Skip to main content

Advertisement

Selenoproteins in Nervous System Development and Function

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenoproteins are a distinct class of proteins that are characterized by the co-translational incorporation of selenium (Se) in the form of the 21st amino acid selenocysteine. Selenoproteins provide a key defense against oxidative stress, as many of these proteins participate in oxidation-reduction reactions neutralizing reactive oxygen species, where selenocysteine residues act as catalytic sites. Many selenoproteins are highly expressed in the brain, and mouse knockout studies have determined that several are required for normal brain development. In parallel with these laboratory studies, recent reports of rare human cases with mutations in genes involved in selenoprotein biosynthesis have described individuals with an assortment of neurological problems that mirror those detailed in knockout mice. These deficits include impairments in cognition and motor function, seizures, hearing loss, and altered thyroid metabolism. Additionally, due to the fact that oxidative stress is a key feature of neurodegenerative disease, there is considerable interest in the therapeutic potential of selenium supplementation for human neurological disorders. Studies performed in cell culture and rodent models have demonstrated that selenium administration attenuates oxidative stress, prevents neurodegeneration, and counters cell signaling mechanisms known to be dysregulated in certain disease states. However, there is currently no definitive evidence in support of selenium supplementation to prevent and/or treat common neurological conditions in the general population. It appears likely that, in humans, supplementation with selenium may only benefit certain subpopulations, such as those that are either selenium-deficient or possess genetic variants that affect selenium metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

Aβ:

Amyloid beta

AD:

Alzheimer’s disease

Cys:

Cysteine

DIO:

Iodothyronine deiodinase

EFSec:

Selenocysteine-specific elongation factor

ER:

Endoplasmic reticulum

GPx:

Glutathione peroxidase

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PD:

Parkinson’s disease

PV:

Parvalbumin

SBP2:

Selenocysteine insertion sequence-binding protein 2

Scly:

Selenocysteine lyase

Se:

Selenium

Sec:

Selenocysteine

SECIS:

Selenocysteine insertion sequence

SELENBP1:

Selenium-binding protein 1

SN:

Substantia nigra

SPS2:

Selenophosphate synthetase 2

T3 :

3,3′,5-Triiodothyronine

T4 :

Thyroxine

TSH:

Thyroid stimulating hormone

Txn:

Thioredoxin

Txnrd:

Thioredoxin reductase

References

  1. Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100:254–268

    CAS  PubMed  Google Scholar 

  2. Pinsent J (1954) The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem J 57:10–16

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79:3292–3293

    CAS  Google Scholar 

  4. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    CAS  PubMed  Google Scholar 

  5. Cone JE, Del Rio RM, Davis JN, Stadtman TC (1976) Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc Natl Acad Sci U S A 73:2659–2663

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Forstrom JW, Zakowski JJ, Tappel AL (1978) Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 17:2639–2644

    CAS  PubMed  Google Scholar 

  7. Arnér ES (2010) Selenoproteins—what unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res 316:1296–1303

    PubMed  Google Scholar 

  8. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O et al (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    CAS  PubMed  Google Scholar 

  9. Gladyshev VN, Jeang KT, Stadtman TC (1996) Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci U S A 93:6146–6151

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Jakopoglu G, Przemeck GK, Schneider M, Moreno SG, Mayr N et al (2005) Cytoplasmic thioredoxin reductases is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 25:1980–1988

    Google Scholar 

  11. Conrad M, Jakupoglu C, Moreno SG, Lippl S, Banjac A et al (2004) Essential role for mitochondrial thioredoxin reductases in hematopoiesis, heart development, and heart function. Mol Cell Biol 24:9414–9423

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Burk RF, Gregory PE (1982) Some characteristics of 75Se-P, a selenoprotein found in rat liver and plasma, and comparison of it with selenoglutathione peroxidases. Arch Biochem Biophys 213:73–80

    CAS  PubMed  Google Scholar 

  13. Motsenbacher MA, Tappel AL (1982) A selenocysteine-containing selenium-transport protein in rat plasma. Biochim Biophys Acta 719:147–153

