Skip to main content

Advertisement

In Search of Liver Cancer Stem Cells

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Recent research efforts in stem cell and cancer biology have put forth a “stem cell model of carcinogenesis” which stipulates that the capability to maintain tumor formation and growth specifically resides in a small population of cells called cancer stem cells. The stem cell-like characteristics of these cells, including their ability to self-renew and differentiate; and their limited number within the bulk of the tumor mass, are believed to account for their capability to escape conventional therapies. In the past few years, the hypothesis of stem cell-driven tumorigenesis in liver cancer has received substantial support from the recent ability to identify and isolate a subpopulation of liver cancer cells that is not only able to initiate tumor growth, but also serially establish themselves as tumor xenografts with high efficiency and consistency. In this review, stem cell biology that contributes to explain tumor development in the particular context of liver cancer will be discussed. We will begin by briefly considering the knowledge available on normal liver stem cells and their role in tissue renewal and regeneration. We will then summarize the current scientific knowledge of liver cancer stem cells, discuss their relevance to the diagnosis and treatment of the disease and consider the outstanding challenges and potential opportunities that lie ahead of us.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HPC:

hepatic progenitor cells

HSC:

hematopoietic stem cells

CSCs:

cancer stem cells

HCC:

hepatocellular carcinoma

HBV:

hepatitis B virus

HCV:

hepatitis C virus

SP:

side population

PEI:

percutaneous ethanol injection

RFA:

radiofrequency ablation

TACE:

transarterial chemoembolization

ALDH:

aldehyde dehydrogenase

ALL:

acute lymphoblastic leukemia

AML:

acute myeloid leukemia

NOD/SCID:

non-obese severe-combined immunodeficient

ATP:

adenosine triphosphate

References

  1. Jemal, A., Siegel, R., Ward, E., et al. (2008). Cancer statistics. CA Cancer Journal for Clinicians, 58, 71–96.

    Article  Google Scholar 

  2. Farazi, P. A., & DePinho, R. A. (2006). Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Review Cancer, 6, 674–687.

    Article  PubMed  CAS  Google Scholar 

  3. Llovet, J. M., Burroughs, A., & Bruix, J. (2003). Hepatocellular carcinoma. Lancet, 362, 1907–1917.

    Article  PubMed  Google Scholar 

  4. Thorgeirsson, S. S., & Grisham, J. W. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nature Genetics, 31, 339–346.

    Article  PubMed  CAS  Google Scholar 

  5. Anzola, M. (2004). Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses’ proteins in hepatocarcinogenesis. Journal of Viral Hepatitis, 11, 383–393.

    Article  PubMed  CAS  Google Scholar 

  6. Bosch, F. X., Ribes, J., Cleries, R., et al. (2005). Epidemiology of hepatocellular carcinoma. Clinics Liver Disease, 9, 191–211.

    Article  Google Scholar 

  7. El-Serag, H. B. (2002). Hepatocellular carcinoma: an epidemiologic view. Journal of Clinical Gastroenterology, 35, 72–78.

    Article  Google Scholar 

  8. El-Serag, H. B., Tran, T., & Everhart, J. E. (2004). Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology, 126, 460–468.

    Article  PubMed  Google Scholar 

  9. Benvegnu, L., Fattovich, G., Noventa, F., et al. (1994). Concurrent hepatitis B and C virus infection and risk of hepatocellular carcinoma in cirrhosis. A prospective study. Cancer, 74, 2442–2448.

    Article  PubMed  CAS  Google Scholar 

  10. Brechot, C. (2004). Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology, 127, 56–61.

    Article  CAS  Google Scholar 

  11. Fattovich, G., Stroffolini, T., Zagni, I., et al. (2004). Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology, 127, 35–50.

    Article  Google Scholar 

  12. Yu, M. C., & Yuan, J. M. (2004). Environmental factors and risk for hepatocellular carcinoma. Gastroenterology, 127, 72–78.

    Article  CAS  Google Scholar 

  13. El-Serag, H. B., & Mason, A. C. (1999). Rising incidence of hepatocellular carcinoma in the United States. New England Journal of Medicine, 340, 745–750.

    Article  PubMed  CAS  Google Scholar 

  14. Sherman, M. (2005). Hepatocellular carcinoma: epidemiology, risk factors, and screening. Seminars in Liver Disease, 25, 143–154.

