Skip to main content

P66Shc-SIRT1 Regulation of Oxidative Stress Protects Against Cardio-cerebral Vascular Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Growing evidence shows that acute and chronic overproduction of reactive oxygen species (ROS) and increased oxidants under pathophysiologic circumstances are of vital importance in the development of cardio-cerebral vascular diseases (CCVDs). It has been revealed that the impact of ROS can be suppressed by sirtuin 1 (SIRT1), a member of the highly conserved nicotinamide adenine dinucleotide-dependent class III histone deacetylases through protecting endothelial cells from oxidative injury. Plenty of evidences indicate that p66Shc stimulates mitochondrial ROS generation through its oxidoreductase activity and plays a vital role in the pathophysiology of CCVDs. The link between SIRT and p66Shc, though not very clear yet, may be generally illustrated like this: SIRT1 negatively regulates the expression of p66Shc in transcriptional level. In this review, the authors aimed to discuss the link between the pathogenesis of CCVDs, the regulation of ROS, the interrelation between SIRT1 and p66Shc, and the protective effect of the proper regulation of p66Shc/SIRT1 on CCVDs. The imbalance between the elimination and production of ROS can lead to oxidative stress (OS). More and more evidence suggest that ROS pathological overproduction is closely connected to the genesis and growth of CCVDs. P66shc is a gene that controls ROS level, apoptosis induction, and lifespan. Lots of evidence also indicate a role for SIRT1 mediating OS responses through several ways including directly deacetylating some transcription factors that control anti-OS genes. SIRT1 downregulation can lead to a decreased deacetylation of p66shc gene promoter and can then result in p66shc transcription. SIRT1 binds to the promoter of p66Shc where it can deacetylate histone H3, which weakens the transcription and translation of p66shc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mikhed Y, Daiber A, Steven S (2015) Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction. Int J Mol Sci 16(7):15918–15953. doi:10.3390/ijms160715918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Santilli F, D’Ardes D, Davi G (2015) Oxidative stress in chronic vascular disease: from prediction to prevention. Vasc Pharmacol 74:23–37. doi:10.1016/j.vph.2015.09.003

    Article  CAS  Google Scholar 

  3. Arun MZ, Reel B, Sala-Newby GB, Bond M, Tsaousi A, Maskell P, Newby AC (2016) Zoledronate upregulates MMP-9 and -13 in rat vascular smooth muscle cells by inducing oxidative stress. Drug Design, Development and Therapy 10:1453–1460. doi:10.2147/DDDT.S103124

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tabatabaei-Malazy O, Fakhrzadeh H, Sharifi F, Mirarefin M, Arzaghi SM, Badamchizadeh Z, Alizadeh Khoee M, Larijani B (2015) Effect of metabolic control on oxidative stress, subclinical atherosclerosis and peripheral artery disease in diabetic patients. Journal of Diabetes and Metabolic Disorders 14:84. doi:10.1186/s40200-015-0215-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koniari I, Mavrilas D, Apostolakis E, Papadimitriou E, Papadaki H, Papalois A, Poimenidi E, Xanthopoulou I, et al. (2016) Inhibition of atherosclerosis progression, intimal hyperplasia, and oxidative stress by simvastatin and ivabradine may reduce thoracic aorta’s stiffness in hypercholesterolemic rabbits. J Cardiovasc Pharmacol Ther 21(4):412–422. doi:10.1177/1074248415617289

    Article  CAS  PubMed  Google Scholar 

  6. Ballinger SW, Patterson C, Knight-Lozano CA, Burow DL, Conklin CA, Hu Z, Reuf J, Horaist C, et al. (2002) Mitochondrial integrity and function in atherogenesis. Circulation 106(5):544–549

    Article  CAS  PubMed  Google Scholar 

  7. Sugiura T, Dohi Y, Yamashita S, Hirowatari Y, Fujii S, Ohte N (2016) Serotonin in peripheral blood reflects oxidative stress and plays a crucial role in atherosclerosis: novel insights toward holistic anti-atherothrombotic strategy. Atherosclerosis 246:157–160. doi:10.1016/j.atherosclerosis.2016.01.015

    Article  CAS  PubMed  Google Scholar 

  8. Lim S, Park S (2016) Erratum: role of vascular smooth muscle cell in the inflammation of atherosclerosis. BMB Rep 49(2):134

    Article  CAS  PubMed  Google Scholar 

  9. Sorci-Thomas MG, Thomas MJ (2016) Microdomains, inflammation, and atherosclerosis. Circ Res 118(4):679–691. doi:10.1161/CIRCRESAHA.115.306246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schnabel R, Blankenberg S (2007) Oxidative stress in cardiovascular disease: successful translation from bench to bedside? Circulation 116(12):1338–1340. doi:10.1161/CIRCULATIONAHA.107.728394

