Skip to main content

Advertisement

The Extracellular Matrix Modulates Fibroblast Phenotype and Function in the Infarcted Myocardium

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiac fibroblasts are key cellular effectors of cardiac repair; their phenotype and function are modulated by interactions with extracellular matrix proteins. This review manuscript discusses the effects of the extracellular matrix on the inflammatory and reparative properties of fibroblasts in the infarcted myocardium. Early generation of matrix fragments in the infarct induces a pro-inflammatory and matrix-degrading fibroblast phenotype. Formation of a fibrin/fibronectin-rich provisional matrix serves as a conduit for migration of fibroblasts into the infarcted area. Induction of ED-A fibronectin and nonfibrillar collagens may contribute to myofibroblast transdifferentiation. Upregulation of matricellular proteins promotes transduction of growth factor and cytokine-mediated signals. As the scar matures, matrix cross-linking, clearance of matricellular proteins, and reduced growth factor signaling cause deactivation and apoptosis of reparative infarct fibroblasts. Understanding the effects of matrix components on infarct fibroblasts may guide the design of peptides that reproduce, or inhibit, specific matricellular functions, attenuating adverse remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nag, A. C. (1980). Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios, 28, 41–61.

    PubMed  CAS  Google Scholar 

  2. Baudino, T. A., Carver, W., Giles, W., & Borg, T. K. (2006). Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol, 291, H1015–1026.

    Article  PubMed  CAS  Google Scholar 

  3. Porter, K. E., & Turner, N. A. (2009). Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther, 123, 255–278.

    Article  PubMed  CAS  Google Scholar 

  4. Snider, P., Standley, K. N., Wang, J., Azhar, M., Doetschman, T., & Conway, S. J. (2009). Origin of cardiac fibroblasts and the role of periostin. Circ Res, 105, 934–947.

    Article  PubMed  CAS  Google Scholar 

  5. Camelliti, P., Borg, T. K., & Kohl, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res, 65, 40–51.

    Article  PubMed  CAS  Google Scholar 

  6. Kakkar, R., & Lee, R. T. (2010). Intramyocardial fibroblast myocyte communication. Circ Res, 106, 47–57.

    Article  PubMed  CAS  Google Scholar 

  7. Smith, R. S., Smith, T. J., Blieden, T. M., & Phipps, R. P. (1997). Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol, 151, 317–322.

    PubMed  CAS  Google Scholar 

  8. Leonard, B. L., Smaill, B. H., & Legrice, I. J. (2012). Structural remodeling and mechanical function in heart failure. Microsc Microanal, 18, 50–67.

    Article  PubMed  CAS  Google Scholar 

  9. Jugdutt, B. I. (2003). Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation, 108, 1395–1403.

    Article  PubMed  Google Scholar 

  10. Weber, K. T. (1989). Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol, 13, 1637–1652.

    Article  PubMed  CAS  Google Scholar 

  11. Ieda, M., Tsuchihashi, T., Ivey, K. N., Ross, R. S., Hong, T. T., Shaw, R. M., & Srivastava, D. (2009). Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell, 16, 233–244.

    Article  PubMed  CAS  Google Scholar 

  12. Eghbali, M., Blumenfeld, O. O., Seifter, S., Buttrick, P. M., Leinwand, L. A., Robinson, T. F., Zern, M. A., & Giambrone, M. A. (1989). Localization of types I, III and IV collagen mRNAs in rat heart cells by in situ hybridization. J Mol Cell Cardiol, 21, 103–113.

    Article  PubMed  CAS  Google Scholar 

  13. Banerjee, I., Fuseler, J. W., Price, R. L., Borg, T. K., & Baudino, T. A. (2007). Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol, 293, H1883–1891.

    Article  PubMed  CAS  Google Scholar 

  14. Norris, R. A., Borg, T. K., Butcher, J. T., Baudino, T. A., Banerjee, I., & Markwald, R. R. (2008). Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin. Ann N Y Acad Sci, 1123, 30–40.