    Google Scholar 

  14. Burk RF, Hill KE (2009) Selenoprotein P—expression, functions, and roles in mammals. Biochim Biophys Acta 1790:1441–1447

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Saito Y, Hayashi T, Tanaka A, Watanabe Y, Suzuki M et al (1999) Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein P. J Biol Chem 274:2866–2871

    CAS  PubMed  Google Scholar 

  16. Hill KE, Zhou J, Austin LM, Motley AK, Ham AJL et al (2007) The selenium-rich C-terminal domain of mouse selenoprotein P is necessary for the supply of selenium to brain and testis but not for the maintenance of whole body selenium. J Biol Chem 282:10972–10980

    CAS  PubMed  Google Scholar 

  17. Burk RF, Hill KE, Olson GE, Weeber EJ, Motley AK et al (2007) Deletion of apolipoprotein E receptor-2 in mice lowers brain selenium and causes severe neurological dysfunction and death when a low selenium diet is fed. J Neurosci 27:6207–6211

    CAS  PubMed  Google Scholar 

  18. Olson GE, Winfrey VP, Nagdas SK, Hill KE, Burk RF (2007) Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem 282:12290–12297

    CAS  PubMed  Google Scholar 

  19. Kurokawa S, Hill KE, McDonald WH, Burk RF (2012) Long isoform mouse selenoprotein P (Sepp1) supplies rat myoblast L8 cells with selenium via endocytosis mediated by heparin binding properties and apolipoprotein E receptor-2. J Biol Chem 287:28717–28726

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Burk RF, Hill KE, Winfrey VP, Kurokawa S, Mitchell SL et al (2013) Maternal-fetal transfer of selenium in the mouse. FASEB J 27:3249–3256

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Pietschmann N, Rijntjes E, Hoeg A, Stoedter M, Schweizer U et al (2014) Selenoprotein P is the essential selenium transporter for bones. Metallomics 6:1043–1049

    CAS  PubMed  Google Scholar 

  22. Olson GE, Winfrey VP, Hill KE, Burk RF (2008) Megalin mediates selenoprotein P uptake by kidney proximal tubule epithelial cells. J Biol Chem 283:6854–6860

    CAS  PubMed  Google Scholar 

  23. Chiu-Ugalde J, Theilig F, Behrends T, Drebes J, Sieland C et al (2010) Mutation of megalin leads to urinary loss of selenoprotein P and selenium deficiency in serum, liver, kidneys, and brain. Biochem J 431:103–111

    CAS  PubMed  Google Scholar 

  24. Shchedrina VA, Zhang Y, Labunskyy VM, Hatfield DL, Gladyshev VN (2010) Structure-function relations, physiological roles, and evolution of mammalian ER-resident selenoproteins. Antioxid Redox Signal 12:839–849

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847

    CAS  PubMed  Google Scholar 

  26. Verma S, Hoffmann FW, Kumar M, Huang Z, Roe K et al (2011) Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J Immunol 186:2127–2137

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Huang Z, Hoffmann FW, Norton RL, Hashimoto AC, Hoffmann PR (2011) Selenoprotein K is a novel target of m-calpain, and cleavage is regulated by Toll-like receptor-induced calpastatin in macrophages. J Biol Chem 286:34830–34838

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Jurynec MJ, Xia R, Mackrill JJ, Gunther D, Crawford T et al (2008) Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci U S A 105:12485–12490

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Ferguson AD, Labunskyy VM, Fomenko DE, Arac D, Chelliah Y et al (2006) NMR structures of the selenoproteins Sep15 and SelM reveal redox activity of a new thioredoxin-like family. J Biol Chem 281:3536–3543

    CAS  PubMed  Google Scholar 

  30. Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL, Gladyshev VN (2001) Association between the 15-kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J Biol Chem 276:15330–15336

    CAS  PubMed  Google Scholar 

  31. Reeves MA, Bellinger FP, Berry MJ (2010) The neuroprotective functions of selenoprotein M and its role in cystolic calcium regulation. Antioxid Redox Signal 12:809–819

