Skip to main content

Advertisement

Log in

Functional significance of long non-coding RNAs in breast cancer

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Most of the genome is transcribed to transcripts of no protein-coding potential. However, these transcripts do not represent transcriptional ‘noise’, rather they play an important role in cellular metabolism and development. Non-coding transcripts of 200 bases to 100 kb length are termed as long non-coding RNAs, majority of which are yet to be characterised thoroughly. Long non-coding RNAs (lncRNAs) play a significant role in cellular process ranging from transcriptional to post-transcriptional regulation. In this review, we highlight the recent efforts to characterise the major functions of lncRNAs in breast cancer. lncRNA expression is altered in several cancer types. Further, the aberrant regulation of lncRNAs promotes tumour development as they are involved in several cancer-associated pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–63.

    Article  CAS  PubMed  Google Scholar 

  2. Kapranov P. Studying chromosome-wide transcriptional networks: new insights into disease? Genome Med. 2009;1:50.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9.

    Article  CAS  PubMed  Google Scholar 

  4. Van Bakel H, Hughes TR. Establishing legitimacy and function in the new transcriptome. Brief Funct Genomic Proteomic. 2009;8:424–36.

    Article  PubMed  Google Scholar 

  5. Wang J, Zhang J, Zheng H, Li J, Liu D, Li H, et al. Mouse transcriptome: neutral evolution of “non-coding” complementary DNAs. Nature. 2004;431:1.

    PubMed  Google Scholar 

  6. Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol. 2007;14:103–5.

    Article  CAS  PubMed  Google Scholar 

  7. Van Bakel H, Nislow C, Blencowe BJ, Hughes TR. Most “dark matter” transcripts are associated with known genes. PLoS Biol. 2010;8:e1000371.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23:1494–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.

    Article  CAS  PubMed  Google Scholar 

  10. Mitra S, Mitra AP, Triche TJ. A central role for long non-coding RNA in cancer. Front Genet. 2012;3:17.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol. 2010;7:582–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature. 2009;457:413–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature. 2009;457:396–404.

    Article  CAS  PubMed  Google Scholar 

  15. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell. 2007;128:1089–103.

    Article  CAS  PubMed  Google Scholar 

  16. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145:178–81.

    Article  CAS  PubMed  Google Scholar 

  18. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316:1484–8.

    Article  CAS  PubMed  Google Scholar 

  19. Wu JM, Fackler MJ, Halushka MK, Molavi DW, Taylor ME, Teo WW, et al. Heterogeneity of breast cancer metastases: comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin Cancer Res. 2008;14:1938–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Khalil AM, Rinn JL. RNA–protein interactions in human health and disease. Semin Cell Dev Biol. 2011;22:359–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wang X, Song X, Glass CK, Rosenfeld MG. The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol. 2011;3:a003756.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21:354–61.

    Article  CAS  PubMed  Google Scholar 

  23. Kosir M, Jia H, Ju D, Lipovich L. Challenging paradigms: long non-coding RNAs in breast ductal carcinoma in situ (DCIS). Front Genet. 2013;4:50.

    PubMed Central  PubMed  Google Scholar 

  24. Sun M, Kraus WL. Minireview: long noncoding RNAs: new “links” between gene expression and cellular outcomes in endocrinology. Mol Endocrinol. 2013;27:1390–402.

    Article  CAS  PubMed  Google Scholar 

  25. Nagano K. Search for breast cancer-related biomarker proteins for drug discovery (in Japanese with English abstract). Yakugaku Zassh. 2010;130:1701–6.

    Article  CAS  Google Scholar 

  26. Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer—new paradigms in molecular oncology. Curr Opin Cell Biol. 2009;21:470–9.

    Article  CAS  PubMed  Google Scholar 

  27. Bánfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE, et al. Long noncoding RNAs are rarely translated in two human cell lines. Genome Res. 2012;22:1646–57.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Sleutels F, Zwart R, Barlow DP. The non-coding air RNA is required for silencing autosomal imprinted genes. Nature. 2002;415:810–3.

    Article  CAS  PubMed  Google Scholar 

  29. Seidl CIM, Stricker SH, Barlow DP. The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export. EMBO J. 2006;25:3565–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Nagano T, Fraser P. Emerging similarities in epigenetic gene silencing by long noncoding RNAs. Mamm Genome. 2009;20:557–62.

    Article  CAS  PubMed  Google Scholar 

  31. Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science. 2005;309:1570–3.

    Article  CAS  PubMed  Google Scholar 

  32. Fejes-Toth K, Sotirova V, Sachidanandam R, Assaf G, Hannon GJ, Kapranov P, et al. Post-transcriptional processing generates a diversity of 5’-modified long and short RNAs. Nature. 2009;457:1028–32.

    Article  CAS  PubMed Central  Google Scholar 

  33. Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature. 2008;453:534–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008;453:539–43.

    Article  CAS  PubMed  Google Scholar 

  35. Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, et al. An endogenous small interfering RNA pathway in Drosophila. Nature. 2008;453:798–802.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Okamura K, Chung W-J, Ruby JG, Guo H, Bartel DP, Lai EC. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature. 2008;453:803–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Munroe SH, Lazar MA. Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J Biol Chem. 1991;266:22083–6.

    CAS  PubMed  Google Scholar 

  38. Beltran M, Puig I, Peña C, García JM, Alvarez AB, Peña R, et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 2008;22:756–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA. 2007;13:313–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Cunnington MS, Koref MS, Mayosi BM, Burn J, Keavney B. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet. 2010;6:e1000899.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lai M, Yang Z, Zhou L, Zhu Q, Xie H, Zhang F, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol. 2012;29:1810–6.