    Article  PubMed  Google Scholar 

  11. Rippe C, Lesniewski L, Connell M, LaRocca T, Donato A, Seals D (2010) Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging Cell 9(3):304–312. doi:10.1111/j.1474-9726.2010.00557.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, et al. (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204. doi:10.1126/science.1173635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27(19):2072–2085. doi:10.1101/gad.227439.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Curtis J, de Cabo R (2013) Utilizing calorie restriction to evaluate the role of sirtuins in healthspan and lifespan of mice. Methods Mol Biol 1077:303–311. doi:10.1007/978-1-62703-637-5_20

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Yang G, Yang X, He Y, Wang W, Zhang J, Li T, Zhang W, et al. (2015) Nicotinic acid inhibits vascular inflammation via the SIRT1-dependent signaling pathway. J Nutr Biochem 26(11):1338–1347. doi:10.1016/j.jnutbio.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  16. Berry A, Capone F, Giorgio M, Pelicci PG, de Kloet ER, Alleva E, Minghetti L, Cirulli F (2007) Deletion of the life span determinant p66Shc prevents age-dependent increases in emotionality and pain sensitivity in mice. Exp Gerontol 42(1–2):37–45. doi:10.1016/j.exger.2006.05.018

    Article  CAS  PubMed  Google Scholar 

  17. Vikram A, Kim YR, Kumar S, Naqvi A, Hoffman TA, Kumar A, Miller FJ Jr, Kim CS, et al. (2014) Canonical Wnt signaling induces vascular endothelial dysfunction via p66Shc-regulated reactive oxygen species. Arterioscler Thromb Vasc Biol 34(10):2301–2309. doi:10.1161/ATVBAHA.114.304338

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Vikram A, Kim YR, Jacobs SJ, Irani K (2014) P66Shc mediates increased platelet activation and aggregation in hypercholesterolemia. Biochem Biophys Res Commun 449(4):496–501. doi:10.1016/j.bbrc.2014.05.029

    Article  CAS  PubMed  Google Scholar 

  19. Ma L, Wang G, Chen Z, Li Z, Yao J, Zhao H, Wang S, Ma Z, et al. (2014) Modulating the p66shc signaling pathway with protocatechuic acid protects the intestine from ischemia-reperfusion injury and alleviates secondary liver damage. TheScientificWorldJOURNAL 2014:387640. doi:10.1155/2014/387640

    PubMed  PubMed Central  Google Scholar 

  20. Galimov ER (2010) The role of p66shc in oxidative stress and apoptosis. Acta Nat 2(4):44–51

    CAS  Google Scholar 

  21. Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, Milia E, Padura IM, et al. (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21(24):3872–3878. doi:10.1038/sj.onc.1205513

    Article  CAS  PubMed  Google Scholar 

  22. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, et al. (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100(10):1512–1521. doi:10.1161/01.RES.0000267723.65696.4a

    Article  CAS  PubMed  Google Scholar 

  23. Huang K, Yan ZQ, Zhao D, Chen SG, Gao LZ, Zhang P, Shen BR, Han HC, et al. (2015) SIRT1 and FOXO mediate contractile differentiation of vascular smooth muscle cells under cyclic stretch. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 37(5):1817–1829. doi:10.1159/000438544

    Article  CAS  Google Scholar 

  24. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, et al. (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015. doi:10.1126/science.1094637

    Article  CAS  PubMed  Google Scholar 

  25. Tan M, Tang C, Zhang Y, Cheng Y, Cai L, Chen X, Gao Y, Deng Y, et al. (2015) SIRT1/PGC-1alpha signaling protects hepatocytes against mitochondrial oxidative stress induced by bile acids. Free Radic Res 49(8):935–945. doi:10.3109/10715762.2015.1016020

    Article  CAS  PubMed  Google Scholar 

  26. Yang L, Zhang J, Yan C, Zhou J, Lin R, Lin Q, Wang W, Zhang K, et al. (2012) SIRT1 regulates CD40 expression induced by TNF-alpha via NF-kB pathway in endothelial cells. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 30(5):1287–1298. doi:10.1159/000343318

    Article  CAS  Google Scholar 

  27. Zhang J, Zhang Y, Xiao F, Liu Y, Wang J, Gao H, Rong S, Yao Y, et al. (2016) The peroxisome proliferator-activated receptor gamma agonist pioglitazone prevents NF-kappaB activation in cisplatin nephrotoxicity through the reduction of p65 acetylation via the AMPK-SIRT1/p300 pathway. Biochem Pharmacol 101:100–111. doi:10.1016/j.bcp.2015.11.027