    Article  PubMed  Google Scholar 

  15. Carr, B. I. (2004). Hepatocellular carcinoma: current management and future trends. Gastroenterology, 127, 218–224.

    Article  Google Scholar 

  16. Kassahun, W. T., Fangmann, J., Harms, J., et al. (2006). Liver resection and transplantation in the management of hepatocellular carcinoma: a review. Experimental and Clinical Transplantation, 4, 549–558.

    PubMed  Google Scholar 

  17. Kulik, L., & Abecassis, M. (2004). Living donor liver transplantation for hepatocellular carcinoma. Gastroenterology, 127, 277–282.

    Article  Google Scholar 

  18. Llovet, J. M., Fuster, J., & Bruix, J. (1999). Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma: resection versus transplantation. Hepatology, 30, 1434–1440.

    Article  PubMed  CAS  Google Scholar 

  19. Schwartz, M. (2004). Liver transplantation for hepatocellular carcinoma. Gastroenterology, 127, 268–276.

    Article  Google Scholar 

  20. Mazzaferro, V., Regalia, E., Doci, R., et al. (1996). Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. New England Journal of Medicine, 334, 693–699.

    Article  PubMed  CAS  Google Scholar 

  21. Aguayo, A., & Patt, Y. Z. (2001). Nonsurgical treatment of hepatocellular carcinoma. Seminars in Oncology, 28, 503–513.

    Article  PubMed  CAS  Google Scholar 

  22. Kuvshinoff, B. W., & Ota, D. M. (2002). Radiofrequency ablation of liver tumors: influence of technique and tumor size. Surgery, 132, 605–611.

    Article  PubMed  Google Scholar 

  23. Di Maio, M., De Maio, E., Perrone, F., et al. (2002). Hepatocellular carcinoma: systemic treatments. Journal of Clinical Gastroenterology, 35, 109–114.

    Article  Google Scholar 

  24. Llovet, J. M., & Bruix, J. (2003). Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology, 37, 429–442.

    Article  PubMed  CAS  Google Scholar 

  25. Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: the niche matters. Cancer Research, 66, 4553–4557.

    Article  PubMed  CAS  Google Scholar 

  26. Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem-cell biology to cancer. Nature Review Cancer, 3, 895–902.

    Article  PubMed  CAS  Google Scholar 

  27. Polyak, K., & Hahn, C. W. (2005). Roots and stems: stem cells in cancer. Nature Medicine, 11, 296–300.

    Google Scholar 

  28. Reya, T., Morrison, S. J., Clarke, M. F., et al. (2001). Stem cells, cancer and cancer stem cells. Nature, 414, 105–111.

    Article  PubMed  CAS  Google Scholar 

  29. Beachy, P. A., Karhadkar, S. S., & Berman, D. M. (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432, 324–331.

    Article  PubMed  CAS  Google Scholar 

  30. Perryman, S. C., & Sylvester, K. G. (2006). Repair and regeneration: opportunities for carcinogenesis from tissue stem cells. Journal of Cellular and Molecular Medicine, 10, 292–308.

    Article  PubMed  CAS  Google Scholar 

  31. Fausto, N. (2004). Liver regeneration and repair: hepatocytes, progenitor cells and stem cells. Hepatology, 39, 1477–1487.

    Article  PubMed  Google Scholar 

  32. Michalopoulos, G. K., & Defrances, M. C. (1997). Liver regeneration. Science, 276, 60–66.

    Article  PubMed  CAS  Google Scholar 

  33. Alison, M. R., & Lovell, M. J. (2005). Liver cancer: the role of stem cells. Cell Proliferation, 38, 407–421.

    Article  PubMed  CAS  Google Scholar 

  34. Forbes, S., Vig, P., Poulsom, R., et al. (2002). Hepatic stem cells. Journal of Pathology, 197, 510–518.

    Article  PubMed  Google Scholar 

  35. Thorgeirsson, S. (1996). Hepatic stem cells in liver regeneration. The FASEB Journal, 10, 1249–1256.

    PubMed  CAS  Google Scholar 

  36. Kallis, Y. N., Alison, M. R., & Forbes, S. J. (2007). Bone marrow stem cells and liver disease. Gut, 56, 716–724.

    Article  PubMed  CAS  Google Scholar 

  37. Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science, 284, 1168–1170.

