Skip to main content

Advertisement

Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Alternatively activated macrophages (M2) can secrete chemokines, such as chemokine ligand 17 (CCL17), and are associated with promoting tumorigenesis of hepatocellular carcinoma (HCC). This study aimed at investigating the potential role of M2 and CCL17 in progression of HCC. The levels of CCL17 expression in 90 HCC samples were characterized by tissue microarray and stratified for the postsurgical survival. MHCC97L cells were co-cultured with classically activated M1, M2 or CCL17-silencing M2ccl17mute or treated with conditional medium (CM) from these cells or CCL17 in vitro. The wound healing, invasion, viability and apoptosis of MHCC97L cells in vitro and tumor growth in vivo were determined. The stemness of MHCC97L cells was examined by sphere formation, flow cytometry and Western blot. The relative expression levels of epithelial–mesenchymal transition (EMT) factors and the Wnt/β-catenin signaling were determined. Higher levels of intratumoral CCL17 expression were significantly associated with clinical pathological characteristics of HCC and with poorer overall survival rates in HCC patients (P < 0.05). High levels of CCR4 were detected in MHCC97L cells. Treatment with the CM from M2 or with CCL17 significantly enhanced the wound healing process, invasion and proliferation of MHCC97L cells in vitro. Co-implantation MHCC97L cells with M2 significantly promoted the growth of MHCC97L tumors in vivo. Co-culture with M2 or treatment with CCL17 enhanced the stemness, EMT process, the TGF-β1 and Wnt/β-catenin signaling in MHCC97L cells. CCL17 promotes the tumorigenesis of HCC and may be a potential biomarker and target for HCC prognosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29. doi:10.3322/caac.21208.

    Article  PubMed  Google Scholar 

  2. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27. doi:10.1056/NEJMra1001683.

    Article  CAS  PubMed  Google Scholar 

  3. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44. doi:10.1038/nature07205.

    Article  CAS  PubMed  Google Scholar 

  4. Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 2013;23(2):249–62. doi:10.1016/j.ccr.2013.01.008.

    Article  CAS  PubMed  Google Scholar 

  5. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4(7):540–50. doi:10.1038/nrc1388.

    Article  CAS  PubMed  Google Scholar 

  6. Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol. 2015;62(3):607–16. doi:10.1016/j.jhep.2014.10.029.

    Article  CAS  PubMed  Google Scholar 

  7. Barashi N, Weiss ID, Wald O, Wald H, Beider K, Abraham M, et al. Inflammation-induced hepatocellular carcinoma is dependent on CCR5 in mice. Hepatology. 2013;. doi:10.1002/hep.26403.

    Google Scholar 

  8. Imai T, Baba M, Nishimura M, Kakizaki M, Takagi S, Yoshie O. The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J Biol Chem. 1997;272(23):15036–42.

    Article  CAS  PubMed  Google Scholar 

  9. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86. doi:10.1016/j.it.2004.09.015.

    Article  CAS  PubMed  Google Scholar 

  10. Li CM, Hou L, Zhang H, Zhang WY. CCL17 induces trophoblast migration and invasion by regulating matrix metalloproteinase and integrin expression in human first-trimester placenta. Reprod Sci. 2014;. doi:10.1177/1933719113519170.

    Google Scholar 

  11. Zhu F, Jiang Y, Luo F, Li P. Effectiveness of localized ultrasound-targeted microbubble destruction with doxorubicin liposomes in H22 mouse hepatocellular carcinoma model. J Drug Target. 2015;. doi:10.3109/1061186X.2014.996759.

    PubMed Central  Google Scholar 

  12. Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology. 2006;44(1):240–51. doi:10.1002/hep.21227.

    Article  CAS  PubMed  Google Scholar 

  13. Naito S, von Eschenbach AC, Giavazzi R, Fidler IJ. Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Res. 1986;46(8):4109–15.

    CAS  PubMed  Google Scholar 

  14. Wands JR, Kim M. WNT/beta-catenin signaling and hepatocellular carcinoma. Hepatology. 2014;60(2):452–4. doi:10.1002/hep.27081.

    Article  CAS  PubMed  Google Scholar 

  15. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192–205. doi:10.1016/j.cell.2012.05.012.

    Article  CAS  PubMed  Google Scholar 

  16. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26. doi:10.1016/j.devcel.2009.06.016.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Imai T, Nagira M, Takagi S, Kakizaki M, Nishimura M, Wang J, et al. Selective recruitment of CCR4-bearing Th2 cells toward antigen-presenting cells by the CC chemokines thymus and activation-regulated chemokine and macrophage-derived chemokine. Int Immunol. 1999;11(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ishitsuka K, Tamura K. Human T-cell leukaemia virus type I and adult T-cell leukaemia–lymphoma. Lancet Oncol. 2014;15(11):e517–26. doi:10.1016/S1470-2045(14)70202-5.

    Article  CAS  PubMed  Google Scholar 

  19. Lee JH, Cho YS, Lee JY, Kook MC, Park JW, Nam BH, et al. The chemokine receptor CCR4 is expressed and associated with a poor prognosis in patients with gastric cancer. Ann Surg. 2009;249(6):933–41. doi:10.1097/SLA.0b013e3181a77ccc.

    Article  PubMed  Google Scholar 

  20. Li JY, Ou ZL, Yu SJ, Gu XL, Yang C, Chen AX, et al. The chemokine receptor CCR4 promotes tumor growth and lung metastasis in breast cancer. Breast Cancer Res Treat. 2012;131(3):837–48. doi:10.1007/s10549-011-1502-6.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Z, Lu P, Zhang H, Xu H, Gao N, Li M, et al. Nestin positively regulates the Wnt/beta-catenin pathway and the proliferation, survival and invasiveness of breast cancer stem cells. BCR. 2014;16(4):408. doi:10.1186/s13058-014-0408-8.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Pickup M, Novitskiy S, Moses HL. The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer. 2013;13(11):788–99. doi:10.1038/nrc3603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90. doi:10.1016/j.cell.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  24. Itoh F, Watabe T, Miyazono K. Roles of TGF-beta family signals in the fate determination of pluripotent stem cells. Semin Cell Dev Biol. 2014;32:98–106. doi:10.1016/j.semcdb.2014.05.017.

    Article  CAS  PubMed  Google Scholar 

  25. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96. doi:10.1038/nrm3758.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012;21(3):283–96. doi:10.1016/j.ccr.2012.03.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology. 2008;47(3):919–28. doi:10.1002/hep.22082.

    Article  CAS  PubMed  Google Scholar 

  28. Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13(7):513–32. doi:10.1038/nrd4233.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the grants from the National Natural Science Foundation (Grant Nos. 81071882 and 81372481) and the National Key Clinical Specialties Construction Program of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Luo.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All patients included in the study gave written consent themselves. For studies with animals, we declare all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Li, X., Chen, S. et al. Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol 33, 17 (2016). https://doi.org/10.1007/s12032-016-0729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-016-0729-9

Keywords