Skip to main content

Advertisement

Log in

Clinical Applications of Next-Generation Sequencing in Cancer Diagnosis

  • Review
  • Published:
Pathology & Oncology Research

Abstract

With the advancement and improvement of new sequencing technology, next-generation sequencing (NGS) has been applied increasingly in cancer genomics research fields. More recently, NGS has been adopted in clinical oncology to advance personalized treatment of cancer. NGS is utilized to novel diagnostic and rare cancer mutations, detection of translocations, inversions, insertions and deletions, detection of copy number variants, detect familial cancer mutation carriers, provide the molecular rationale for appropriate targeted, therapeutic and prognostic. NGS holds many advantages, such as the ability to fully sequence all types of mutations for a large number of genes (hundreds to thousands) and the sensitivity, speed in a single test at a relatively low cost compared to be other sequencing modalities. Here we described the technology, methods and applications that can be immediately considered and some of the challenges that lie ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones S, Zhang X, Parsons DW, Lin JC-H, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011. CA Cancer J Clin 61(4):212–236

    Article  PubMed  Google Scholar 

  3. Cahill DP, Kinzler KW, Vogelstein B, Lengauer C (1999) Genetic instability and darwinian selection in tumours. Trends Genet 15(12):M57–M60

    Article  CAS  Google Scholar 

  4. Subramanian J, Simon R (2010) Gene expression–based prognostic signatures in lung cancer: ready for clinical use? J Natl Cancer Inst 102(7):464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ioannidis JP, Panagiotou OA (2011) Comparison of effect sizes associated with biomarkers reported in highly cited individual articles and in subsequent meta-analyses. JAMA 305(21):2200–2210

    Article  CAS  PubMed  Google Scholar 

  6. Kallioniemi A, Kallioniemi O-P, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821

    Article  CAS  PubMed  Google Scholar 

  7. Armengol G, Capellà G, Farré L, Peinado MA, Miró R, Caballín MR (2001) Genetic evolution in the metastatic progression of human pancreatic cancer studied by CGH. Lab Investig 81(12):1703–1707

    Article  CAS  PubMed  Google Scholar 

  8. Jiang JK, Chen YJ, Lin CH, Yu I, Lin JK (2005) Genetic changes and clonality relationship between primary colorectal cancers and their pulmonary metastases—an analysis by comparative genomic hybridization. Genes Chromosom Cancer 43(1):25–36

    Article  CAS  PubMed  Google Scholar 

  9. Nishizaki T, DeVries S, Chew K, Goodson WH, Ljung B-M, Thor A, Waldman FM (1997) Genetic alterations in primary breast cancers and their metastases: direct comparison using modified comparative genomic hybridization. Genes Chromosom Cancer 19(4):267–272

    Article  CAS  PubMed  Google Scholar 

  10. Petersen S, Aninat-Meyer M, Schlüns K, Gellert K, Dietel M, Petersen I (2000) Chromosomal alterations in the clonal evolution to the metastatic stage ofquamous cell carcinomas of the lung. Br J Cancer 82(1):65

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ, Kaufmann M, Diebold J, Arnholdt H, Müller P (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci 100(13):7737–7742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wagle N, Berger MF, Davis MJ, Blumenstiel B, DeFelice M, Pochanard P, Ducar M, Van Hummelen P, MacConaill LE, Hahn WC (2012) High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer discovery 2(1):82–93

    Article  CAS  PubMed  Google Scholar 

  13. Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, Antipova A, Lee C, McKernan K, Francisco M (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2(20):20ra14–20ra14

    Article  PubMed  PubMed Central  Google Scholar 

  14. McBride DJ, Orpana AK, Sotiriou C, Joensuu H, Stephens PJ, Mudie LJ, Hämäläinen E, Stebbings LA, Andersson LC, Flanagan AM (2010) Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosom Cancer 49(11):1062–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mardis ER (2011) A decade/'s perspective on DNA sequencing technology. Nature 470(7333):198–203

    Article  CAS  PubMed  Google Scholar 

  16. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11(10):685–696

    Article  CAS  PubMed  Google Scholar 

  17. Ku, C.-S., Wu, M., Cooper, D.N., Naidoo, N., Pawitan, Y., Pang, B., Iacopetta, B., Soong, R., 2012. Technological advances in DNA sequence enrichment and sequencing for germline genetic diagnosis.