    Article  PubMed  CAS  Google Scholar 

  38. Bellacosa, A. (2003). Genetic hits and mutation rate in colorectal tumorigenesis: versatility of Knudson's theory and implications for cancer prevention. Genes Chromosomes Cancer, 38, 382–388.

    Article  PubMed  CAS  Google Scholar 

  39. Vogelstein, B., Fearon, E. R., Hamilton, S. R., et al. (1998). Genetic alterations during colorectal-tumor development. New England Journal of Medicine, 319, 525–532.

    Google Scholar 

  40. Hahn, W. C., & Weinberg, R. A. (2002). Rules for making human tumor cells. New England Journal of Medicine, 347, 1593–1603.

    Article  PubMed  CAS  Google Scholar 

  41. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  42. Al-Hajj, M., & Clarke, M. F. (2004). Self-renewal and solid tumor stem cells. Oncogene, 23, 7274–7282.

    Article  PubMed  CAS  Google Scholar 

  43. Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer Stem Cells. New England Journal of Medicine, 335, 1253–1261.

    Article  Google Scholar 

  44. Spillane, J. B., & Henderson, M. A. (2007). Cancer stem cells: a review. ANZ Journal of Surgery, 77, 464–68.

    Article  PubMed  Google Scholar 

  45. Burkert, J., Wright, N. A., & Alison, M. R. (2006). Stem cells and cancer: an intimate relationship. Journal of Pathology, 209, 287–297.

    Article  PubMed  CAS  Google Scholar 

  46. Dean, M., Fojo, T., & Bates, S. (2005). Tumor stem cells and drug resistance. Nature Review Cancer, 5, 275–284.

    Article  PubMed  CAS  Google Scholar 

  47. Virchow, R. (1855). Editorial. Virchows Archiv fuer Pathologische Anatomie und Physiologie und fuer Klinische Medizin, 3, 23.

    Google Scholar 

  48. Furth, J., & Kahn, M. C. (1937). The transmission of leukemia of mice with a single cell. American Journal of Cancer, 31, 276–282.

    Google Scholar 

  49. Till, J. E., & McCulloch, E. A. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation Research, 14, 213–222.

    Article  PubMed  CAS  Google Scholar 

  50. Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature, 367, 645–648.

    Article  PubMed  CAS  Google Scholar 

  51. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.

    Article  PubMed  CAS  Google Scholar 

  52. Blair, A., Hogge, D. E., & Sutherland, H. J. (1998). Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34+/CD71/HLA-DR. Blood, 92, 4325–4335.

    PubMed  CAS  Google Scholar 

  53. Jin, L., Hope, K. J., Zhai, Q., et al. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12, 1167–1174.

    Article  PubMed  CAS  Google Scholar 

  54. Cheung, A. M. S., Wan, T. S. K., Leung, J. C. K., et al. (2007). Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia, 21, 1423–1430.

    Article  PubMed  CAS  Google Scholar 

  55. Cox, C. V., Evely, R. S., Oakhill, A., et al. (2004). Characteristics of acute lymphoblastic leukemia progenitor cells. Blood, 104, 2919–2915.

    Article  PubMed  CAS  Google Scholar 

  56. Cox, C. V., Martin, H. M., Kearns, P. R., et al. (2007). Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood, 109, 674–682.

    Article  PubMed  CAS  Google Scholar 

  57. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., et al. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  58. Ponti, D., Costa, A., Zaffaroni, N., et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65, 5506–5511.

    Article  PubMed  CAS  Google Scholar 

  59. Sophos, N. A., & Vasilious, V. (2003). Aldehyde dehydrogenase gene superfamily: the 2002 update. Chemico-Biological Interactions, 143, 5–22.

    Article  PubMed  CAS  Google Scholar 

  60. Ginestier, C., Hur, M. H., Charafe-Jauffret, E., et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1, 555–567.

    Article  PubMed  CAS  Google Scholar 

  61. Singh, S. K., Clarke, I. D., Terasaki, M., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63, 5821–5828.

    PubMed  CAS  Google Scholar 

  62. Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2004). Identification of human brain tumor initiating cells. Nature, 432, 396–401.

    Article  PubMed  CAS  Google Scholar 

  63. Hemmati, H. D., Nakano, I., Lazareff, J. A., et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100, 15178–15183.