    Article  PubMed  CAS  Google Scholar 

  15. Oka, T., Xu, J., Kaiser, R. A., Melendez, J., Hambleton, M., Sargent, M. A., Lorts, A., Brunskill, E. W., Dorn, G. W., 2nd, Conway, S. J., Aronow, B. J., Robbins, J., & Molkentin, J. D. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res, 101, 313–321.

    Article  PubMed  CAS  Google Scholar 

  16. Berk, B. C., Fujiwara, K., & Lehoux, S. (2007). ECM remodeling in hypertensive heart disease. J Clin Invest, 117, 568–575.

    Article  PubMed  CAS  Google Scholar 

  17. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol, 3, 349–363.

    Article  PubMed  CAS  Google Scholar 

  18. Roberts, C. S., Maclean, D., Maroko, P., & Kloner, R. A. (1984). Early and late remodeling of the left ventricle after acute myocardial infarction. Am J Cardiol, 54, 407–410.

    Article  PubMed  CAS  Google Scholar 

  19. Pfeffer, M. A., & Braunwald, E. (1990). Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 81, 1161–1172.

    Article  PubMed  CAS  Google Scholar 

  20. St John Sutton, M., Lee, D., Rouleau, J. L., Goldman, S., Plappert, T., Braunwald, E., & Pfeffer, M. A. (2003). Left ventricular remodeling and ventricular arrhythmias after myocardial infarction. Circulation, 107, 2577–2582.

    Article  PubMed  Google Scholar 

  21. Swynghedauw, B. (1991). Remodeling of the heart in chronic pressure overload. Basic Res Cardiol, 86(Suppl 1), 99–105.

    PubMed  CAS  Google Scholar 

  22. Frangogiannis, N. G. (2012). Regulation of the inflammatory response in cardiac repair. Circ Res, 110, 159–173.

    Article  PubMed  CAS  Google Scholar 

  23. Frangogiannis, N. G. (2007). Chemokines in ischemia and reperfusion. Thromb Haemost, 97, 738–747.

    PubMed  CAS  Google Scholar 

  24. Frangogiannis, N. G., Mendoza, L. H., Ren, G., Akrivakis, S., Jackson, P. L., Michael, L. H., Smith, C. W., & Entman, M. L. (2003). MCSF expression is induced in healing myocardial infarcts and may regulate monocyte and endothelial cell phenotype. Am J Physiol Heart Circ Physiol, 285, H483–492.

    PubMed  CAS  Google Scholar 

  25. Bujak, M., Dobaczewski, M., Gonzalez-Quesada, C., Xia, Y., Leucker, T., Zymek, P., Veeranna, V., Tager, A. M., Luster, A. D., & Frangogiannis, N. G. (2009). Induction of the CXC chemokine interferon-gamma-inducible protein 10 regulates the reparative response following myocardial infarction. Circ Res, 105, 973–983.

    Article  PubMed  CAS  Google Scholar 

  26. Dobaczewski, M., Xia, Y., Bujak, M., Gonzalez-Quesada, C., & Frangogiannis, N. G. (2010). CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am J Pathol, 176, 2177–2187.

    Article  PubMed  CAS  Google Scholar 

  27. Ng, F. (2008). The immune system and cardiac repair. Pharmacol Res, 58, 88–111.

    Article  Google Scholar 

  28. Bujak, M., Dobaczewski, M., Chatila, K., Mendoza, L. H., Li, N., Reddy, A., & Frangogiannis, N. G. (2008). Interleukin-1 receptor type i signaling critically regulates infarct healing and cardiac remodeling. Am J Pathol, 173, 57–67.

    Article  PubMed  Google Scholar 

  29. Frangogiannis, N. G., Michael, L. H., & Entman, M. L. (2000). Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc Res, 48, 89–100.

    Article  PubMed  CAS  Google Scholar 

  30. Willems, I. E., Havenith, M. G., De Mey, J. G., & Daemen, M. J. (1994). The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol, 145, 868–875.

