Skip to main content

Advertisement

Log in

Pancreatic cancer stem cells: features and detection methods

  • Review
  • Published:
Pathology & Oncology Research

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a high incidence of distant metastasis and recurrence. Cancer stem cells (CSCs), which are pluripotent, self-renewable, and capable of forming tumors, contribute to PDAC initiation and metastasis and are responsible for resistance to chemotherapy and radiation. Three types of experimental methods are commonly used to identify CSCs: CSC-specific marker detection, a sphere-formation assay that reveals cell proliferation under non-adherent conditions, and detection of side-population (SP) cells that possess high intracellular-to-extracellular pump functions. Several CSC-specific markers have been reported in PDACs, including CD133, CD24, CD44, CXCR4, EpCAM, ABCG2, c-Met, ALDH-1, and nestin. There remains controversy regarding which markers are specific to PDAC CSCs and which are expressed alone or in combination in CSCs. Examining characteristics of isolated CSCs and discovering CSC-specific treatment options are important to improve the prognosis of PDAC cases. This review summarizes CSC-detection methods for PDAC, including CSC-marker detection, the sphere-formation assay, and detection of SP cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D, Bray F (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49(6):1374–1403. https://doi.org/10.1016/j.ejca.2012.12.027

    Article  PubMed  CAS  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    Article  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  4. Ahrendt SA, Pitt HA (2002) Surgical management of pancreatic cancer. Oncology (Williston Park) 16(6):725–734 discussion 734, 736-728, 740, 743

    Google Scholar 

  5. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921. https://doi.org/10.1158/0008-5472.CAN-14-0155

    Article  PubMed  CAS  Google Scholar 

  6. Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20(10):1218–1249. https://doi.org/10.1101/gad.1415606

    Article  PubMed  CAS  Google Scholar 

  7. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, Velculescu VE, Kinzler KW, Vogelstein B, Iacobuzio-Donahue CA (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117. https://doi.org/10.1038/nature09515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lee CJ, Dosch J, Simeone DM (2008) Pancreatic cancer stem cells. J Clin Oncol 26(17):2806–2812. https://doi.org/10.1200/JCO.2008.16.6702

    Article  PubMed  Google Scholar 

  9. Hermann PC, Mueller MT, Heeschen C (2009) Pancreatic cancer stem cells--insights and perspectives. Expert Opin Biol Ther 9(10):1271–1278. https://doi.org/10.1517/14712590903246362

    Article  PubMed  CAS  Google Scholar 

  10. Ischenko I, Seeliger H, Kleespies A, Angele MK, Eichhorn ME, Jauch KW, Bruns CJ (2009) Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbeck's Arch Surg 395(1):1–10. https://doi.org/10.1007/s00423-009-0502-z

    Article  Google Scholar 

  11. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344. https://doi.org/10.1158/0008-5472.CAN-06-3126

    Article  PubMed  CAS  Google Scholar 

  12. Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Kloppel G, Longnecker DS, Luttges J, Offerhaus GJ (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25(5):579–586

    Article  PubMed  CAS  Google Scholar 

  13. Kure S, Matsuda Y, Hagio M, Ueda J, Naito Z, Ishiwata T (2012) Expression of cancer stem cell markers in pancreatic intraepithelial neoplasias and pancreatic ductal adenocarcinomas. Int J Oncol 41(4):1314–1324. https://doi.org/10.3892/ijo.2012.1565

    Article  PubMed  Google Scholar 

  14. Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, Dubus P, Sandgren EP, Barbacid M (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11(3):291–302. https://doi.org/10.1016/j.ccr.2007.01.012

    Article  PubMed  CAS  Google Scholar 

  15. Zhu L, Shi G, Schmidt CM, Hruban RH, Konieczny SF (2007) Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. Am J Pathol 171(1):263–273. https://doi.org/10.2353/ajpath.2007.061176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP, Furth EE, Furukawa T, Klein A, Klimstra DS, Kloppel G, Lauwers GY, Longnecker DS, Luttges J, Maitra A, Offerhaus GJ, Perez-Gallego L, Redston M, Tuveson DA (2006) Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 66(1):95–106. https://doi.org/10.1158/0008-5472.CAN-05-2168