    Article  PubMed  CAS  Google Scholar 

  64. Gali, R., Binda, E., Orfanelli, U., et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Research, 64, 7011–7021.

    Article  Google Scholar 

  65. Yuan, X., Curtin, J., Xiong, Y., et al. (2004). Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene, 23, 9392–9400.

    Article  PubMed  CAS  Google Scholar 

  66. Collins, A. T., Berry, P. A., Hyde, C., et al. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65, 10946–10951.

    Article  PubMed  CAS  Google Scholar 

  67. Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25, 1696–1708.

    Article  PubMed  CAS  Google Scholar 

  68. Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R., et al. (2007). Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+ alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Research, 67, 6796–6805.

    Article  PubMed  CAS  Google Scholar 

  69. Miki, J., Furusato, B., Li, H., et al. (2007). Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Research, 67, 3153–3161.

    Article  PubMed  CAS  Google Scholar 

  70. Fang, D., Nguyen, T. K., Leishear, K., et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research, 65, 9328–9337.

    Article  PubMed  CAS  Google Scholar 

  71. Schatton, T., Murphy, G. F., Frank, N. Y., et al. (2008). Identification of cells initiating human melanomas. Nature, 451, 345–352.

    Article  PubMed  CAS  Google Scholar 

  72. Suetsugu, A., Nagaki, M., Aoki, H., et al. (2006). Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochemical and Biophysical Research Communications, 351, 820–824.

    Article  PubMed  CAS  Google Scholar 

  73. Yin, S., Li, J., Hu, C., et al. (2007). CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. International Journal of Cancer, 120, 1436–1442.

    Article  CAS  Google Scholar 

  74. Ma, S., Chan, K. W., Hu, L., et al. (2007). Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology, 132, 2542–2556.

    Article  PubMed  CAS  Google Scholar 

  75. Ma, S., Chan, K. W., Lee, T. K., et al. (2008). Tang KW, Wo JY, Zheng BJ, Guan XY. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Molecular Cancer Research (in press).

  76. Yang, Z. F., Ngai, P., Ho, D. W., et al. (2008). Identification of local and circulating cancer stem cells in human liver cancer. Hepatology, 47, 1–10.

    Article  Google Scholar 

  77. Yang, Z. F., Ho, D. W., Ng, M. N., et al. (2008). Significance of CD90+ cancer stem cells. Cancer Cell, 13, 153–166.

    Article  PubMed  CAS  Google Scholar 

  78. O’Brien, C. A., Pollett, A., Gallinger, S., et al. (2007). A human colon cancer cell capable of initiating tumor growth in immunodeficient mice. Nature, 445, 106–110.

    Article  PubMed  CAS  Google Scholar 

  79. Dalerba, P., Dylla, S. J., Park, I. K., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 10158–10163.

    Article  PubMed  CAS  Google Scholar 

  80. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111–115.

    Article  PubMed  CAS  Google Scholar 

  81. Li, C. W., Heidt, D. G., Dalerba, P., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037.

    Article  PubMed  CAS  Google Scholar 

  82. Hermann, P. C., Huber, S. L., Herrler, T., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1, 313–323.

    Article  PubMed  CAS  Google Scholar 

  83. Prince, M. E., Sivanandan, R., Kaczorowski, A., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104, 973–978.

    Article  PubMed  CAS  Google Scholar 

  84. Goodell, M. A., Brose, K., Paradis, G., et al. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183, 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  85. Goodell, M. A., Rosenzweig, M., Kim, H., et al. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nature Medicine, 3, 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  86. Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Review Cancer, 2, 48–58.

    Article  PubMed  CAS  Google Scholar 

  87. Wu, C., & Alman, B. A. (2008). Side population cells in human cancers. Cancer Letter (in press).

  88. Doyle, L. A., Yang, W., Abruzzo, L. V., et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 15665–15670.

    Article  PubMed  CAS  Google Scholar 

  89. Wulf, G. G., Wang, R. Y., Kuehnle, I., et al. (2001). A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood, 98, 1166–1173.

    Article  PubMed  CAS  Google Scholar 

  90. Hirschmann-Jax, C., Foster, A. E., Wuff, G. G., et al. (2004). A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 14228–14233.

    Article  PubMed  CAS  Google Scholar 

  91. Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2-cancer cells are similarly tumorigenic. Cancer Research, 65, 6207–6219.

