Skip to main content
Log in

Electrochemical Studies on the Corrosion Behaviour of Laser Alloyed Zn-Sn Coatings on UNS G10150 Steel in 1M HCl Solution

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Surface deterioration by corrosion is one of the complications associated with ageing facilities and components especially under some service environments. This study was designed to investigate the enhancement in the corrosion and hardness properties of UNS G10150 steel laser alloyed with three different premixed compositions of Zn-Sn binary powders using a 4.4 KW continuous wave (CW) Rofin Sinar Nd:YAG laser processing system. The steel alloyed samples were cut to corrosion coupons, immersed in hydrochloric acid (1M HCl) solution at 30 °C using an electrochemical technique and investigated for their corrosion behaviour. The morphologies and microstructures of the developed coatings and uncoated samples were characterized by an Optic Nikon Optical microscope (OPM) and a scanning electron microscope (SEM/EDS). Moreover, a X-ray diffractometer (XRD) was used to identify the phases present. An improvement of 2.5-times the hardness of the steel substrate was achieved in A1(0.8) which may be attributed to the fine microstructure, dislocations and the high degree of saturation of solid solution brought by the high scanning speed. At a scanning speed of 0.8 m/min, sample A1 exhibited the highest polarization resistance Rp (3163000 O.cm2), lowest corrosion current density icorr (7.95X10-8A/cm2), with a lowest corrosion rate Cr (0.000924 mm/year) in 1M HCl solution. The polarization resistance Rp (3163000 O.cm2) is 392,281-times the polarization of the UNS G10150 steel substrate with a 99.9994 % reduction in the corrosion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tao Z, Zhang S, Li W, Hou B (2009) The role of metal cations in improving the inhibitive performance of hexamine on the corrosion of steel in hydrochloric acid solution. Corros Sci 51:2588–2595

    Article  CAS  Google Scholar 

  2. Singh AK (2012) Inhibition of mild steel corrosion in hydrochloric acid solution by 3-(4-((Z)-Indolin-3-ylideneamino) phenylimi-no)indolin-2-one. Ind Eng Chem Res 51:3215–3223

    Article  CAS  Google Scholar 

  3. Ahamad I, Prasad R, Quraishi MA (2010) Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corros Sci 52:1472–1481

    Article  CAS  Google Scholar 

  4. Hosseini MG, Ashassi-Sorkhabi H, Ghiasvand H (2008) Electrochemical Studies of Zn–Ni Alloy Coatings from Non-cyanide Alkaline Bath Containing Titrate as Complexing Agent. Surf Coat Technol 202:2897–2904

    Article  CAS  Google Scholar 

  5. Abdallah M (2003) Corrosion behaviour of 304 stainless steel in sulphuric acid solutions and its inhibition by some substituted pyrazolones. Mater Chem Phys 82:786–792

    Article  CAS  Google Scholar 

  6. Sathiyanarayana S, Marikkannu C, Palaniswamy N (2005) Corrosion inhibition effect of tetramines for mild steel in 1 M HCl. Appl Surf Sci 241:477–484

    Article  Google Scholar 

  7. Fouda AS, Abdallah M, Al-Ashrey SM, Abdel-Fattah AA (2010) Some crown ethers as inhibitors for corrosion of stainless steel type 430 aqueous solutions. Desalination 250 :538–543

    Article  CAS  Google Scholar 

  8. Roy P, Pal A, Sukul D (2014) Origin of the synergistic effect between polysaccharide and thiourea towards adsorption and corrosion inhibition for mild steel in sulphuric acid. RSC Adv 4:10607–10613

    Article  CAS  Google Scholar 

  9. Omotosho OA, Ajayi OO, Fayomi OS, Ifepe VO (2010) Assessing the deterioration behavior of mild steel in 2M sulphuric acid using bambusa glauscescens. Int J Appl Eng Res D 2(2):406–418

    Google Scholar 

  10. Zhang J, Sun C, Yu Z, Cheng J, Li W, Duan J (2014) The performance of Zinc sacrificial anode in simulating marine fouling environment. Int J Electrochem Sci 9:5712–5721

    CAS  Google Scholar 

  11. Bobic B, Mitrovic S, Babic M, Bobic I (2010) Corrosion of Metal-matrix Composites with Aluminium Alloy Substrate. Tribol Ind 32:3–11