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Grumolato L, Ghzili H, Montero-Hadjadje M, Gasman S, Lesage J et al (2008) Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J 22:1756–1768

    CAS  PubMed  Google Scholar 

  33. Panee J, Stoytcheva ZR, Liu W, Berry MJ (2007) Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. J Biol Chem 282:23759–23765

    CAS  PubMed  Google Scholar 

  34. Beilstein MA, Vendeland SC, Barofsky E, Jensen ON, Whanger PD (1996) Selenoprotein W of rat muscle binds glutathione and an unknown small molecular weight moiety. J Inorg Biochem 61:117–124

    CAS  PubMed  Google Scholar 

  35. Aachmann FL, Fomenko DE, Soragni A, Gladyshev VN, Dikiy A (2007) Solution structure of selenoprotein W and NMR analysis of its interaction with 14-3-3 proteins. J Biol Chem 282:37036–37044

    CAS  PubMed  Google Scholar 

  36. Horibata Y, Hirabayashi Y (2007) Identification and characterization of human ethanolaminephosphotransferase1. J Lipid Res 48:503–508

    CAS  PubMed  Google Scholar 

  37. Kim HY, Gladyshev VN (2007) Methionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals. Biochem J 407:321–329

    CAS  PubMed  Google Scholar 

  38. Cao G, Lee KP, van der Wijst J, de Graaf M, van der Kemp A et al (2010) Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress. J Biol Chem 285:26081–26087

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Xu XM, Carlson BA, Irons R, Mix H, Zhong N et al (2007) Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem J 404:115–120

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Zinoni F, Birkmann F, Stadtman TC, Bock A (1986) Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc Natl Acad Sci U S A 83:4650–4654

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Chambers I, Frampton J, Goldfarb P, Affara N, McBain W et al (1986) The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ‘termination codon’ TGA. EMBO J 5:1211–1227

    Google Scholar 

  42. Mullenbach GT, Tabrizi A, Irvine BD, Bell GI, Hallewell RA (1987) Sequence of a cDNA coding for human glutathione peroxidase confirms TGA encodes the active site selenocysteine. Nucleic Acids Res 15:5484

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Lee BJ, Worland PJ, Davis JN, Stadtman TC, Hatfield DL (1989) Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA. J Biol Chem 264:9724–9727

    CAS  PubMed  Google Scholar 

  44. Leinfelder W, Stadtman TC, Bock A (1989) Occurrence in vivo of selenocysteyl-tRNA (SERUCA) in Escherichia coli. Effect of sel mutations. J Biol Chem 264:9720–9723

    CAS  PubMed  Google Scholar 

  45. Xu XM, Carlson BA, Irons R, Mix H, Zhong N et al (2007) Biosynthesis of selenocysteine on its tRNA in eukaryotes. PLoS Biol 5:e4

    PubMed Central  PubMed  Google Scholar 

  46. Esaki N, Nakamura T, Tanaka H, Soda K (1982) Selenocysteine lyase, a novel enzyme that specifically acts on selenocysteine. Mammalian purification and distribution and properties of pig liver enzyme. J Biol Chem 257:4386–4391

    CAS  PubMed  Google Scholar 

  47. Berry MJ, Banu L, Chen YY, Mandel JD, Kieffer JD et al (1991) Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3’ untranslated region. Nature 353:273–276

    CAS  PubMed  Google Scholar 

  48. Small-Howard A, Morozova N, Stoytcheva Z, Forry EP, Mansell JB et al (2006) Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol Cell Biol 26:2337–2346

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM (2000) A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J 19:306–314

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW et al (2000) Decoding apparatus for eukaryotic selenocysteine incorporation. EMBO Rep 1:158–163

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Squires JE, Berry MJ (2008) Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors. IUBMB Life 60:232–235

    CAS  PubMed  Google Scholar 

  53. Donovan J, Copeland PR (2010) Threading the needle: getting selenocysteine into proteins. Antioxid Redox Signal 12:881–892