    PubMed  CAS  Google Scholar 

  31. Cleutjens, J. P., Verluyten, M. J., Smiths, J. F., & Daemen, M. J. (1995). Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol, 147, 325–338.

    PubMed  CAS  Google Scholar 

  32. Dobaczewski, M., Gonzalez-Quesada, C., & Frangogiannis, N. G. (2010). The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol, 48, 504–511.

    Article  PubMed  CAS  Google Scholar 

  33. Mann, D. L. (2011). The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res, 108, 1133–1145.

    Article  PubMed  CAS  Google Scholar 

  34. Kawaguchi, M., Takahashi, M., Hata, T., Kashima, Y., Usui, F., Morimoto, H., Izawa, A., Takahashi, Y., Masumoto, J., Koyama, J., Hongo, M., Noda, T., Nakayama, J., Sagara, J., Taniguchi, S., & Ikeda, U. (2011). Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation, 123, 594–604.

    Article  PubMed  CAS  Google Scholar 

  35. Cannon, R. O., 3rd, Butany, J. W., Mcmanus, B. M., Speir, E., Kravitz, A. B., Bolli, R., & Ferrans, V. J. (1983). Early degradation of collagen after acute myocardial infarction in the rat. Am J Cardiol, 52, 390–395.

    Article  PubMed  CAS  Google Scholar 

  36. Whittaker, P., Boughner, D. R., & Kloner, R. A. (1991). Role of collagen in acute myocardial infarct expansion. Circulation, 84, 2123–2134.

    Article  PubMed  CAS  Google Scholar 

  37. Etoh, T., Joffs, C., Deschamps, A. M., Davis, J., Dowdy, K., Hendrick, J., Baicu, S., Mukherjee, R., Manhaini, M., & Spinale, F. G. (2001). Myocardial and interstitial matrix metalloproteinase activity after acute myocardial infarction in pigs. Am J Physiol Heart Circ Physiol, 281, H987–994.

    PubMed  CAS  Google Scholar 

  38. Takahashi, S., Barry, A. C., & Factor, S. M. (1990). Collagen degradation in ischaemic rat hearts. Biochem J, 265, 233–241.

    PubMed  CAS  Google Scholar 

  39. Villarreal, F., Omens, J., Dillmann, W., Risteli, J., Nguyen, J., & Covell, J. (2004). Early degradation and serum appearance of type I collagen fragments after myocardial infarction. J Mol Cell Cardiol, 36, 597–601.

    Article  PubMed  CAS  Google Scholar 

  40. Adair-Kirk, T. L., & Senior, R. M. (2008). Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol, 40, 1101–1110.

    Article  PubMed  CAS  Google Scholar 

  41. Gaggar, A., Jackson, P. L., Noerager, B. D., O'reilly, P. J., Mcquaid, D. B., Rowe, S. M., Clancy, J. P., & Blalock, J. E. (2008). A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J Immunol, 180, 5662–5669.

    PubMed  CAS  Google Scholar 

  42. Riley, D. J., Berg, R. A., Soltys, R. A., Kerr, J. S., Guss, H. N., Curran, S. F., & Laskin, D. L. (1988). Neutrophil response following intratracheal instillation of collagen peptides into rat lungs. Exp Lung Res, 14, 549–563.

    Article  PubMed  CAS  Google Scholar 

  43. Senior, R. M., Griffin, G. L., & Mecham, R. P. (1980). Chemotactic activity of elastin-derived peptides. J Clin Invest, 66, 859–862.

    Article  PubMed  CAS  Google Scholar 

  44. Trial, J., Baughn, R. E., Wygant, J. N., Mcintyre, B. W., Birdsall, H. H., Youker, K. A., Evans, A., Entman, M. L., & Rossen, R. D. (1999). Fibronectin fragments modulate monocyte VLA-5 expression and monocyte migration. J Clin Invest, 104, 419–430.

    Article  PubMed  CAS  Google Scholar 

  45. Clark, R. A., Wikner, N. E., Doherty, D. E., & Norris, D. A. (1988). Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment. J Biol Chem, 263, 12115–12123.