    Google Scholar 

  12. Popoola API, Fayomi OSI, Popoola OM (2012) Electrochemical and Mechanical Properties of Mild Steel Electro-plated with Zn- Al. Int J Electrochem Sci 7:4898–4917

    CAS  Google Scholar 

  13. Fontenay F (2002) Electrodeposited zinc and zinc alloy coatings and their corrosion resistance. Part 1, Galvanotechnik 93:2534–2541

    CAS  Google Scholar 

  14. Guaus E, Torrent-Burgues J (2003) Tin-Zinc electrodeposition from sulphate-gluconate baths. J Electroanal Chem 549: 25–36

    Article  CAS  Google Scholar 

  15. Blunden SJ, Killmeyer AJ (1991) Sn-Zn alloy electroplates outperform cadmium deposits. Adv Mater Processes 140(6):37–39

    CAS  Google Scholar 

  16. Budman E, McCoy M (1995) Tin-Zinc plating. Met Finish 93(9):10–11

    Article  CAS  Google Scholar 

  17. Budman E, Stevens D (1998) Tin-Zinc plating. Trans Inst Met Finish 76(3):B34

    CAS  Google Scholar 

  18. Schario DA, Klingenberg ML, Brooman EW (1996) Abstracts of the 190th Meeting of the Electrochemical Society, 96-2(309). The Electrochemical Society, Pennington

    Google Scholar 

  19. Pushpavanaman M (2000) Bull Electrochem 16:559–566

    Google Scholar 

  20. Popesco E, Tournier R (1999) Le zingage electrolytique pratique, Medro Edition

  21. Kwok CT, Cheng FT, Man HC (2006) Cavitation Erosion and Corrosion Behaviours of Laser-aluminized Mild Steel. J Surf Coat Technol 200:3544–3552

    Article  CAS  Google Scholar 

  22. Dobrzanski LA, Piec M, Bonek M, Jonda E, Klimpel A (2007) Mechanical and tribological properties of the laser alloyed surface coatings. J Achiev Mater Manuf Eng 20(1–2):235–238

    Google Scholar 

  23. Fagagnolo JB, Rodrigues AV, Lima MSF, Amigo V, Caram R (2013) A novel proposal to manipulate the properties of titanium parts by laser alloying. J Script Mater 68:471–474

    Article  Google Scholar 

  24. Adebiyi DI, Popoola API, Pityana SL (2014) Microstructural evolution at the overlap zones of 12Cr martensitic stainless steel laser alloyed with TiC. J Opt Laser Technol 61:15–23

    Article  CAS  Google Scholar 

  25. Wei L, Huijun Y, Chuanzhong C, Diangang W, Fei W (2013) Microstructures of hard coatings deposited on titanium alloys by laser alloying technique. J Surf Rev Lett 20:1–6

    Google Scholar 

  26. Yakovlev A, Bertrand P, Smurov I (2004) Laser cladding of wear resistant metal matrix composite coatings. Thin Solid Films 453:133–138

    Article  Google Scholar 

  27. Poulon-Quintina A, Watanabe I, Bertranda C, Watanabe E (2012) Microstructure and mechanical properties of surface treated cast titanium with Nd:YAG laser. Dent Mater 28:945–951

    Article  Google Scholar 

  28. Zhou R, Sun GF, Chen KK, Tong YQ (2014) Effect of tempering on microstructure mechanical properties of cast iron rolls laser alloyed with C-B-W-Cr. In: Proceedings of the global conference on polymer and composite materials

  29. Sugioka K, Cheng Y (2014) Ultrafast lasers-reliable tools for advanced materials processing. Light Sci Appl:3–30

  30. Oakes G, West JM (1969) Influence of Thiourea on the Dissolution of Mild Steel in Strong Hydrochloric Acid. Br Corros J 4 :66–73

    Article  CAS  Google Scholar 

  31. Gad Allah AG, Nassif N, Mikhail T (1992) Effect of temperature on the corrosion behaviour of helwan steel in acid chloride solutions. Annali di Chimica 82:49–71

