Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor neurons in the cerebral cortex, brain stem, and spinal cord. Most cases (90%) are classified as sporadic ALS (sALS). The remainder 10% are inherited and referred to as familial ALS, and 2% of instances are due to mutations in Cu/Zn superoxide dismutase (SOD1). Using cDNA microarray on postmortem spinal cord specimens of four sALS patients compared to four age-matched nonneurological controls, we found major changes in the expression of mRNA in 60 genes including increase of cathepsin B and cathepsin D (by the factors 2 and 2.3, respectively), apolipoprotein E (Apo E; factor 4.2), epidermal growth factor receptor (factor 10), ferritin (factor 2), and lysosomal trafficking regulator (factor 10). The increase in the expression of these genes was verified by quantitative reverse transcriptase polymerase chain reaction. Further analysis of these genes in hSOD1-G93A transgenic mice revealed increase in the expression in parallel with the deterioration of motor functions quantified by means of rotorod performance. The comparability of the findings in sALS patients and in the hSOD1-G93A transgenic mouse model suggests that the examined genes may play a specific role in the pathogenesis of ALS.
Similar content being viewed by others
References
Bendotti, C., Tortarolo, M., Suchak, S. K., Calvaresi, N., Carvelli, L., Bastone, A., et al. (2001). Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. Journal of Neurochemistry, 7(4), 737–746.
Birecree, E., Whetsell, W. O. Jr., Stoscheck, C., King, L. E. Jr., & Nanney, L. B. (1988). Immunoreactive epidermal growth factor receptors in neuritic plaques from patients with Alzheimer’s disease. Journal of Neuropathology and Experimental Neurology, 47(5), 549–560.
Bruijn, L. I., Miller, T. M., & Cleveland, D. W. (2004). Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annual Review of Neuroscience, 27, 723–749.
Callahan, L. M., Vaules, W. A., & Coleman, P. D. (1999). Quantitative decrease in synaptophysin message expression and increase in cathepsin D message expression in Alzheimer disease neurons containing neurofibrillary tangles. Journal of Neuropathology and Experimental Neurology, 58(3), 275–287.
Certain, S., Barrat, F., Pastural, E., Le Deist, F., Goyo-Rivas, J., Jabado, N., et al. (2000). Protein truncation test of LYST reveals heterogenous mutations in patients with Chediak–Higashi syndrome. Blood, 95(3), 979–983.
Cudkowicz, M. E., McKenna-Yasek, D., Sapp, P. E., Chin, W., Geller, B., Hayden, D. L., et al. (1997) Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Annals of Neurology, 49(1), 213–222.
Drory, V. E., Birnbaum, M., Korczyn, A. D., & Chapman, J. (2001). Association of APOE epsilon4 allele with survival in amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 190(1–2), 17–20.
Embacher, N., Kaufmann, W. A., Beer, R., Maier, H., Jellinger, K. A., Poewe, W., et al. (2001). Apoptosis signals in sporadic amyotrophic lateral sclerosis: an immunocytochemical study. Acta Neuropathologica, 102(5), 426–434.
Erschbamer, M., Pernold, K., & Olson, L. (2007) Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury. Journal of Neuroscience, 27(24), 6428–6435.
Ferrante, R. J., Browne, S. E., Shinobu, L. A., Bowling, A. C., Baik, M. J., MacGarvey, U., et al. (1997). Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. Journal of Neurochemistry, 69(5), 2064–2074.
Ferri, A., Nencini, M., Battistini, S., Giannini, F., Siciliano, G., Casali, C., et al. (2004). Activity of protein phosphatase calcineurin is decreased in sporadic and familial amyotrophic lateral sclerosis patients. Journal of Neurochemistry, 90, 1237–1242.
Foghsgaard, L., Wissing, D., Mauch, D., Lademann, U., Bastholm, L., Boes, M., et al. (2001). Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. Journal of Cell Biology, 153(5), 999–1010.
Gros-Louis, F., Gaspar, C., & Rouleau, G. A. (2006). Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochimica et Biophysica Acta, 1762(11–12), 956–972.
Guegan, C., & Przedborski, S. (2003). Programmed cell death in amyotrophic lateral sclerosis. Journal of Clinical Investigation, 111(2), 153–161.
Guégan, C., Vila, M., Rosoklija, G., Hays, A. P., & Przedborski, S. (2001). Recruitment of the mitochondrial-dependent apoptotic pathway in amyotrophic lateral sclerosis. Journal of Neuroscience, 21(17), 6569–6576.
