six colon carcinoma cell lines and in fresh endoscopic biopsy specimens from 20 patients with colorectal carcinoma. Expression of VEGF‐C and VEGF‐D protein was also examined immunohistochemically in 139 archival surgical specimens of human colorectal carcinoma. Of the six cell lines, one (Colo320D) constitutively expressed VEGF‐C and four (Colo320D, DLD‐1, km12sm, km12c) constitutively expressed VEGF‐D mRNA. Expression of VEGF‐D mRNA was increased under low oxygen conditions, and all six cell lines constitutively expressed VEGF‐D mRNA under hypoxic conditions. Of the 139 specimens of human colorectal carcinoma, 65 (46.8%) showed intense VEGF‐C immunoreactivity and 41 (29.5%) showed intense VEGF‐D immunoreactivity. In 49 (75.3%) of the 65 and 20 (48.8%) of the 41 cases, heterogeneous intratumoral staining was observed for VEGF‐C and VEGF‐D, respectively, with the highest levels of expression at the invasive edges. VEGF‐C expression correlated with the depth of tumor invasion, lymphatic involvement, venous involvement, lymph node metastasis, and liver metastasis, and VEGF‐D expression correlated with the depth of tumor invasion, lymph node metastasis, and liver metastasis. No correlation was observed between VEGF‐C and VEGF‐D expression in tumors. The survival time of patients with VEGF‐C‐positive tumors was significantly shorter than that of patients with VEGF‐C‐negative tumors, and the survival time of patients with VEGF‐D‐positive tumors was significantly shorter than that of patients with VEGF‐D‐negative tumors. The survival time of patients with both VEGF‐C‐ and VEGF‐D‐positive tumors was significantly shorter than that of patients with both VEGF‐C‐and VEGF‐D‐negative tumors. These results suggest that VEGF‐C and VEGF‐D may be independent and important prognostic factors in patients with human colorectal carcinoma. (Cancer Sci 2004; 95: 32–39)
References
- 1. Dukes CE, Bussey HJR. The spread of rectal cancer and its effect on prognosis. Br J Cancer 1958; 12: 309–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Newland RC, Chapuis PH, Pheils MT, MacPherson JG. The relationship of survival to staging and grading of colorectal carcinoma: a prospective study of 503 cases. Cancer 1981; 47: 1424–9. [DOI] [PubMed] [Google Scholar]
- 3. Chapuis PH, Dent OF, Fisher R, Newland RC, Pheils MT, Smyth E, Colquhoun K. A multivariate analysis of clinical and pathological variables in prognosis after resection of large bowel cancer. Br J Cancer 1985; 72: 698–702. [DOI] [PubMed] [Google Scholar]
- 4. Fielding LP, Phillips RK, Fry JS, Hittinger R. Prediction of outcome after curative resection for large bowel cancer. Lancet 1986; ii: 904–7. [DOI] [PubMed] [Google Scholar]
- 5. Berse B, Brown LF, Van de Water L, Dvorak HF, Senger DR. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 1992; 3: 211–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Ferrara N, Houck K, Jakeman L, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 1992; 13: 18–32. [DOI] [PubMed] [Google Scholar]
- 7. Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol 1999; 9: 211–20. [DOI] [PubMed] [Google Scholar]
- 8. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K. Expression of the fms‐like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc NatlAcadSci USA 1995; 92: 3566–70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Kitadai Y, Amioka T, Haruma K, Tanaka S, Yoshihara M, Sumii K, Matsutani N, Yasui W, Chayama K. Clinicopathological significance of vascular endothelial growth factor (VEGF)‐C in human esophageal squamous cell carcinoma. Int J Cancer 2001; 93: 662–6. [DOI] [PubMed] [Google Scholar]
- 10. Amioka T, Kitadai Y, Tanaka S, Haruma K, Yoshihara M, Yasui W, Chayama K. Vascular endothelial growth factor‐C expression predicts lymph node metastasis of human gastric carcinoma invading the submucosa. Eur J Cancer 2002; 38: 1413–9. [DOI] [PubMed] [Google Scholar]