    CAS  Google Scholar 

  32. Ben Hmamou D, Salghi R, Zarrouk A, Al-Deyab SS, Zarrok H, Hammouti B, Errami E (2012) Verbena extract: an efficient inhibitor of C38 steel corrosion in hydrochloric acid. Int J Electrochem Sci 7:6234–6246

    CAS  Google Scholar 

  33. Morad MS, Kamal El-dean AM (2006) 22’-Dithiobis(3-cyano-4,6-dimethylpyridine): A new class of acid corrosion inhibitors for mild steel. Corros Sci 48:3398–3412

    Article  CAS  Google Scholar 

  34. Tebbji K, Oudda H, Hammouti B, Benkaddour M, El Kodadi M, Malek F, Ramdani A (2005) Inhibitive action of two bipyrazolic isomers towards corrosion of steel in 1 M HCl. Appl Surf Sci 241:326–334

    Article  CAS  Google Scholar 

  35. Yurt A, Balaban A, Kandemir SU, Bereket G, Erk B (2004) Investigation on some Schiff bases as HCl corrosion inhibitors for carbon steel. Mater Chem Phys 85:420–426

    Article  CAS  Google Scholar 

  36. Abdullah M, Fouda AS, Shama SA, Afifi EA (2008) Azodyes as Corrosion Inhibitors for Dissolution of C-steel in Hydrochloric Acid Solution. Afr J Pure Appl Chem 9:083–091

    Google Scholar 

  37. Loto RT (2013) Pitting Corrosion evaluation of Austenitic Stainless Steel Type 304 in Acid and Chloride Media. J Mater Envir Sci 4(4):448–459

    CAS  Google Scholar 

  38. Leckie HP, Uhlig HH (1262) Pitting Corrosion. J Electrochem Soc:113

  39. Galvele JR (1981) Forms of Corrosion. Corros Soc 21:551

    Article  CAS  Google Scholar 

  40. Japtap RN, Patil PP, Hassan SZ (2008) Effect of zinc oxide in combating corrosion in zinc-rich primer. Prog Org Coat 63:389–394

    Article  Google Scholar 

  41. Fattah-alhossein A, Alemi MH, Banael S (2011) Diffusivity of Point Defects in the Passive Film on Stainless Steel. Int J Electrochem:6. doi:10.4061/2011/968512

  42. Dubent S, De Petris-Wery M, Saurat M, Ayedi HF (2007) Composition control of Tin-Zinc electrodeposits through means of experimental strategies. Mater Chem Phys 104:146–152

    Article  CAS  Google Scholar 

  43. Rahman MJ, Sen SR, Moniruzzaman M, Shorowordi KM (2009) Morphology and Properties of Electrodeposited Zn-Ni Alloy Coatings on Mild Steel. J Mech Eng Trans Mech Eng Div Inst Eng 40:9–12

    Google Scholar 

  44. Popoola API, Pityana SL, Popoola OM (2011) Laser deposition of (Cu + Mo) alloying reinforcements on AA1200 substrate for corrosion improvement. Int J Electrochem Sci 6:5038–5051

    CAS  Google Scholar 

  45. Hosking NC, Ström MA, Shipway PH, Rudd CD (2007) Corrosion resistance of zinc– magnesium coated steel. Corros Sci 49:3669–3695

    Article  CAS  Google Scholar 

  46. Qu Q, Yan C, Wan Y, Cao C (2012) Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc. Corros Sci 44(12):2789–2803

    Article  Google Scholar 

  47. Falk T, Svensson JE, Johansson LG (1998) The Influence of CO2 and NaCl on the atmospheric corrosion of zinc - A laboratory study. J Electrochem Soc 145:2993

    Article  CAS  Google Scholar 

  48. Praveen BM, Venkatesha TV (2008) Electrodeposition and Properties of Zn-nanosized TiO2 Composite Coatings. Appl Surf Sci 254(8):2418–2424

    Article  CAS  Google Scholar 

  49. Zivica V (2002) Electrochemical activity of heavy metal oxides in the process of chloride induced corrosion of steel reinforcement. Bull Mater Sci 25(5):371–374

    Article  CAS  Google Scholar 

  50. Felui S, Barajas R, Bastidas J, Morcillo M (1989) Mechanism of cathodic protection of zinc-rich paints by electrochemical impedance spectroscopy. J Coat Technol 61(775):71–76