    Google Scholar 

  18. Meldrum C, Doyle MA, Tothill RW (2011) Next-generation sequencing for cancer diagnostics: a practical perspective. The Clinical Biochemist Reviews 32(4):177

    PubMed  PubMed Central  Google Scholar 

  19. Cronin M, Ross JS (2011) Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med 5(3):293–305

    Article  CAS  PubMed  Google Scholar 

  20. Rizzo JM, Buck MJ (2012) Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev Res 5(7):887–900

    Article  CAS  Google Scholar 

  21. Desai AN, Jere A (2012) Next-generation sequencing: ready for the clinics? Clin Genet 81(6):503–510

    Article  CAS  PubMed  Google Scholar 

  22. Ross JS, Cronin M (2011) Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol 136(4):527–539

    Article  CAS  PubMed  Google Scholar 

  23. Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240

    Article  CAS  PubMed  Google Scholar 

  24. Mardis ER (2010) The $1000 genome, the $100,000 analysis. Genome Med 2(11):84

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303

    Article  CAS  Google Scholar 

  27. Ulahannan D, Kovac M, Mulholland P, Cazier J, Tomlinson I (2013) Technical and implementation issues in using next-generation sequencing of cancers in clinical practice. Br J Cancer 109(4):827–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T, Stebbings LA, Leroy C, Edkins S, Hardy C (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40(6):722–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chiang DY, Getz G, Jaffe DB, O’Kelly MJ, Zhao X, Carter SL, Russ C, Nusbaum C, Meyerson M, Lander ES (2009) High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods 6(1):99–103

    Article  CAS  PubMed  Google Scholar 

  30. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5(7):621–628

    Article  CAS  PubMed  Google Scholar 

  31. Thomas RK, Nickerson E, Simons JF, Jänne PA, Tengs T, Yuza Y, Garraway LA, LaFramboise T, Lee JC, Shah K (2006) Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med 12(7):852–855

    Article  CAS  PubMed  Google Scholar 

  32. Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, Guliany R, Senz J (2009) Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461(7265):809–813

    Article  CAS  PubMed  Google Scholar 

  33. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, Morsberger LA, Latimer C, McLaren S, Lin M-L (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319):1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464(7291):999–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robbins CM, Tembe WA, Baker A, Sinari S, Moses TY, Beckstrom-Sternberg S, Beckstrom-Sternberg J, Barrett M, Long J, Chinnaiyan A (2011) Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Res 21(1):47–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morey M, Fernández-Marmiesse A, Castiñeiras D, Fraga JM, Couce ML, Cocho JA (2013) A glimpse into past, present, and future DNA sequencing. Mol Genet Metab 110(1):3–24

    Article  CAS  PubMed  Google Scholar 

  38. Foquet M, Samiee KT, Kong X, Chauduri BP, Lundquist PM, Turner SW, Freudenthal J, Roitman DB (2008) Improved fabrication of zero-mode waveguides for single-molecule detection. J Appl Phys 103(3):034301

    Article  Google Scholar 

  39. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    Article  CAS  PubMed  Google Scholar 

  40. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C (2011) The genomic complexity of primary human prostate cancer. Nature 470(7333):214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shah SP, Köbel M, Senz J, Morin RD, Clarke BA, Wiegand KC, Leung G, Zayed A, Mehl E, Kalloger SE (2009) Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med 360(26):2719–2729

    Article  CAS  PubMed  Google Scholar 

  42. Jones SJ, Laskin J, Li YY, Griffith OL, An J, Bilenky M, Butterfield YS, Cezard T, Chuah E, Corbett R (2010) Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol 11(8):R82

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363(16):1532–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-Shore BH, McGrath S, Hickenbotham M (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456(7218):66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mardis ER (2010) Cancer genomics identifies determinants of tumor biology. Genome Biol 11(5):211

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mardis ER, Wilson RK (2009) Cancer genome sequencing: a review. Hum Mol Genet 18(R2):R163–R168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42(2):181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hudson TJ, Anderson W, Aretz A, Barker AD, Bell C, Bernabé RR, Bhan M, Calvo F, Eerola I, Gerhard DS (2010) International network of cancer genome projects. Nature 464(7291):993–998

    Article  CAS  PubMed  Google Scholar 

  49. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Olson JJ, Mikkelsen T, Lehman N, Aldape K (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Article  CAS  Google Scholar 

  50. Shoubridge C, Tarpey PS, Abidi F, Ramsden SL, Rujirabanjerd S, Murphy JA, Boyle J, Shaw M, Gardner A, Proos A (2010) Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability. Nat Genet 42(6):486–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bonnefond, A., Durand, E., Sand, O., De Graeve, F., Gallina, S., Busiah, K., Lobbens, S., Simon, A., Bellanné-Chantelot, C., Létourneau, L., 2010. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome.