- 11. Furudoi A, Tanaka S, Haruma K, Kitadai Y, Yoshihara M, Chayama K, Shimamoto F. Clinical significance of vascular endothelial growth factor C expression and angiogenesis at the deepest invasive site of advanced colorectal carcinoma. Oncology 2002; 62: 157–66. [DOI] [PubMed] [Google Scholar]
- 12. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG. VEGF‐D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7: 186–91. [DOI] [PubMed] [Google Scholar]
- 13. Niki T, Iba S, Tokunou M, Yamada T, Matsuno Y, Hirohashi S. Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin Cancer Res 2000; 6: 2431–9. [PubMed] [Google Scholar]
- 14. O‐charoenrat P, Rhys‐Evans P, Eccles SA. Expression of vascular endothelial growth factor family members in head and neck squamous cell carcinoma correlates with lymph node metastasis. Cancer 2001; 92: 556–68. [DOI] [PubMed] [Google Scholar]
- 15. George ML, Tutton MG, Janssen F, Arnaout A, Abulafi AM, Eccles SA, Swift RI. VEGF‐A, VEGF‐C, and VEGF‐D in colorectal cancer progression. Neoplasia 2001; 3: 420–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Tanaka S, Haruma K, Teixeira CR, Tatsuta S, Ohtsu N, Hiraga Y, Yoshihara M, Sumii K, Kajiyama G, Shimamoto F. Endoscopic treatment of submucosal invasive colorectal carcinoma with special reference to risk factors for lymph node metastasis. J Gastroenterol 1995; 30: 710–7. [DOI] [PubMed] [Google Scholar]
- 17. Tanaka S, Haruma K, Tatsuta S, Hiraga Y, Teixeira CR, Shimamoto F, Yoshihara M, Sumii K, Kajiyama G. Proliferating cell nuclear antigen expression correlates with the metastatic potential of submucosal invasive colorectal carcinoma. Oncology 1995; 52: 134–9. [DOI] [PubMed] [Google Scholar]
- 18. Yonemura Y, Endo Y, Fujita H, Fushida S, Ninomiya I, Bandou E, Taniguchi K, Miwa K, Ohoyama S, Sugiyama K, Sasaki T. Role of vascular endothelial growth factor C expression in the development of lymph node metastasis in gastric cancer. Clin Cancer Res 1995; 5: 1823–9. [PubMed] [Google Scholar]
- 19. Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K. A novel vascular endothelial growth factor, VEGF‐C, is a ligand for the Flt4 (VEGFR‐3) and KDR (VEGFR‐2) receptor tyrosine kinases. EMBO J 1996; 15: 290–8. [PMC free article] [PubMed] [Google Scholar]
- 20. Galland F, Karamysheva A, Pebusque MJ, Borg JP, Rottapel R, Dubreuil P, Rosnet O, Birnbaum D. The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor. Oncogene 1993; 8: 1233–40. [PubMed] [Google Scholar]
- 21. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis‐correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1–8. [DOI] [PubMed] [Google Scholar]
- 22. Salven P, Lymboussaki A, Heikkila P, Jaaskela‐Saari H, Enholm B, Aase K, von Euler G, Eriksson U, Alitalo K, Joensuu H. Vascular endothelial growth factors VEGF‐B and VEGF‐C are expressed in human tumors. Am J Pathol 1998; 153: 103–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Bunone G, Vigneri P, Mariani L, Buto S, Collini P, Pilotti S, Pierotti MA, Bongarzone I. Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am J Pathol 1999; 155: 1967–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Tsurusaki T, Kanda S, Sakai H, Kanetake H, Saito Y, Alitalo K, Koji T. Vascular endothelial growth factor‐C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br J Cancer 1999; 80: 309–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Kurebayashi J, Otsuki T, Kunisue H, Mikami Y, Tanaka K, Yamamoto S, Sonoo H. Expression of vascular endothelial growth factor (VEGF) family members in breast cancer. Jpn J Cancer Res 1999; 90: 977–81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Achen MG, Williams RA, Minekus MP, Thornton GE, Stenvers K, Rogers PA, Lederman F, Roufail S, Stacker SA. Localization of vascular endothelial growth factor‐D in malignant melanoma suggests a role in tumour angiogenesis. J Pathol 2001; 193: 147–54. [DOI] [PubMed] [Google Scholar]