    PubMed  CAS  Google Scholar 

  46. Huttenlocher, A., Werb, Z., Tremble, P., Huhtala, P., Rosenberg, L., & Damsky, C. H. (1996). Decorin regulates collagenase gene expression in fibroblasts adhering to vitronectin. Matrix Biol, 15, 239–250.

    Article  PubMed  CAS  Google Scholar 

  47. Kapila, Y. L., Kapila, S., & Johnson, P. W. (1996). Fibronectin and fibronectin fragments modulate the expression of proteinases and proteinase inhibitors in human periodontal ligament cells. Matrix Biol, 15, 251–261.

    Article  PubMed  CAS  Google Scholar 

  48. Kong, W., Longaker, M. T., & Lorenz, H. P. (2004). Cyclophilin C-associated protein is a mediator for fibronectin fragment-induced matrix metalloproteinase-13 expression. J Biol Chem, 279, 55334–55340.

    Article  PubMed  CAS  Google Scholar 

  49. Dobaczewski, M., Bujak, M., Zymek, P., Ren, G., Entman, M. L., & Frangogiannis, N. G. (2006). Extracellular matrix remodeling in canine and mouse myocardial infarcts. Cell Tissue Res, 324, 475–488.

    Article  PubMed  CAS  Google Scholar 

  50. Taylor, K. R., Trowbridge, J. M., Rudisill, J. A., Termeer, C. C., Simon, J. C., & Gallo, R. L. (2004). Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem, 279, 17079–17084.

    Article  PubMed  CAS  Google Scholar 

  51. Campo, G. M., Avenoso, A., D'ascola, A., Scuruchi, M., Prestipino, V., Nastasi, G., Calatroni, A., & Campo, S. (2012). The inhibition of hyaluronan degradation reduced pro-inflammatory cytokines in mouse synovial fibroblasts subjected to collagen-induced arthritis. J Cell Biochem, 113, 1852–1867.

    Article  PubMed  CAS  Google Scholar 

  52. Teder, P., Vandivier, R. W., Jiang, D., Liang, J., Cohn, L., Pure, E., Henson, P. M., & Noble, P. W. (2002). Resolution of lung inflammation by CD44. Science, 296, 155–158.

    Article  PubMed  CAS  Google Scholar 

  53. Ponta, H., Sherman, L., & Pa, H. (2003). CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol, 4, 33–45.

    Article  PubMed  CAS  Google Scholar 

  54. Huebener, P., Abou-Khamis, T., Zymek, P., Bujak, M., Ying, X., Chatila, K., Haudek, S., Thakker, G., & Frangogiannis, N. G. (2008). CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol, 180, 2625–2633.

    PubMed  CAS  Google Scholar 

  55. Liu, X., & Piela-Smith, T. H. (2000). Fibrin(ogen)-induced expression of ICAM-1 and chemokines in human synovial fibroblasts. J Immunol, 165, 5255–5261.

    PubMed  CAS  Google Scholar 

  56. Welch, M. P., Odland, G. F., & Clark, R. A. (1990). Temporal relationships of F-actin bundle formation, collagen and fibronectin matrix assembly, and fibronectin receptor expression to wound contraction. J Cell Biol, 110, 133–145.

    Article  PubMed  CAS  Google Scholar 

  57. Clark, R. A. (1995). Wound repair. Overview and general considerations. In C. Ra (Ed.), The molecular and cellular biology of wound repair (pp. 3–50). New York: Plenum.

    Chapter  Google Scholar 

  58. Rybarczyk, B. J., Lawrence, S. O., & Simpson-Haidaris, P. J. (2003). Matrix–fibrinogen enhances wound closure by increasing both cell proliferation and migration. Blood, 102, 4035–4043.

    Article  PubMed  CAS  Google Scholar 

  59. Greiling, D., & Clark, R. A. (1997). Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. J Cell Sci, 110(Pt 7), 861–870.