  52. Bolze A, Byun M, McDonald D, Morgan NV, Abhyankar A, Premkumar L, Puel A, Bacon CM, Rieux-Laucat F, Pang K (2010) Whole-exome-sequencing-based discovery of human FADD deficiency. Am J Hum Genet 87(6):873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159

    Article  CAS  PubMed  Google Scholar 

  54. Garber JE, Offit K (2005) Hereditary cancer predisposition syndromes. J Clin Oncol 23(2):276–292

    Article  PubMed  Google Scholar 

  55. Walsh T, Lee MK, Casadei S, Thornton AM, Stray SM, Pennil C, Nord AS, Mandell JB, Swisher EM, King M-C (2010) Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci 107(28):12629–12633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De Lellis L, Mammarella S, Curia MC, Veschi S, Mokini Z, Bassi C, Sala P, Battista P, Mariani-Costantini R, Radice P (2011) Analysis of gene copy number variations using a method based on lab-on-a-chip technology. Tumori 98(1):126–136

    Google Scholar 

  57. Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, Roach KC, Mandell J, Lee MK, Ciernikova S (2006) Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295(12):1379–1388

    Article  CAS  PubMed  Google Scholar 

  58. Ozcelik H, Shi X, Chang MC, Tram E, Vlasschaert M, Di Nicola N, Kiselova A, Yee D, Goldman A, Dowar M (2012) Long-range PCR and next-generation sequencing of BRCA1 and BRCA2 in breast cancer. The Journal of Molecular Diagnostics 14(5):467–475

    Article  CAS  PubMed  Google Scholar 

  59. Hernan I, Borràs E, de Sousa Dias M, Gamundi MJ, Mañé B, Llort G, Agúndez JA, Blanca M, Carballo M (2012) Detection of genomic variations in BRCA1 and BRCA2 genes by long-range PCR and next-generation sequencing. The Journal of Molecular Diagnostics 14(3):286–293

    Article  CAS  PubMed  Google Scholar 

  60. De Leeneer K, Hellemans J, De Schrijver J, Baetens M, Poppe B, Van Criekinge W, De Paepe A, Coucke P, Claes K (2011) Massive parallel amplicon sequencing of the breast cancer genes BRCA1 and BRCA2: opportunities, challenges, and limitations. Hum Mutat 32(3):335–344

    Article  CAS  PubMed  Google Scholar 

  61. Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, Stinson J, Yue P, Zhang Y, Pant KP, Bhatt D (2010) The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature 465(7297):473–477

    Article  CAS  PubMed  Google Scholar 

  62. Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin M-L, Beare D, Lau KW, Greenman C (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463(7278):184–190

    Article  CAS  PubMed  Google Scholar 

  63. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin M-L, Ordóñez GR, Bignell GR (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463(7278):191–196

    Article  CAS  PubMed  Google Scholar 

  64. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5(12):1005–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36(9):949–951

    Article  CAS  PubMed  Google Scholar 

  67. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Maner S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M (2004) Large-scale copy number polymorphism in the human genome. Science 305(5683):525–528

    Article  CAS  PubMed  Google Scholar 

  68. Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61:437–455

    Article  CAS  PubMed  Google Scholar 

  69. Zhang F, Gu W, Hurles ME, Lupski JR (2009) Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10:451–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, Taillon BE, Chen Z, Tanzer A, Saunders AC, Chi J, Yang F, Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder M (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318(5849):420–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbings LA, Leroy C, Edkins S, Mudie LJ, Greenman CD, Jia M, Latimer C, Teague JW, Lau KW, Burton J, Quail MA, Swerdlow H, Churcher C, Natrajan R, Sieuwerts AM, Martens JW, Silver DP, Langerod A, Russnes HE, Foekens JA, Reis-Filho JS, van ‘t Veer L, Richardson AL, Borresen-Dale AL, Campbell PJ, Futreal PA, Stratton MR (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462(7276):1005–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21(6):974–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ivakhno S, Royce T, Cox AJ, Evers DJ, Cheetham RK, Tavare S (2010) CNAseg--a novel framework for identification of copy number changes in cancer from second-generation sequencing data. Bioinformatics 26(24):3051–3058

    Article  CAS  PubMed  Google Scholar 

  74. Kim TM, Luquette LJ, Xi R, Park PJ (2010) rSW-seq: algorithm for detection of copy number alterations in deep sequencing data. BMC Bioinformatics 11:432