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Flohé L (2009) The labour pains of biochemical selenology: the history of selenoprotein biosynthesis. Biochim Biophys Acta 1790:1389–1403

    PubMed  Google Scholar 

  55. Oster O, Schmeidel G, Prellwitz W (1988) The organ distribution of selenium in German adults. Biol Trace Elem Res 14:23–45

    Google Scholar 

  56. Zachara BA, Pawluk H, Bloch-Boguslawska E, Sliwka KM, Korenkiewicz J et al (2001) Tissue level, distribution, and total body selenium content in healthy and diseased humans in Poland. Arch Environ Health 56:461–466

    CAS  PubMed  Google Scholar 

  57. Behne D, Wolters W (1983) Distribution of selenium and glutathione peroxidase in the rat. J Nutr 113:456–461

    CAS  PubMed  Google Scholar 

  58. Kühbacher M, Bartel J, Hoppe B, Alber D, Bukalis G et al (2009) The brain selenoproteome: priorities in the hierarchy and different levels of selenium homeostasis in the brain of selenium-deficient rats. J Neurochem 110:133–142

    PubMed  Google Scholar 

  59. Burk RF, Brown DG, Seely RJ, Scaief C (1972) Influence of dietary and injected selenium on whole-body retention, route of excretion, and tissue retention of 75SeO32- in the rat. J Nutr 102:1049–1056

    CAS  PubMed  Google Scholar 

  60. Brown DG, Burk RF (1972) Selenium retention in tissues and sperm of rats fed a torula yeast diet. J Nutr 102:102–108

    Google Scholar 

  61. Buckman TD, Sutphin MS, Eckhert CD (1993) A comparison of the effects of dietary selenium on selenoprotein expression in rat brain and liver. Biochim Biophys Acta 1163:176–184

    CAS  PubMed  Google Scholar 

  62. Burk RF, Hill KE, Motley AK, Winfrey VP, Kurokawa S et al (2014) Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J

  63. Höck A, Demmel U, Schicha H, Kasperek K, Feinendegen LE (1975) Trace element concentration in the human brain. Brain 98:49–64

    PubMed  Google Scholar 

  64. Zhang Y, Zhou Y, Schweizer U, Savaskan NE, Hua D et al (2008) Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J Biol Chem 283:42427–42438

    Google Scholar 

  65. Pitts MW, Raman AV, Hashimoto AC, Todorovic C, Nichols RA et al (2012) Deletion of selenoprotein P results in impaired function of parvalbumin interneurons and alterations in fear learning and sensorimotor gating. Neuroscience 208:58–68

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Cabungcal JH, Nicolas D, Kraftsik R, Cuénod M, Do KQ et al (2006) Glutathione deficit during development induces anomalies in the rat anterior cingulate GABAergic neurons: relevance to schizophrenia. Neurobiol Dis 22:624–637

    CAS  PubMed  Google Scholar 

  67. Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G et al (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–1647

    CAS  PubMed  Google Scholar 

  68. Wirth EK, Conrad M, Winterer J, Wozny C, Carlson BA et al (2010) Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J 24:844–852

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Scharpf M, Schweizer U, Arzberger T, Roggendorf W, Schomburg L et al (2007) Neuronal and ependymal expression of selenoprotein P in the human brain. J Neural Transm 114:877–884

    CAS  PubMed  Google Scholar 

  70. Bellinger FP, He QP, Bellinger MT, Lin Y, Raman AV et al (2008) Association of selenoprotein P with Alzheimer’s pathology in human cortex. J Alzheimers Dis 15:465–472

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C (1982) Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta 710:197–211

    CAS  PubMed  Google Scholar 

  72. Savaskan NE, Borchert A, Bräuer A, Kuhn H (2007) Role for glutathione peroxidase-4 in brain development and neuronal apoptosis: specific induction of enzyme expression in reactive astrocytes following brain injury. Free Radic Biol Med 43:191–201