Gurney, M. E., Cutting, F. B., Zhai, P., Doble, A., Taylor, C. P., Andrus, P. K., et al. (1996). Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Annals of Neurology, 39, 147–157.
Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264, 1772–1775.
Haasdijk, E. D., Vlug, A., Mulder, M. T., & Jaarsma, D. (2002). Increased apolipoprotein E expression correlates with the onset of neuronal degeneration in the spinal cord of G93A-SOD1 mice. Neuroscience Letters, 335(1), 29–33.
Howland, D. S., Liu, J., She, Y., Goad, B., Maragakis, N. J., Kim, B., et al. (2002). Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proceedings of the National Academy of Sciences of the United States of America, 99, 1604–1609.
Hoyaux, D., Boom, A., Van den Bosch, L., Belot, N., Martin. J. J., Heizmann, C. W., et al. (2002). S100A6 overexpression within astrocytes associated with impaired axons from both ALS mouse model and human patients. Journal of Neuropathology and Experimental Neurology, 61(8), 736–744.
Jacobsson, J., Jonsson, P. A., Andersen, P. M., Forsgren, L., & Marklund, S. L. (2001). Superoxide dismutase in CSF from amyotrophic lateral sclerosis patients with and without CuZn-superoxide dismutase mutations. Brain, 124, 1461–1466.
Kagedal, K., Johansson, U., & Ollinger, K. (2000). The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB Journal, 15(9), 1592–1594.
Kajiwara, Y., Yamasaki, F., Hama, S., Yahara, K., Yoshioka, H., Sugiyama, K., et al. (2003). Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer, 97(4), 1077–1083.
Kikuchi, H., Yamada, T., Furuya, H., Doh-ura, K., Ohyagi, Y., Iwaki, T., et al. (2003). Involvement of cathepsin B in the motor neuron degeneration of amyotrophic lateral sclerosis. Acta Neuropathologica, 105(5), 462–468.
Kingham, P. J., & Pocock, J. M. (2001). Microglial secreted cathepsin B induces neuronal apoptosis. Journal of Neurochemistry, 76(5), 1475–1484.
Kohda, Y., Yamashima, T., Sakuda, K., Yamashita, J., Ueno, T., Kominami, E., et al. (1996). Dynamic changes of cathepsins B and L expression in the monkey hippocampus after transient ischemia. Biochemical and Biophysical Research Communications, 228(2), 616–622.
Kornblum, H. I., Hussain, R., Wiesen, J., Miettinen, P., Zurcher, S. D., Chow, K., et al. (1998). Abnormal astrocyte development and neuronal death in mice lacking the epidermal growth factor receptor. Journal of Neuroscience Research, 53(6), 697–717.
Lacomblez, L., Doppler, V., Beucler, I., Costes, G., Salachas, F., Raisonnier, A., et al. (2002). APOE: a potential marker of disease progression in ALS. Neurology, 58(7), 1112–1114.
Li, M., Ona, V. O., Guegan, C., Kaul, M., Tenneti, L., Zhang, X., et al. (2000). Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science, 288(5464), 335–339.
Liu, D. (1996). The roles of free radicals in amyotrophic lateral sclerosis. Journal of Molecular Neuroscience, 7(3), 159–167.
Liu, B., Chen, H., Johns, T. G., & Neufeld, A. H. (2006). Epidermal growth factor receptor activation: an upstream signal for transition of quiescent astrocytes into reactive astrocytes after neural injury. Journal of Neuroscience, 26(28), 7532–7540.
Liu, B., & Neufeld, A. H. (2007). Activation of epidermal growth factor receptors in astrocytes: From development to neural injury. Journal of Neuroscience Research, 85(16), 3523–3529.
Malaspina, A., Kaushik, N., & de Belleroche, J. (2001). Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. Journal of Neurochemistry, 77(1), 132–145.
Martin, L. J. (1999). Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism. Journal of Neuropathology and Experimental Neurology, 58(5), 459–471.
Masliah, E., Mallory, M., Veinbergs, I., Miller, A., & Samuel, W. (1996). Alterations in apolipoprotein E expression during aging and neurodegeneration. Progress in Neurobiology, 50, 493–503.
McGeer, P. L., & McGeer, E. G. (2002). Inflammatory processes in amyotrophic lateral sclerosis. Muscle & Nerve, 26(4), 459–470.
Menzies, F. M., Grierson, A. J., Cookson, M. R., Heath, P. R., Tomkins, J., Figlewicz, D. A., et al. (2002). Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. Journal of Neurochemistry, 82(5), 1118–1128.