    Article  CAS  PubMed  Google Scholar 

  28. Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y (2007) Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 43(5):571–579. doi:10.1016/j.yjmcc.2007.08.008

    Article  CAS  PubMed  Google Scholar 

  29. Ota H, Eto M, Kano MR, Ogawa S, Iijima K, Akishita M, Ouchi Y (2008) Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol 28(9):1634–1639. doi:10.1161/ATVBAHA.108.164368

    Article  CAS  PubMed  Google Scholar 

  30. Ota H, Eto M, Kano MR, Kahyo T, Setou M, Ogawa S, Iijima K, Akishita M, et al. (2010) Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler Thromb Vasc Biol 30(11):2205–2211. doi:10.1161/ATVBAHA.110.210500

    Article  CAS  PubMed  Google Scholar 

  31. Meng Z, Li J, Zhao H, Liu H, Zhang G, Wang L, Hu HE, Li DI, et al. (2015) Resveratrol relieves ischemia-induced oxidative stress in the hippocampus by activating SIRT1. Experimental and Therapeutic Medicine 10(2):525–530. doi:10.3892/etm.2015.2555

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S, Liu JJ, Lu YB, et al. (2011) Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res 109(6):639–648. doi:10.1161/CIRCRESAHA.111.243592

    Article  CAS  PubMed  Google Scholar 

  33. Ding YW, Zhao GJ, Li XL, Hong GL, Li MF, Qiu QM, Wu B, Lu ZQ (2016) SIRT1 exerts protective effects against paraquat-induced injury in mouse type II alveolar epithelial cells by deacetylating NRF2 in vitro. Int J Mol Med 37(4):1049–1058. doi:10.3892/ijmm.2016.2503

    CAS  PubMed  Google Scholar 

  34. Ding M, Lei J, Han H, Li W, Qu Y, Fu E, Fu F, Wang X (2015) SIRT1 protects against myocardial ischemia-reperfusion injury via activating eNOS in diabetic rats. Cardiovasc Diabetol 14:143. doi:10.1186/s12933-015-0299-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402(6759):309–313. doi:10.1038/46311

    Article  CAS  PubMed  Google Scholar 

  36. Napoli C, Martin-Padura I, de Nigris F, Giorgio M, Mansueto G, Somma P, Condorelli M, Sica G, et al. (2003) Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci U S A 100(4):2112–2116. doi:10.1073/pnas.0336359100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lebiedzinska-Arciszewska M, Oparka M, Vega-Naredo I, Karkucinska-Wieckowska A, Pinton P, Duszynski J, Wieckowski MR (2015) The interplay between p66Shc, reactive oxygen species and cancer cell metabolism. Eur J Clin Investig 45(Suppl 1):25–31. doi:10.1111/eci.12364

    Article  CAS  Google Scholar 

  38. Trinei M, Migliaccio E, Bernardi P, Paolucci F, Pelicci P, Giorgio M (2013) p66Shc, mitochondria, and the generation of reactive oxygen species. Methods Enzymol 528:99–110. doi:10.1016/B978-0-12-405881-1.00006-9

    Article  CAS  PubMed  Google Scholar 

  39. Miyazawa M, Tsuji Y (2014) Evidence for a novel antioxidant function and isoform-specific regulation of the human p66Shc gene. Mol Biol Cell 25(13):2116–2127. doi:10.1091/mbc.E13-11-0666

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cong XD, Ding MJ, Dai DZ, Wu Y, Zhang Y, Dai Y (2012) ER stress, p66shc, and p-Akt/Akt mediate adjuvant-induced inflammation, which is blunted by argirein, a supermolecule and rhein in rats. Inflammation 35(3):1031–1040. doi:10.1007/s10753-011-9407-4

    Article  CAS  PubMed  Google Scholar 

  41. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, et al. (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122(2):221–233. doi:10.1016/j.cell.2005.05.011

    Article  CAS  PubMed  Google Scholar 

  42. Chen HZ, Wan YZ, Liu DP (2013) Cross-talk between SIRT1 and p66Shc in vascular diseases. Trends in Cardiovascular Medicine 23(7):237–241. doi:10.1016/j.tcm.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  43. Priami C, De Michele G, Cotelli F, Cellerino A, Giorgio M, Pelicci PG, Migliaccio E (2015) Modelling the p53/p66Shc aging pathway in the shortest living vertebrate Nothobranchius furzeri. Aging and Disease 6(2):95–108. doi:10.14336/AD.2014.0228