    Article  PubMed  CAS  Google Scholar 

  17. Oshima Y, Suzuki A, Kawashimo K, Ishikawa M, Ohkohchi N, Taniguchi H (2007) Isolation of mouse pancreatic ductal progenitor cells expressing CD133 and c-Met by flow cytometric cell sorting. Gastroenterology 132(2):720–732. https://doi.org/10.1053/j.gastro.2006.11.027

    Article  PubMed  CAS  Google Scholar 

  18. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611. https://doi.org/10.1016/j.cell.2008.01.038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A, Ji B, Evans DB, Logsdon CD (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68(3):918–926. https://doi.org/10.1158/0008-5472.CAN-07-5714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. De Santis M, Di Gianantonio E, Cesari E, Ambrosini G, Straface G, Clementi M (2009) First-trimester itraconazole exposure and pregnancy outcome: a prospective cohort study of women contacting teratology information services in Italy. Drug Saf 32(3):239–244

    Article  PubMed  Google Scholar 

  21. Ikenaga N, Ohuchida K, Mizumoto K, Yu J, Kayashima T, Hayashi A, Nakata K, Tanaka M (2010) Characterization of CD24 expression in intraductal papillary mucinous neoplasms and ductal carcinoma of the pancreas. Hum Pathol 41(10):1466–1474. https://doi.org/10.1016/j.humpath.2010.04.004

    Article  PubMed  CAS  Google Scholar 

  22. Hong SP, Wen J, Bang S, Park S, Song SY (2009) CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells. Int J Cancer 125(10):2323–2331. https://doi.org/10.1002/ijc.24573

    Article  PubMed  CAS  Google Scholar 

  23. Marechal R, Demetter P, Nagy N, Berton A, Decaestecker C, Polus M, Closset J, Deviere J, Salmon I, Van Laethem JL (2009) High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma. Br J Cancer 100(9):1444–1451. https://doi.org/10.1038/sj.bjc.6605020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S, Connolly DC, Zhang Y, Montone K, Butzow R, Coukos G, Zhang L (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5(4):e10277. https://doi.org/10.1371/journal.pone.0010277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ishiwata T, Matsuda Y, Naito Z (2011) Nestin in gastrointestinal and other cancers: Effects on cells and tumor angiogenesis. World J Gastroenterol 17(4):409–418. https://doi.org/10.3748/wjg.v17.i4.409

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kawamoto M, Ishiwata T, Cho K, Uchida E, Korc M, Naito Z, Tajiri T (2009) Nestin expression correlates with nerve and retroperitoneal tissue invasion in pancreatic cancer. Hum Pathol 40(2):189–198. https://doi.org/10.1016/j.humpath.2008.02.022

    Article  PubMed  CAS  Google Scholar 

  27. Matsuda Y, Naito Z, Kawahara K, Nakazawa N, Korc M, Ishiwata T (2011) Nestin is a novel target for suppressing pancreatic cancer cell migration, invasion and metastasis. Cancer Biol Ther 11(5):512–523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1(3):313–323. https://doi.org/10.1016/j.stem.2007.06.002

    Article  PubMed  CAS  Google Scholar 

  29. Matsuda Y, Yoshimura H, Ueda J, Naito Z, Korc M, Ishiwata T (2014) Nestin delineates pancreatic cancer stem cells in metastatic foci of NOD/Shi-scid IL2Rgamma(null) (NOG) mice. Am J Pathol 184(3):674–685. https://doi.org/10.1016/j.ajpath.2013.11.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H (2007) Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 6(1):92–97

    PubMed  CAS  Google Scholar 

  31. Huang P, Wang CY, Gou SM, Wu HS, Liu T, Xiong JX (2008) Isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma. World J Gastroenterol 14(24):3903–3907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037. https://doi.org/10.1158/0008-5472.CAN-06-2030

    Article  PubMed  CAS  Google Scholar 

  33. Li C, Wu JJ, Hynes M, Dosch J, Sarkar B, Welling TH, Pasca di Magliano M, Simeone DM (2011) c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 141(6):2218–2227 e2215. https://doi.org/10.1053/j.gastro.2011.08.009

    Article  PubMed  CAS  Google Scholar 

  34. Sarkar FH, Li Y, Wang Z, Kong D (2009) Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir 64(5):489–500

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Matsuda Y, Kure S, Ishiwata T (2012) Nestin and other putative cancer stem cell markers in pancreatic cancer. Med Mol Morphol 45(2):59–65. https://doi.org/10.1007/s00795-012-0571-x