    Article  CAS  PubMed  Google Scholar 

  43. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol. 2007;25:1239–46.

    Article  CAS  PubMed  Google Scholar 

  44. Iacoangeli A, Lin Y, Morley EJ, Muslimov IA, Bianchi R, Reilly J, et al. BC200 RNA in invasive and preinvasive breast cancer. Carcinogenesis. 2004;25:2125–33.

    Article  CAS  PubMed  Google Scholar 

  45. Lottin S. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis. 2002;23:1885–95.

    Article  CAS  PubMed  Google Scholar 

  46. Berteaux N, Lottin S, Monté D, Pinte S, Quatannens B, Coll J, et al. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem. 2005;280:29625–36.

    Article  CAS  PubMed  Google Scholar 

  47. Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M, et al. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis. 2014;5:e1008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458:719–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Cayre A, Rossignol F, Clottes E, Penault-Llorca F. aHIF but not HIF-1alpha transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res. 2003;5:R223–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Rossignol F, Vaché C, Clottes E. Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene. 2002;299:135–40.

    Article  CAS  PubMed  Google Scholar 

  51. Chen W, Böcker W, Brosius J, Tiedge H. Expression of neural BC200 RNA in human tumours. J Pathol. 1997;183:345–51.

    Article  CAS  PubMed  Google Scholar 

  52. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 2009;28:195–208.

    Article  CAS  PubMed  Google Scholar 

  53. Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 2008;121:939–46.

    Article  CAS  PubMed  Google Scholar 

  54. Giannoukakis N, Deal C, Paquette J, Goodyer CG, Polychronakos C. Parental genomic imprinting of the human IGF2 gene. Nat Genet. 1993;4:98–101.

    Article  CAS  PubMed  Google Scholar 

  55. Ariel I. The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma. Mol Pathol. 2000;53:320–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Lustig-Yariv O, Schulze E, Komitowski D, Erdmann V, Schneider T, de Groot N, et al. The expression of the imprinted genes H19 and IGF-2 in choriocarcinoma cell lines. Is H19 a tumor suppressor gene? Oncogene. 1997;15:169–77.

    Article  CAS  PubMed  Google Scholar 

  57. Adriaenssens E, Dumont L, Lottin S, Bolle D, Leprêtre A, Delobelle A, et al. H19 overexpression in breast adenocarcinoma stromal cells is associated with tumor values and steroid receptor status but independent of p53 and Ki-67 expression. Am J Pathol. 1998;153:1597–607.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007;129:1311–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Silva JM, Boczek NJ, Berres MW, Ma X, Smith DI. LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol. 2011;8:496–505.

    Article  CAS  PubMed  Google Scholar 

  60. Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29:3082–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39:925–38.

    Article  CAS  PubMed  Google Scholar 

  62. Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9:e1003368.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Geirsson A, Lynch RJ, Paliwal I, Bothwell ALM, Hammond GL. Human trophoblast noncoding RNA suppresses CIITA promoter III activity in murine B-lymphocytes. Biochem Biophys Res Commun. 2003;301:718–24.

    Article  CAS  PubMed  Google Scholar 

  64. Geirsson A, Bothwell ALM, Hammond GL. Inhibition of alloresponse by a human trophoblast non-coding RNA suppressing class II transactivator promoter III and major histocompatibility class II expression in murine B-lymphocytes. J Heart Lung Transplant. 2004;23:1077–81.

    Article  PubMed  Google Scholar 

  65. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell. 1999;97:17–27.

    Article  CAS  PubMed  Google Scholar 

  66. Lanz RB, Chua SS, Barron N, Soder BM, DeMayo F, O’Malley BW. Steroid receptor RNA activator stimulates proliferation as well as apoptosis in vivo. Mol Cell Biol. 2003;23:7163–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Leygue E, Dotzlaw H, Watson PH, Murphy LC. Expression of the steroid receptor rna activator in human breast tumors. Cancer Res. 1999;59:4190–3.

    CAS  PubMed  Google Scholar 

  68. Murphy LC, Simon SLR, Parkes A, Leygue E, Dotzlaw H, Snell L, et al. altered expression of estrogen receptor coregulators during human breast tumorigenesis. Cancer Res. 2000;60:6266–71.

    CAS  PubMed  Google Scholar 

  69. Wang F, Li X, Xie X, Zhao L, Chen W. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 2008;582:1919–27.

    Article  CAS  PubMed  Google Scholar 

  70. Erwin JA, Lee JT. New twists in X-chromosome inactivation. Curr Opin Cell Biol. 2008;20:349–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Benoît M-H, Hudson TJ, Maire G, Squire JA, Arcand SL, Provencher D, et al. Global analysis of chromosome X gene expression in primary cultures of normal ovarian surface epithelial cells and epithelial ovarian cancer cell lines. Int J Oncol. 2007;30:5–17.

    PubMed  Google Scholar 

  72. Yildirim E, Kirby JE, Brown DE, Mercier FE, Sadreyev RI, Scadden DT, et al. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell. 2013;152:727–42.

    Article  CAS  PubMed  Google Scholar 

  73. Askarian-Amiri ME, Crawford J, French JD, Smart CE, Smith MA, Clark MB, et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA. 2011;17:878–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Raouf A, Sun Y, Chatterjee S, Basak P. The biology of human breast epithelial progenitors. Semin Cell Dev Biol. 2012;23:606–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Vikram.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikram, R., Ramachandran, R. & Abdul, K.S.M. Functional significance of long non-coding RNAs in breast cancer. Breast Cancer 21, 515–521 (2014). https://doi.org/10.1007/s12282-014-0554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-014-0554-y

Keywords

Navigation