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yuan Y, Wang H, Wu Y, Zhang B, Wang N, Mao H, Xing C (2015) P53 contributes to cisplatin induced renal oxidative damage via regulating P66shc and MnSOD. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 37(4):1240–1256. doi:10.1159/000430247

    Article  CAS  Google Scholar 

  45. Kim CS, Kim YR, Naqvi A, Kumar S, Hoffman TA, Jung SB, Kumar A, Jeon BH, McNamara DM, Irani K (2011) Homocysteine promotes human endothelial cell dysfunction via site-specific epigenetic regulation of p66shc. Cardiovasc Res 92(3):466–475. doi:10.1093/cvr/cvr250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan H, Jihong Y, Feng Z, Xiaomei X, Xiaohan Z, Guangzhi W, Zhenhai M, Dongyan G, Xiaochi M, Qing F, Kexin L, Xiaofeng T (2014) Sirtuin 1-mediated inhibition of p66shc expression alleviates liver ischemia/reperfusion injury. Crit Care Med 42(5):e373–e381. doi:10.1097/CCM.0000000000000246

    Article  PubMed  Google Scholar 

  47. Paneni F, Mocharla P, Akhmedov A, Costantino S, Osto E, Volpe M, Luscher TF, Cosentino F (2012) Gene silencing of the mitochondrial adaptor p66(Shc) suppresses vascular hyperglycemic memory in diabetes. Circ Res 111(3):278–289. doi:10.1161/CIRCRESAHA.112.266593

    Article  CAS  PubMed  Google Scholar 

  48. Langbein H, Brunssen C, Hofmann A, Cimalla P, Brux M, Bornstein SR, Deussen A, Koch E, et al. (2016) NADPH oxidase 4 protects against development of endothelial dysfunction and atherosclerosis in LDL receptor deficient mice. Eur Heart J 37(22):1753–1761. doi:10.1093/eurheartj/ehv564

    Article  PubMed  Google Scholar 

  49. Chapleau MW, Rotella DL, Reho JJ, Rahmouni K, Stauss HM (2016) Chronic vagal nerve stimulation prevents high-salt diet-induced endothelial dysfunction and aortic stiffening in stroke-prone spontaneously hypertensive rats. Am J Phys Heart Circ Phys. doi:10.1152/ajpheart.00043.2016

    Google Scholar 

  50. Sena CM, Pereira AM, Seica R (2013) Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochim Biophys Acta 1832(12):2216–2231. doi:10.1016/j.bbadis.2013.08.006

    Article  CAS  PubMed  Google Scholar 

  51. Francia P, delli Gatti C, Bachschmid M, Martin-Padura I, Savoia C, Migliaccio E, Pelicci PG, Schiavoni M, et al. (2004) Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 110(18):2889–2895. doi:10.1161/01.CIR.0000147731.24444.4D

    Article  CAS  PubMed  Google Scholar 

  52. Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, Tanner FC, Pelicci P, et al. (2007) Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci U S A 104(12):5217–5222. doi:10.1073/pnas0609656104

  53. De Marchi E, Baldassari F, Bononi A, Wieckowski MR, Pinton P (2013) Oxidative stress in cardiovascular diseases and obesity: role of p66Shc and protein kinase C. Oxidative Med Cell Longev 2013:564961. doi:10.1155/2013/564961

    Article  Google Scholar 

  54. Spescha RD, Shi Y, Wegener S, Keller S, Weber B, Wyss MM, Lauinger N, Tabatabai G, et al. (2013) Deletion of the ageing gene p66(Shc) reduces early stroke size following ischaemia/reperfusion brain injury. Eur Heart J 34(2):96–103. doi:10.1093/eurheartj/ehs331

    Article  CAS  PubMed  Google Scholar 

  55. Fetoni AR, Eramo SL, Paciello F, Rolesi R, Samengo D, Paludetti G, Troiani D, Pani G (2016) The redox protein p66(shc) mediates cochlear vascular dysfunction and transient noise-induced hearing loss. Scientific reports 6:25450. doi:10.1038/srep25450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma Y, Gong X, Mo Y, Wu S (2016) Polydatin inhibits the oxidative stress-induced proliferation of vascular smooth muscle cells by activating the eNOS/SIRT1 pathway. Int J Mol Med 37(6):1652–1660. doi:10.3892/ijmm.2016.2554