Mizuno, Y., Amari, M., Takatama, M., Aizawa, H., Mihara, B., & Okamoto, K. (2006). Transferrin localizes in Bunina bodies in amyotrophic lateral sclerosis. Acta Neuropathologica, 112, 597–603.
Moulard, B., Sefiani, A., Laamri, A., Malafosse, A., & Camu, W. (1996). Apolipoprotein E genotyping in sporadic amyotrophic lateral sclerosis: evidence for a major influence on the clinical presentation and prognosis. Journal of the Neurological Sciences, 139, 34–37 (Suppl).
Mu, X., He, J., Anderson, D. W., Trojanowski, J. Q., & Springer, J. E. (1996). Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. Annals of Neurology, 40(3), 379–386.
Nakamura, Y., Takeda, M., Suzuki, H., Hattori, H., Tada, K., Hariguchi, S., et al. (1991). Abnormal distribution of cathepsins in the brain of patients with Alzheimer’s disease. Neuroscience Letters, 130(2), 195–198.
Nakanishi, H., Amano, T., Sastradipura, D. F., Yoshimine, Y., Tsukuba, T., Tanabe, K., et al. (1997). Increased expression of cathepsins E and D in neurons of the aged rat brain and their colocalization with lipofuscin and carboxy-terminal fragments of Alzheimer amyloid precursor protein. Journal of Neurochemistry, 68(2), 739–749.
Olsen, M. K., Roberds, S. L., Ellerbrock, B. R., Fleck, T. J., McKinley, D. K., & Gurney, M. E. (2001). Disease mechanisms revealed by transcription profiling in SOD1-G93A transgenic mouse spinal cord. Annals of Neurology, 50(6), 730–740.
Papassotiropoulos, A., Lewis, H. D., Bagli, M., Jessen, F., Ptok, U., Schulte, A., et al. (2002). Cerebrospinal fluid levels of beta-amyloid(42) in patients with Alzheimer’s disease are related to the exon 2 polymorphism of the cathepsin D gene. Neuroreport, 13(10), 1291–1294.
Pasinelli, P., & Brown, R. H. (2006). Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nature Reviews Neuroscience, 7(9), 710–723 (review).
Pasinelli, P., Houseweart, M. K., Brown, R. H., & Cleveland, D. W. (2000). Caspase 1 and 3 are sequentially activated in motor neuron death in Cu, Zn superoxide dismutase-mediated familial amyotorophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 97, 13901–13906.
Pedersen, W. A., Fu, W., Keller, J. N., Markesbery, W. R., Appel, S., Smith, R. G., et al. (1998). Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Annals of Neurology, 44(5), 819–824.
Pedersen, W. A., Luo, H., Kruman, I., Kasarskis, E., & Mattson, M. P. (2000). The prostate apoptosis response-4 protein participates in motor neuron degeneration in amyotrophic lateral sclerosis. FASEB Journal, 14(7), 913–924.
Rothstein, J. D., Martin, L. J., & Kuncl, R. W. (1992). Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. New England Journal of Medicine, 326(22), 1464–1468.
Sibilia, M., Steinbach, J. P., Stingl, L., Aguzzi, A., & Wagner, E. F. (1998). A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO Journal, 17(3), 719–731.
Simmons, D. A., Casale, M., Alcon, B., Pham, N., Narayan, N., & Lynch, G. (2007). Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia(Galaţi), 55(10), 1074–1084.
Takuma, K., Kiriu, M., Mori, K., Lee, E., Enomoto, R., Baba, A., et al. (2003). Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes. Neurochemistry International, 42(2), 153–159.
Threadgill, D. W., Dlugosz, A. A., Hansen, L. A., Tennenbaum, T., Lichti, U., Yee, D., et al. (1995). Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science, 269(5221), 230–234.
Acknowledgments
The project was partially supported by the National Parkinson Foundation, Miami, FL, USA; the Norma and Alan Aufzein Chair for Research in Parkinson’s disease, Tel Aviv University, Israel; and the Scientific and Technical Cooperation Austria–Israel, project #III/7 1999.
We are very grateful to Prof. Dr. Manfred Gerlach, Department of Clinical Neurochemistry, Medical Faculty, Würzburg, Germany, for providing us with spinal cord tissue of a patient who died from sALS.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Offen, D., Barhum, Y., Melamed, E. et al. Spinal Cord mRNA Profile in Patients with ALS: Comparison with Transgenic Mice Expressing the Human SOD-1 Mutant. J Mol Neurosci 38, 85–93 (2009). https://doi.org/10.1007/s12031-007-9004-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12031-007-9004-z