    PubMed  CAS  Google Scholar 

  60. Lin, F., Ren, X. D., Doris, G., & Clark, R. A. (2005). Three-dimensional migration of human adult dermal fibroblasts from collagen lattices into fibrin/fibronectin gels requires syndecan-4 proteoglycan. J Invest Dermatol, 124, 906–913.

    Article  PubMed  CAS  Google Scholar 

  61. Corbett, S. A., & Schwarzbauer, J. E. (1998). Fibronectin–fibrin cross-linking: a regulator of cell behavior. Trends Cardiovasc Med, 8, 357–362.

    Article  PubMed  CAS  Google Scholar 

  62. Xu, J., & Clark, R. A. (1996). Extracellular matrix alters PDGF regulation of fibroblast integrins. J Cell Biol, 132, 239–249.

    Article  PubMed  CAS  Google Scholar 

  63. Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. J Invest Dermatol, 127, 526–537.

    Article  PubMed  CAS  Google Scholar 

  64. Hinz, B. (2010). The myofibroblast: paradigm for a mechanically active cell. J Biomech, 43, 146–155.

    Article  PubMed  Google Scholar 

  65. Yano, T., Miura, T., Ikeda, Y., Matsuda, E., Saito, K., Miki, T., Kobayashi, H., Nishino, Y., Ohtani, S., & Shimamoto, K. (2005). Intracardiac fibroblasts, but not bone marrow derived cells, are the origin of myofibroblasts in myocardial infarct repair. Cardiovasc Pathol, 14, 241–246.

    Article  PubMed  CAS  Google Scholar 

  66. Haudek, S. B., Xia, Y., Huebener, P., Lee, J. M., Carlson, S., Crawford, J. R., Pilling, D., Gomer, R. H., Trial, J., Frangogiannis, N. G., & Entman, M. L. (2006). Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A, 103, 18284–18289.

    Article  PubMed  CAS  Google Scholar 

  67. Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., Mcmullen, J. R., Gustafsson, E., Chandraker, A., Yuan, X., Pu, W. T., Roberts, A. B., Neilson, E. G., Sayegh, M. H., Izumo, S., & Kalluri, R. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med, 13, 952–961.

    Article  PubMed  CAS  Google Scholar 

  68. Knowlton, A. A., Connelly, C. M., Romo, G. M., Mamuya, W., Apstein, C. S., & Brecher, P. (1992). Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest, 89, 1060–1068.

    Article  PubMed  CAS  Google Scholar 

  69. Arslan, F., Smeets, M. B., Riem Vis, P. W., Karper, J. C., Quax, P. H., Bongartz, L. G., Peters, J. H., Hoefer, I. E., Doevendans, P. A., Pasterkamp, G., & De Kleijn, D. P. (2011). Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ Res, 108, 582–592.

    Article  PubMed  CAS  Google Scholar 

  70. Serini, G., Bochaton-Piallat, M. L., Ropraz, P., Geinoz, A., Borsi, L., Zardi, L., & Gabbiani, G. (1998). The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol, 142, 873–881.

    Article  PubMed  CAS  Google Scholar 

  71. Hinz, B., Phan, S. H., Thannickal, V. J., Galli, A., Bochaton-Piallat, M. L., & Gabbiani, G. (2007). The myofibroblast: one function, multiple origins. Am J Pathol, 170, 1807–1816.

    Article  PubMed  CAS  Google Scholar 

  72. Naugle, J. E., Olson, E. R., Zhang, X., Mase, S. E., Pilati, C. F., Maron, M. B., Folkesson, H. G., Horne, W. I., Doane, K. J., & Meszaros, J. G. (2006). Type VI collagen induces cardiac myofibroblast differentiation: implications for postinfarction remodeling. Am J Physiol Heart Circ Physiol, 290, H323–330.

    Article  PubMed  CAS  Google Scholar 

  73. Luther, D. J., Thodeti, C. K., Shamhart, P. E., Adapala, R. K., Hodnichak, C., Weihrauch, D., Bonaldo, P., Chilian, W. M., & Meszaros, J. G. (2012). Absence of type VI collagen paradoxically improves cardiac function, structure, and remodeling after myocardial infarction. Circ Res, 110, 851–856.