    CAS  PubMed  Google Scholar 

  57. El Assar M, Angulo J, Vallejo S, Peiro C, Sanchez-Ferrer CF, Rodriguez-Manas L (2012) Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol 3:132. doi:10.3389/fphys.2012.00132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li L, Zhang HN, Chen HZ, Gao P, Zhu LH, Li HL, Lv X, Zhang QJ, et al. (2011) SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ Res 108(10):1180–1189. doi:10.1161/CIRCRESAHA.110.237875

    Article  CAS  PubMed  Google Scholar 

  59. Orimo M, Minamino T, Miyauchi H, Tateno K, Okada S, Moriya J, Komuro I (2009) Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol 29(6):889–894. doi:10.1161/ATVBAHA.109.185694

    Article  CAS  PubMed  Google Scholar 

  60. Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67(2):181–198. doi:10.1016/j.neuron.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanchez-Moreno C, Dashe JF, Scott T, Thaler D, Folstein MF, Martin A (2004) Decreased levels of plasma vitamin C and increased concentrations of inflammatory and oxidative stress markers after stroke. Stroke; a journal of cerebral circulation 35(1):163–168. doi:10.1161/01.STR.0000105391.62306.2E

    Article  CAS  Google Scholar 

  62. Raval AP, Dave KR, Perez-Pinzon MA (2006) Resveratrol mimics ischemic preconditioning in the brain. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 26(9):1141–1147. doi:10.1038/sj.jcbfm.9600262

    Article  CAS  Google Scholar 

  63. Raval AP, Lin HW, Dave KR, DeFazio RA, Della Morte D, Kim EJ, Perez-Pinzon MA (2008) Resveratrol and ischemic preconditioning in the brain. Curr Med Chem 15(15):1545–1551. doi:10.2174/092986708784638861

    Article  CAS  PubMed  Google Scholar 

  64. Li S, Bouzar C, Cottet-Rousselle C, Zagotta I, Lamarche F, Wabitsch M, Tokarska-Schlattner M, Fischer-Posovszky P, et al. (2016) Resveratrol inhibits lipogenesis of 3T3-L1 and SGBS cells by inhibition of insulin signaling and mitochondrial mass increase. Biochim Biophys Acta 1857(6):643–652. doi:10.1016/j.bbabio.2016.03.009

    Article  CAS  PubMed  Google Scholar 

  65. Hattori Y, Okamoto Y, Nagatsuka K, Takahashi R, Kalaria RN, Kinoshita M, Ihara M (2015) SIRT1 attenuates severe ischemic damage by preserving cerebral blood flow. Neuroreport 26(3):113–117. doi:10.1097/Wnr.0000000000000308

    Article  CAS  PubMed  Google Scholar 

  66. Miao YP, Zhao S, Gao Y, Wang RJ, Wu Q, Wu H, Luo TY (2016) Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: the possible role of Sirt1 signaling. Brain Res Bull 121:9–15. doi:10.1016/j.brainresbull.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  67. Xiao J, Sheng X, Zhang XY, Guo MQ, Ji XP (2016) Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro. Drug Des Dev Ther 10:1267–1277. doi:10.2147/Dddt.S104925

    Google Scholar 

  68. Della-Morte D, Dave KR, Defazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159(3):993–1002. doi:10.1016/j.neuroscience.2009.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank our colleagues at the Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzhi Wang.

Ethics declarations

Declaration of Interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript, including employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Funding Statement

This study was supported by Peking Union Medical College Youth Research Funds (2016) (Project No. 3332016010; grant recipient—Xiangyi Kong) and Peking Union Medical College Graduate Student Innovation Fund (2015, grant recipient—Xiangyi Kong). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Additional information

Article highlights

• Oxidative stress (OS) is characterized by ROS overproduction and plays a key role in the development of cardio-cerebral vascular diseases (CCVDs).

• SIRT1 negatively regulates OS in vascular endothelial cells by targeting p53, FOXO3, and eNOS for deacetylation.

• P66Shc is one of the three ShcA isoforms with a unique collagen-homology domain (CH2).

• P66Shc protein promotes mitochondrial ROS generation through an oxidoreductase electron transfer reaction with cytochrome c, leading to OS.

• OS-mediated endothelial dysfunction is a critical factor in CCVD development.

• SIRT1 represses P66Shc transcription at the chromatin level by deacetylating histone H3 in the P66Shc promoter region.

• Regulating P66Shc/SIRT1 could plausibly improve endothelial function and inhibit endothelial senescence, and thus offers a possible strategy to prevent or treat CCVD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Guan, J., Li, J. et al. P66Shc-SIRT1 Regulation of Oxidative Stress Protects Against Cardio-cerebral Vascular Disease. Mol Neurobiol 54, 5277–5285 (2017). https://doi.org/10.1007/s12035-016-0073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0073-2

Keywords