    Article  PubMed  CAS  Google Scholar 

  36. Bednar F, Simeone DM (2009) Pancreatic cancer stem cells and relevance to cancer treatments. J Cell Biochem 107(1):40–45. https://doi.org/10.1002/jcb.22093

    Article  PubMed  CAS  Google Scholar 

  37. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T, Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba H, Saya H (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell 19(3):387–400. https://doi.org/10.1016/j.ccr.2011.01.038

    Article  PubMed  CAS  Google Scholar 

  38. Shmelkov SV, St Clair R, Lyden D, Rafii S (2005) AC133/CD133/Prominin-1. Int J Biochem Cell Biol 37(4):715–719. https://doi.org/10.1016/j.biocel.2004.08.010

    Article  PubMed  CAS  Google Scholar 

  39. Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L (2008) Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10(1):R10. https://doi.org/10.1186/bcr1855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  41. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 351(4):820–824. https://doi.org/10.1016/j.bbrc.2006.10.128

    Article  PubMed  CAS  Google Scholar 

  42. O'Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110. https://doi.org/10.1038/nature05372

    Article  PubMed  CAS  Google Scholar 

  43. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115. https://doi.org/10.1038/nature05384

    Article  PubMed  CAS  Google Scholar 

  44. Shepherd CJ, Rizzo S, Ledaki I, Davies M, Brewer D, Attard G, de Bono J, Hudson DL (2008) Expression profiling of CD133+ and CD133- epithelial cells from human prostate. Prostate 68(9):1007–1024. https://doi.org/10.1002/pros.20765

    Article  PubMed  CAS  Google Scholar 

  45. Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A (2008) Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 8:48. https://doi.org/10.1186/1471-2407-8-48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Maeda S, Shinchi H, Kurahara H, Mataki Y, Maemura K, Sato M, Natsugoe S, Aikou T, Takao S (2008) CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J Cancer 98(8):1389–1397. https://doi.org/10.1038/sj.bjc.6604307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Taieb N, Maresca M, Guo XJ, Garmy N, Fantini J, Yahi N (2009) The first extracellular domain of the tumour stem cell marker CD133 contains an antigenic ganglioside-binding motif. Cancer Lett 278(2):164–173. https://doi.org/10.1016/j.canlet.2009.01.013

    Article  PubMed  CAS  Google Scholar 

  48. Boivin D, Labbe D, Fontaine N, Lamy S, Beaulieu E, Gingras D, Beliveau R (2009) The stem cell marker CD133 (prominin-1) is phosphorylated on cytoplasmic tyrosine-828 and tyrosine-852 by Src and Fyn tyrosine kinases. Biochemistry 48(18):3998–4007. https://doi.org/10.1021/bi900159d

    Article  PubMed  CAS  Google Scholar 

  49. Chen YS, Wu MJ, Huang CY, Lin SC, Chuang TH, Yu CC, Lo JF (2011) CD133/Src axis mediates tumor initiating property and epithelial-mesenchymal transition of head and neck cancer. PLoS One 6(11):e28053. https://doi.org/10.1371/journal.pone.0028053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hashimoto O, Shimizu K, Semba S, Chiba S, Ku Y, Yokozaki H, Hori Y (2011) Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiology 78(4):181–192. https://doi.org/10.1159/000325538

    Article  PubMed  CAS  Google Scholar 

  51. McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ (2009) Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 7(4):489–497. https://doi.org/10.1158/1541-7786.MCR-08-0360

    Article  PubMed  CAS  Google Scholar 

  52. Lonardo E, Hermann PC, Heeschen C (2010) Pancreatic cancer stem cells - update and future perspectives. Mol Oncol 4(5):431–442. https://doi.org/10.1016/j.molonc.2010.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  53. Thomas RM, Kim J, Revelo-Penafiel MP, Angel R, Dawson DW, Lowy AM (2008) The chemokine receptor CXCR4 is expressed in pancreatic intraepithelial neoplasia. Gut 57(11):1555–1560. https://doi.org/10.1136/gut.2007.143941

    Article  PubMed  CAS  Google Scholar 

  54. Jimeno A, Feldmann G, Suarez-Gauthier A, Rasheed Z, Solomon A, Zou GM, Rubio-Viqueira B, Garcia-Garcia E, Lopez-Rios F, Matsui W, Maitra A, Hidalgo M (2009) A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Mol Cancer Ther 8(2):310–314. https://doi.org/10.1158/1535-7163.MCT-08-0924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rausch V, Liu L, Kallifatidis G, Baumann B, Mattern J, Gladkich J, Wirth T, Schemmer P, Buchler MW, Zoller M, Salnikov AV, Herr I (2010) Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res 70(12):5004–5013. https://doi.org/10.1158/0008-5472.CAN-10-0066