    Article  PubMed  CAS  Google Scholar 

  92. Haraguchi, N., Utsunomiya, T., Inoue, H., et al. (2006). Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells, 24, 506–513.

    Article  PubMed  CAS  Google Scholar 

  93. Chiba, T., Kita, K., Zheng, Y. W., et al. (2006). Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology, 44, 240–251.

    Article  PubMed  CAS  Google Scholar 

  94. Szotek, P. P., Pieretti-Vanmarcke, R., Masiakos, P. T., et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 103, 11154–1115.

    Article  PubMed  CAS  Google Scholar 

  95. Wang, J., Guo, L. P., Chen, L. Z., et al. (2006). Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Research, 67, 3716–3724.

    Article  CAS  Google Scholar 

  96. Mitsutake, N., Iwao, A., Nagai, K., et al. (2007). Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched but not exclusively. Endocrinology, 148, 1797–1803.

    Article  PubMed  CAS  Google Scholar 

  97. Ho, M. M., Ng, A. V., Lam, S., et al. (2007). Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Research, 67, 4827–4833.

    Article  PubMed  CAS  Google Scholar 

  98. Zhou, J., Wang, C. Y., Liu, T., et al. (2008). Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World Journal of Gastroenterology, 14, 925–930.

    Article  PubMed  CAS  Google Scholar 

  99. Clarke, M. F., Dick, J. E., Dirks, P. B., et al. (2006). Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Research, 66, 9339–9344.

    Article  PubMed  CAS  Google Scholar 

  100. Hill, R. P. (2006). Identifying cancer stem cells in solid tumors: case not proven. Cancer Research, 66, 1891–1895.

    Article  PubMed  CAS  Google Scholar 

  101. Forbes, S. J., & Alison, M. R. (2006). Side population (SP) cells: taking center stages in regeneration and liver cancer. Hepatology, 44, 23–25.

    Article  PubMed  Google Scholar 

  102. Zheng, X., Shen, G., Yang, X., et al. (2007). Most C6 cells are cancer stem cells: evidence from clonal and population analysis. Cancer Research, 67, 3691–3697.

    Article  PubMed  CAS  Google Scholar 

  103. Song, W., Li, H., Tao, K., et al. (2008). Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. International Journal of Clinical Practice (in press).

  104. Ma, S., Lee, T. K., Zheng, B. J., et al. (2008). CD133+HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene, 27, 1749–1758.

    Article  PubMed  CAS  Google Scholar 

  105. Magni, M., Shammah, S., Schiro, R., Mellado, W., Dalla-Favera, R., Gianni, A. M. (1996). Induction of cyclophosphamide-resistance by aldehyde dehydrogenase gene transfer. Blood, 87, 1097–1103.

    PubMed  CAS  Google Scholar 

  106. Pearce, D. J., Taussig, D., Simpson, C., Allen, K., Rohatiner, A. Z., Lister, T. A., Bonnet, D. (2005). Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells, 23, 752–760.

    Article  PubMed  CAS  Google Scholar 

  107. Yamashita, T., Budhu, A., Forgues, M., et al. (2007). Activation of hepatic stem cell marker EpCAM by Wnt-β-catenin signaling in hepatocellular carcinoma. Cancer Research, 67, 10831–10839.

    Article  PubMed  CAS  Google Scholar 

  108. Yamashita, T., Forgues, M., Wang, W., et al. (2008). EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Research, 68, 1451–1461.

    Article  PubMed  CAS  Google Scholar 

  109. Chiba, T., Zheng, Y. W., Kita, K., et al. (2007). Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology, 133, 937–950.

    Article  PubMed  CAS  Google Scholar 

  110. Tang, Y., Kitisin, K., Jogunoori, W., et al. (2008). Progenitor/stem cells give rise to liver cancer due to aberrant TFG-β and IL-6 signaling. PNAS, 105, 2445–2450.

    Article  PubMed  CAS  Google Scholar 

  111. Hatfield, S. D., Shcherbata, H. R., Fischer, K. A., et al. (2005). Stem cell division is regulated by the microRNA pathway. Nature, 435, 974–978.

    Article  PubMed  CAS  Google Scholar 

Download references

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Yuan Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, S., Chan, K.W. & Guan, XY. In Search of Liver Cancer Stem Cells. Stem Cell Rev 4, 179–192 (2008). https://doi.org/10.1007/s12015-008-9035-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9035-z

Keywords