    Article  PubMed  PubMed Central  Google Scholar 

  75. Klambauer G, Schwarzbauer K, Mayr A, Clevert DA, Mitterecker A, Bodenhofer U, Hochreiter S (2012) cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res 40(9):e69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Magi A, Benelli M, Yoon S, Roviello F, Torricelli F (2011) Detecting common copy number variants in high-throughput sequencing data by using joint SLM algorithm. Nucleic Acids Res 39(10):e65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Medvedev P, Stanciu M, Brudno M (2009) Computational methods for discovering structural variation with next-generation sequencing. Nat Methods 6(11 Suppl):S13–S20

    Article  CAS  PubMed  Google Scholar 

  78. Miller CA, Hampton O, Coarfa C, Milosavljevic A (2011) ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads. PLoS One 6(1):e16327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Waszak SM, Hasin Y, Zichner T, Olender T, Keydar I, Khen M, Stutz AM, Schlattl A, Lancet D, Korbel JO (2010) Systematic inference of copy-number genotypes from personal genome sequencing data reveals extensive olfactory receptor gene content diversity. PLoS Comput Biol 6(11):e1000988

    Article  PubMed  PubMed Central  Google Scholar 

  80. Xie C, Tammi MT (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yoon S, Xuan Z, Makarov V, Ye K, Sebat J (2009) Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res 19(9):1586–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Holt C, Losic B, Pai D, Zhao Z, Trinh Q, Syam S, Arshadi N, Jang GH, Ali J, Beck T, McPherson J, Muthuswamy LB (2014) Wave CNV: allele-specific copy number alterations in primary tumors and xenograft models from next-generation sequencing. Bioinformatics 30(6):768–774

    Article  CAS  PubMed  Google Scholar 

  83. de Sanjose S, Leone M, Berez V, Izquierdo A, Font R, Brunet JM, Louat T, Vilardell L, Borras J, Viladiu P, Bosch FX, Lenoir GM, Sinilnikova OM (2003) Prevalence of BRCA1 and BRCA2 germline mutations in young breast cancer patients: a population-based study. Int J Cancer 106(4):588–593

    Article  PubMed  Google Scholar 

  84. Moller P, Hagen AI, Apold J, Maehle L, Clark N, Fiane B, Lovslett K, Hovig E, Vabo A (2007) Genetic epidemiology of BRCA mutations--family history detects less than 50 % of the mutation carriers. Eur J Cancer 43(11):1713–1717

    Article  PubMed  Google Scholar 

  85. Risch HA, McLaughlin JR, Cole DE, Rosen B, Bradley L, Fan I, Tang J, Li S, Zhang S, Shaw PA, Narod SA (2006) Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 98(23):1694–1706

    Article  CAS  PubMed  Google Scholar 

  86. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  CAS  PubMed  Google Scholar 

  87. Morgan JE, Carr IM, Sheridan E, Chu CE, Hayward B, Camm N, Lindsay HA, Mattocks CJ, Markham AF, Bonthron DT, Taylor GR (2010) Genetic diagnosis of familial breast cancer using clonal sequencing. Hum Mutat 31(4):484–491

    Article  CAS  PubMed  Google Scholar 

  88. Schroeder C, Stutzmann F, Weber BH, Riess O, Bonin M (2010) High-throughput resequencing in the diagnosis of BRCA1/2 mutations using oligonucleotide resequencing microarrays. Breast Cancer Res Treat 122(1):287–297

    Article  CAS  PubMed  Google Scholar 

  89. Summerer D, Wu H, Haase B, Cheng Y, Schracke N, Stahler CF, Chee MS, Stahler PF, Beier M (2009) Microarray-based multicycle-enrichment of genomic subsets for targeted next-generation sequencing. Genome Res 19(9):1616–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Walsh T, Lee MK, Casadei S, Thornton AM, Stray SM, Pennil C, Nord AS, Mandell JB, Swisher EM, King MC (2010) Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci U S A 107(28):12629–12633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Ghorbian.

Ethics declarations

Conflict of Interest

Maryam Sabour declares that she has no conflict of interest. Leila Sabour declares that she has no conflict of interest. Saeid Ghorbian declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

This article is not involved Informed Consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabour, L., Sabour, M. & Ghorbian, S. Clinical Applications of Next-Generation Sequencing in Cancer Diagnosis. Pathol. Oncol. Res. 23, 225–234 (2017). https://doi.org/10.1007/s12253-016-0124-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-016-0124-z

Keywords

Navigation