    Article  PubMed  CAS  Google Scholar 

  56. Kim MP, Fleming JB, Wang H, Abbruzzese JL, Choi W, Kopetz S, McConkey DJ, Evans DB, Gallick GE (2011) ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One 6(6):e20636. https://doi.org/10.1371/journal.pone.0020636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rao CV, Mohammed A (2015) New insights into pancreatic cancer stem cells. World J Stem Cells 7(3):547–555. https://doi.org/10.4252/wjsc.v7.i3.547

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sureban SM, May R, Lightfoot SA, Hoskins AB, Lerner M, Brackett DJ, Postier RG, Ramanujam R, Mohammed A, Rao CV, Wyche JH, Anant S, Houchen CW (2011) DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism. Cancer Res 71(6):2328–2338. https://doi.org/10.1158/0008-5472.CAN-10-2738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sureban SM, May R, Ramalingam S, Subramaniam D, Natarajan G, Anant S, Houchen CW (2009) Selective blockade of DCAMKL-1 results in tumor growth arrest by a Let-7a MicroRNA-dependent mechanism. Gastroenterology 137(2):649–659, 659 e641-642. https://doi.org/10.1053/j.gastro.2009.05.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H, Toftgard R (2008) Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40(11):1291–1299. https://doi.org/10.1038/ng.239

    Article  PubMed  CAS  Google Scholar 

  61. Mizuno N, Yatabe Y, Hara K, Hijioka S, Imaoka H, Shimizu Y, Ko SB, Yamao K (2013) Cytoplasmic expression of LGR5 in pancreatic adenocarcinoma. Front Physiol 4:269. https://doi.org/10.3389/fphys.2013.00269

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dorado J, Lonardo E, Miranda-Lorenzo I, Heeschen C (2011) Pancreatic cancer stem cells: new insights and perspectives. J Gastroenterol 46(8):966–973. https://doi.org/10.1007/s00535-011-0422-x

    Article  PubMed  Google Scholar 

  63. Wu BL, Xu LY, Du ZP, Liao LD, Zhang HF, Huang Q, Fang GQ, Li EM (2011) MiRNA profile in esophageal squamous cell carcinoma: downregulation of miR-143 and miR-145. World J Gastroenterol 17(1):79–88. https://doi.org/10.3748/wjg.v17.i1.79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Gou S, Liu T, Wang C, Yin T, Li K, Yang M, Zhou J (2007) Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas 34(4):429–435. https://doi.org/10.1097/MPA.0b013e318033f9f4

    Article  PubMed  Google Scholar 

  65. Gaviraghi M, Tunici P, Valensin S, Rossi M, Giordano C, Magnoni L, Dandrea M, Montagna L, Ritelli R, Scarpa A, Bakker A (2011) Pancreatic cancer spheres are more than just aggregates of stem marker-positive cells. Biosci Rep 31(1):45–55. https://doi.org/10.1042/BSR20100018

    Article  PubMed  CAS  Google Scholar 

  66. Yin T, Wei H, Gou S, Shi P, Yang Z, Zhao G, Wang C (2011) Cancer stem-like cells enriched in panc-1 spheres possess increased migration ability and resistance to gemcitabine. Int J Mol Sci 12(3):1595–1604. https://doi.org/10.3390/ijms12031595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ishiwata T, Hasegawa F, Michishita M, Sasaki N, Ishikawa N, Takubo K, Arai T, Aida J (2018) Electron microscopic analysis of different cell types in human pancreatic cancer spheres. Oncol Lett 15:2485–2490. https://doi.org/10.3892/ol.2017.7554

    Article  PubMed  Google Scholar 

  68. Matsuda Y, Ishiwata T, Yoshimura H, Yamashita S, Ushijima T, Arai T (2016) Systemic Administration of Small Interfering RNA Targeting Human Nestin Inhibits Pancreatic Cancer Cell Proliferation and Metastasis. Pancreas 45(1):93–100. https://doi.org/10.1097/MPA.0000000000000427