- 27. Oh‐e H, Tanaka S, Kitadai Y, Shimamoto F, Yoshihara M, Haruma K. Angiogenesis at the site of deepest penetration predicts lymph node metastasis of submucosal colorectal cancer. Dis Colon Rectum 2001; 44: 1129–36. [DOI] [PubMed] [Google Scholar]
- 28. Oh‐e H, Tanaka S, Kitadai Y, Shimamoto F, Yoshihara M, Haruma K. Cathepsin D expression as a possible predictor of lymph node metastasis in submucosal colorectal cancer. Eur J Cancer 2001; 37: 180–8. [DOI] [PubMed] [Google Scholar]
- 29. Nanashima A, Ito M, Sekine I, Naito S, Yamaguchi H, Nakagoe T, Ayabe H. Significance of angiogenic factors in liver metastatic tumors originating from colorectal cancers. Dig Dis Sci 1998; 43: 2634–40. [DOI] [PubMed] [Google Scholar]
- 30. Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson‐Welsh L, Cao Y, Saksela O, Kalkkinen N, Alitalo K. Proteolytic processing regulates receptor specificity and activity of VEGF‐C. EMBO J 1997; 16: 3898–911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, Alitalo K, Achen MG. Biosynthesis of vascular endothelial growth factor‐D involves proteolytic processing which generates non‐covalent homodimers. J Biol Chem 1999; 274: 32127–36. [DOI] [PubMed] [Google Scholar]
- 32. Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V, Qi JH, Claesson‐Welsh L, Alitalo K. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 1998; 95: 14389–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Valtola R, Salven P, Heikkila P, Taipale J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, de Waal R, Alitalo K. VEGFR‐3 and its ligand VEGF‐C are associated with angiogenesis in breast cancer. Am J Pathol 1999; 154: 1381–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Shima DT, Kuroki M, Deutsch U, Ng YS, Adamis AP, D'Amore PA. The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post‐transcriptional regulatory sequences. J Biol Chem 1996; 271: 3877–83. [DOI] [PubMed] [Google Scholar]
- 35. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia‐inducible factor 1. Mol Cell Biol 1996; 16: 4604–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Teng X, Li D, Johns RA. Hypoxia up‐regulates mouse vascular endothelial growth factor D promoter activity in rat pulmonary microvascular smooth‐muscle cells. Chest 2002; 121 Suppl 3: 82S–3S. [PubMed] [Google Scholar]
- 37. Orlandini M, Marconcini L, Ferruzzi R, Oliviero S. Identification of a c‐fos‐induced gene that is related to the platelet‐derived growth factor/vascular endothelial growth factor family. Proc Natl Acad Sci USA 1996; 93: 11675–80. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Orlandini M, Oliviero S. In fibroblasts Vegf‐D expression is induced by cell‐cell contact mediated by cadherin‐11. J Biol Chem 2001; 276: 6576–81. [DOI] [PubMed] [Google Scholar]
- 39. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D. Tumor‐associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 2002; 161: 947–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Sakesela O, Alitalo K. Vascular endothelial growth factor is induced in response to transforming growth factor‐beta in fibroblastic and epithelial cells. J Biol Chem 1994; 269: 6271–4. [PubMed] [Google Scholar]
- 41. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 1996; 271: 736–41. [DOI] [PubMed] [Google Scholar]
- 42. Li J, Perrella MA, Tsai JC, Yet SF, Hsieh CM, Yoshizumi M, Patterson C, Endege WO, Zhou F, Lee ME. Induction of vascular endothelial growth factor gene expression by interleukin‐1 beta in rat aortic smooth muscle cells. J Biol Chem 1995; 270: 308–12. [DOI] [PubMed] [Google Scholar]
- 43. Ristimaki A, Narko K, Enholm B, Joukov V, Alitalo K. Proinflammatory cy‐tokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor‐C. J Biol Chem 1998; 273: 8413–8. [DOI] [PubMed] [Google Scholar]