    Article  PubMed  CAS  Google Scholar 

  74. Webber, J., Meran, S., Steadman, R., & Phillips, A. (2009). Hyaluronan orchestrates transforming growth factor-beta1-dependent maintenance of myofibroblast phenotype. J Biol Chem, 284, 9083–9092.

    Article  PubMed  CAS  Google Scholar 

  75. Meran, S., Thomas, D., Stephens, P., Martin, J., Bowen, T., Phillips, A., & Steadman, R. (2007). Involvement of hyaluronan in regulation of fibroblast phenotype. J Biol Chem, 282, 25687–25697.

    Article  PubMed  CAS  Google Scholar 

  76. Zhao, X. H., Laschinger, C., Arora, P., Szaszi, K., Kapus, A., & Mcculloch, C. A. (2007). Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J Cell Sci, 120, 1801–1809.

    Article  PubMed  CAS  Google Scholar 

  77. Bornstein, P. (2009). Matricellular proteins: an overview. J Cell Commun Signal, 3, 163–165.

    Article  PubMed  Google Scholar 

  78. Frangogiannis, N. G. (2012). Matricellular proteins in cardiac adaptation and disease. Physiol Rev, 92, 635–688.

    Article  PubMed  CAS  Google Scholar 

  79. Adams, J. C., & Lawler, J. (2004). The thrombospondins. Int J Biochem Cell Biol, 36, 961–968.

    Article  PubMed  CAS  Google Scholar 

  80. Frangogiannis, N. G., Ren, G., Dewald, O., Zymek, P., Haudek, S., Koerting, A., Winkelmann, K., Michael, L. H., Lawler, J., & Entman, M. L. (2005). The critical role of endogenous thrombospondin (TSP)-1 in preventing expansion of healing myocardial infarcts. Circulation, 111, 2935–2942.

    Article  PubMed  CAS  Google Scholar 

  81. Rodriguez-Manzaneque, J. C., Lane, T. F., Ortega, M. A., Hynes, R. O., Lawler, J., & Iruela-Arispe, M. L. (2001). Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A, 98, 12485–12490.

    Article  PubMed  CAS  Google Scholar 

  82. Hogg, P. J. (1994). Thrombospondin 1 as an enzyme inhibitor. Thromb Haemost, 72, 787–792.

    PubMed  CAS  Google Scholar 

  83. Xia, Y., Dobaczewski, M., Gonzalez-Quesada, C., Chen, W., Biernacka, A., Li, N., Lee, D. W., & Frangogiannis, N. G. (2011). Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension, 58, 902–911.

    Article  PubMed  CAS  Google Scholar 

  84. Willems, I. E., Arends, J. W., & Daemen, M. J. (1996). Tenascin and fibronectin expression in healing human myocardial scars. J Pathol, 179, 321–325.

    Article  PubMed  CAS  Google Scholar 

  85. Tamaoki, M., Imanaka-Yoshida, K., Yokoyama, K., Nishioka, T., Inada, H., Hiroe, M., Sakakura, T., & Yoshida, T. (2005). Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol, 167, 71–80.

    Article  PubMed  CAS  Google Scholar 

  86. Nishioka, T., Onishi, K., Shimojo, N., Nagano, Y., Matsusaka, H., Ikeuchi, M., Ide, T., Tsutsui, H., Hiroe, M., Yoshida, T., & Imanaka-Yoshida, K. (2010). Tenascin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice. Am J Physiol Heart Circ Physiol, 298, H1072–1078.

    Article  PubMed  CAS  Google Scholar 

  87. Schellings, M. W., Vanhoutte, D., Swinnen, M., Cleutjens, J. P., Debets, J., Van Leeuwen, R. E., D'hooge, J., Van De Werf, F., Carmeliet, P., Pinto, Y. M., Sage, E. H., & Heymans, S. (2009). Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med, 206, 113–123.