    Google Scholar 

  51. Grigoryan RA (2001) High-temperature synthesis with plasma heating and investigation of complex oxides on the basis of zinc orthostannate. Cand Sci (Chem) Dissertation, Chernogolovka: Institute of Structural Macro-Kinetics and Materials Science RAS

  52. Panakh-zade CA, Amirdzhanova TB, Kh. Kurbanov T (1985) Synthesis and properties of Cd2xZn2-2xSnO4. ZhNKh 30(10):517–524

    Google Scholar 

  53. Hwang D, Jin J, Lee H, Kim H, Ching H, Kim D, Jang S, Kim D (2014) Hierarchically structured Zn2SnO4 nanobeads for high-efficiency dye-sensitized solar cells. Sci Rep 4:1–7

    CAS  Google Scholar 

  54. Zhang XG (1996) Corrosion and Electrochemistry of Zinc. Plenum Press, New York, p 157

    Book  Google Scholar 

  55. Hernandez-Alvarado LA, Hernandez LS, Rodriguez-Reyna SL (2012) Evaluation of Corrosion Behavior of Galvanized Steel Treated with Conventional Conversion Coatings and a Chromate-Free Organic Inhibitor. Int J Cor 2012:1–9

    Article  Google Scholar 

  56. Hassan HH (2001) Corrosion behaviour of zinc in sodium perchlorate solutions. Appl Surf Sci 174:201–209

    Article  CAS  Google Scholar 

  57. Hoar TP, Mears D, Rothwell G (1965). Corros Sci 5:279–289

    Article  CAS  Google Scholar 

  58. Li D, Liu PCC (2008) Corrosion characterization of tin–lead and lead free solders in 3.5 wt.% NaCl solution. Corros Sci 50:995–1004

    Article  CAS  Google Scholar 

  59. Rosalbino F, Angelini E, Zanicchi G, Carlini R, Marazza R (2009) Electrochemical Corrosion Study of Sn–3Ag–3Cu Solder Alloy in NaCl solution. Electrochim Acta 54:7231–7237

    Article  CAS  Google Scholar 

  60. Tsao LC, Lo TT, Peng SF, Chang SY (2010) Electrochemical behavior of a new Sn3.5Ag0.5Cu composite solder. In: Proceedings of 11th International Conference on Electronic Packaging Technology & High Density Packaging

  61. Fayomi OSI, Abdulwahab M, Popoola API (2013) Properties evaluation of ternary surfactant-induced Zn -Ni -Al2O3 films on mild steel by electrolytic chemical deposition. J Ovonic Res 9(5):123–132

    CAS  Google Scholar 

  62. Rahman MJ, Sen SR, Moniruzzamanand M, Shorowordi KM (2009) Morphology and properties of electrodeposited Zn -Ni alloy coatings on mild steel. J Mech Eng 40:9–12

    Google Scholar 

  63. Ashiru OA, Shirokoff J (1996) Electrodeposition and characterization of tin-zinc alloy coatings. J Appl Surf Sci 103:159–169

    Article  CAS  Google Scholar 

  64. Hu CC, Wang CK, Lee GL (2006) Composition control of tin-zinc deposits using experimental strategies. Electrochimical Acta 51:3692–3698

    Article  CAS  Google Scholar 

  65. Popoola API, Pityana SL, Popoola OM (2011) Quantitative Study of the Hardness Property of Laser Surface Alloyed Aluminium AA1200. J S Afri Inst Min Metall 111:335–344

    CAS  Google Scholar 

  66. Sun G, Zhang Y, Liu C, Luo K, Tao X, Li P (2010) Microstructure and wear resistance enhancement of cast steel rolls by laser surface alloying NiCr-Cr2C2. Mater Des 31:2737–2744

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Fatoba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatoba, O.S., Popoola, A.P.I., Fedotova, T. et al. Electrochemical Studies on the Corrosion Behaviour of Laser Alloyed Zn-Sn Coatings on UNS G10150 Steel in 1M HCl Solution. Silicon 7, 357–369 (2015). https://doi.org/10.1007/s12633-015-9319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9319-2

Keywords

Navigation