    Article  PubMed  CAS  Google Scholar 

  69. Bhagwandin VJ, Shay JW (2009) Pancreatic cancer stem cells: fact or fiction? Biochim Biophys Acta 1792(4):248–259. https://doi.org/10.1016/j.bbadis.2009.02.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101(39):14228–14233. https://doi.org/10.1073/pnas.0400067101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wang YH, Li F, Luo B, Wang XH, Sun HC, Liu S, Cui YQ, Xu XX (2009) A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics. Neoplasma 56(5):371–378

    Article  PubMed  CAS  Google Scholar 

  72. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65(14):6207–6219. https://doi.org/10.1158/0008-5472.CAN-05-0592

    Article  PubMed  CAS  Google Scholar 

  73. Burkert J, Otto WR, Wright NA (2008) Side populations of gastrointestinal cancers are not enriched in stem cells. J Pathol 214(5):564–573. https://doi.org/10.1002/path.2307

    Article  PubMed  CAS  Google Scholar 

  74. Zhou J, Wang CY, Liu T, Wu B, Zhou F, Xiong JX, Wu HS, Tao J, Zhao G, Yang M, Gou SM (2008) Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World J Gastroenterol 14(6):925–930

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ishiwata T, Matsuda Y, Yamamoto T, Uchida E, Korc M, Naito Z (2012) Enhanced expression of fibroblast growth factor receptor 2 IIIc promotes human pancreatic cancer cell proliferation. Am J Pathol 180(5):1928–1941. https://doi.org/10.1016/j.ajpath.2012.01.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Telford WG (2013) Stem cell identification by DyeCycle Violet side population analysis. Methods Mol Biol 946:163–179. https://doi.org/10.1007/978-1-62703-128-8_11

    Article  PubMed  CAS  Google Scholar 

  77. Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427. https://doi.org/10.1146/annurev.bi.62.070193.002125

    Article  PubMed  CAS  Google Scholar 

  78. Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D'Haese JG, Schoenberg MH, Berger F, Jauch KW, Hidalgo M, Heeschen C (2009) Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137(3):1102–1113. https://doi.org/10.1053/j.gastro.2009.05.053

    Article  PubMed  CAS  Google Scholar 

  79. Eng JW, Mace TA, Sharma R, Twum DYF, Peng P, Gibbs JF, Pitoniak R, Reed CB, Abrams SI, Repasky EA, Hylander BL (2016) Pancreatic cancer stem cells in patient pancreatic xenografts are sensitive to drozitumab, an agonistic antibody against DR5. J Immunother Cancer 4:33. https://doi.org/10.1186/s40425-016-0136-y

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lonardo E, Cioffi M, Sancho P, Sanchez-Ripoll Y, Trabulo SM, Dorado J, Balic A, Hidalgo M, Heeschen C (2013) Metformin targets the metabolic achilles heel of human pancreatic cancer stem cells. PLoS One 8(10):e76518. https://doi.org/10.1371/journal.pone.0076518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sancho P, Burgos-Ramos E, Tavera A, Bou Kheir T, Jagust P, Schoenhals M, Barneda D, Sellers K, Campos-Olivas R, Grana O, Viera CR, Yuneva M, Sainz B Jr, Heeschen C (2015) MYC/PGC-1alpha Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells. Cell Metab 22(4):590–605. https://doi.org/10.1016/j.cmet.2015.08.015

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We express our appreciation to Drs. Seiichi Shinji, Kazuya Yamahatsu, Akira Matsushita, and Yoshiharu Nakamura (Department of Gastrointestinal and Hepatobiliary-Pancreatic Surgery, Nippon Medical School) for their helpful discussions and technical assistance. We thank Ms. Sanae Furusho, Shoko Wada, and Atsumi Ozaki, and Mr. Hiroyuki Sugihara (Jasco International Co. Ltd., Tokyo, Japan) for their technical assistance with scanning electron microscopy. This work was supported by JSPS KAKENHI (Grant No. JP16K10613 to T.I.) Animal experiments were conducted according to the institutional animal care guidelines of the Nippon Medical School Animal Ethics Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Ishiwata.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishiwata, T., Matsuda, Y., Yoshimura, H. et al. Pancreatic cancer stem cells: features and detection methods. Pathol. Oncol. Res. 24, 797–805 (2018). https://doi.org/10.1007/s12253-018-0420-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-018-0420-x

Keywords

Navigation