    Article  PubMed  CAS  Google Scholar 

  88. Murry, C. E., Giachelli, C. M., Schwartz, S. M., & Vracko, R. (1994). Macrophages express osteopontin during repair of myocardial necrosis. Am J Pathol, 145, 1450–1462.

    PubMed  CAS  Google Scholar 

  89. Krishnamurthy, P., Peterson, J. T., Subramanian, V., Singh, M., & Singh, K. (2009). Inhibition of matrix metalloproteinases improves left ventricular function in mice lacking osteopontin after myocardial infarction. Mol Cell Biochem, 322, 53–62.

    Article  PubMed  CAS  Google Scholar 

  90. Trueblood, N. A., Xie, Z., Communal, C., Sam, F., Ngoy, S., Liaw, L., Jenkins, A. W., Wang, J., Sawyer, D. B., Bing, O. H., Apstein, C. S., Colucci, W. S., & Singh, K. (2001). Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res, 88, 1080–1087.

    Article  PubMed  CAS  Google Scholar 

  91. Ashizawa, N., Graf, K., Do, Y. S., Nunohiro, T., Giachelli, C. M., Meehan, W. P., Tuan, T. L., & Hsueh, W. A. (1996). Osteopontin is produced by rat cardiac fibroblasts and mediates A(II)-induced DNA synthesis and collagen gel contraction. J Clin Invest, 98, 2218–2227.

    Article  PubMed  CAS  Google Scholar 

  92. Zohar, R., Zhu, B., Liu, P., Sodek, J., & Mcculloch, C. A. (2004). Increased cell death in osteopontin-deficient cardiac fibroblasts occurs by a caspase-3-independent pathway. Am J Physiol Heart Circ Physiol, 287, H1730–1739.

    Article  PubMed  CAS  Google Scholar 

  93. Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., Saito, M., Fukuda, K., Nishiyama, T., Kitajima, S., Saga, Y., Fukayama, M., Sata, M., & Kudo, A. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med, 205, 295–303.

    Article  PubMed  CAS  Google Scholar 

  94. Ren, G., Michael, L. H., Entman, M. L., & Frangogiannis, N. G. (2002). Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem, 50, 71–79.

    Article  PubMed  CAS  Google Scholar 

  95. Petzelbauer, P., Zacharowski, P. A., Miyazaki, Y., Friedl, P., Wickenhauser, G., Castellino, F. J., Groger, M., Wolff, K., & Zacharowski, K. (2005). The fibrin-derived peptide Bbeta15-42 protects the myocardium against ischemia–reperfusion injury. Nat Med, 11, 298–304.

    Article  PubMed  CAS  Google Scholar 

  96. Henkin, J., & Volpert, O. V. (2011). Therapies using anti-angiogenic peptide mimetics of thrombospondin-1. Expert Opin Ther Targets, 15, 1369–1386.

    Article  PubMed  CAS  Google Scholar 

  97. Belmadani S, Bernal J, Wei CC, Pallero MA, Dell'italia L, Murphy-Ullrich JE, Berecek KH (2007) A thrombospondin-1 antagonist of transforming growth factor-{beta} activation blocks cardiomyopathy in rats with diabetes and elevated angiotensin II. Am J Pathol.

  98. Frangogiannis, N. G. (2012). Biomarkers: hopes and challenges in the path from discovery to clinical practice. Transl Res, 159, 197–204.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Frangogiannis’ laboratory is supported by NIH grants R01 HL-76246 and HL-85440, the Wilf Family Cardiovascular Research Institute, and the Edmond J Safra/Republic National Bank of New York Chair in Cardiovascular Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos G. Frangogiannis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobaczewski, M., de Haan, J.J. & Frangogiannis, N.G. The Extracellular Matrix Modulates Fibroblast Phenotype and Function in the Infarcted Myocardium. J. of Cardiovasc. Trans. Res. 5, 837–847 (2012). https://doi.org/10.1007/s12265-012-9406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9406-3

Keywords