    CAS  PubMed  Google Scholar 

  73. Borchert A, Wang CC, Ufer C, Schiebel H, Savaskan NE et al (2006) The role of phospholipid hydroperoxide glutathione peroxidase isoforms in murine embryogenesis. J Biol Chem 281:19655–19664

    CAS  PubMed  Google Scholar 

  74. Whanger PD (2000) Selenoprotein W: a review. Cell Mol Life Sci 57:1846–1852

    CAS  PubMed  Google Scholar 

  75. Yeh JY, Beilstein MA, Andrews JS, Whanger PD (1995) Tissue distribution and influence of selenium status on levels of selenoprotein W. FASEB J 9:392–396

    CAS  PubMed  Google Scholar 

  76. Hoffmann PR, Hoge SC, Li PA, Hoffmann FW, Hashimoto AC et al (2007) The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply. Nucleic Acids Res 35:3963–3973

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Raman AV, Pitts MW, Hashimoto AC, Bellinger FP, Berry MJ (2013) Selenoprotein W expression and regulation in mouse brain and neurons. Brain Behav 3:562–574

    PubMed Central  PubMed  Google Scholar 

  78. Gu QP, Sun Y, Ream LW, Whanger PD (2000) Selenoprotein W accumulates primarily in primate skeletal muscle, heart, brain and tongue. Mol Cell Biochem 204:49–56

    CAS  PubMed  Google Scholar 

  79. Bösl MR, Takaku K, Oshima M, Nishimura S, Taketo MM (1997) Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc Natl Acad Sci U S A 94:5531–5534

    PubMed Central  PubMed  Google Scholar 

  80. Yant LJ, Ran Q, Rao L, Van Remmen H, Shibatani T et al (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502

    CAS  PubMed  Google Scholar 

  81. Ho YS, Magnenat JL, Bronson RT, Cao J, Gargano et al (1997) Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem 272:16644–16651

    CAS  PubMed  Google Scholar 

  82. De Haan JB, Bladier C, Griffiths P, Klener M, O’Shea RD et al (1998) Mice with a homozygous null mutation for the most abundant glutathione peroxidase, gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 273:22528–22536

    PubMed  Google Scholar 

  83. Klivenyi P, Andreassen OA, Ferrante RJ, Dedeoglu A, Mueller G et al (2000) Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropinoic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. J Neurosci 20:1–7

    CAS  PubMed  Google Scholar 

  84. Crack PJ, Taylor JM, Flentjar NJ, de Haan J, Hertzog P et al (2001) Increased infarct size and exacerbated apoptosis in the glutathione peroxidase-1 (gpx-1) knockout mouse brain in response to ischemia/reperfusion injury. J Neurochem 78:1389–1399

    CAS  PubMed  Google Scholar 

  85. Flentjar NJ, Crack PJ, Boyd R, Malin M, de Haan JB et al (2002) Mice lacking glutathione peroxidase-1 activity show increased TUNEL staining and an accelerated inflammatory response in brain following a cold-induced injury. Exp Neurol 177:9–20

    CAS  PubMed  Google Scholar 

  86. Hill KE, Zhou J, McMahan WJ, Motley AK, Atkins JF et al (2003) Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 278:13640–13646

    CAS  PubMed  Google Scholar 

  87. Schomburg L, Schweizer U, Holtmann B, Flohe L, Sendtner M et al (2003) Gene disruption discloses the role of selenoprotein P in selenium delivery to target tissues. Biochem J 370:397–402

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Hill KE, Zhou J, McMahan WJ, Motley AK, Burk RF (2004) Neurological dysfunction occurs in mice with targeted deletion of the selenoprotein P gene. J Nutr 134:157–161

    CAS  PubMed  Google Scholar 

  89. Peters MM, Hill KE, Burk RF, Weeber EJ (2006) Altered hippocampus synaptic function in slenoprotein P deficient mice. Mol Neurodegener 1:12

    PubMed Central  PubMed  Google Scholar 

  90. Valentine WM, Abel YW, Hill KE, Austin L, Burk RF (2007) Neurodegeneration in mice resulting from loss of functional selenoprotein P or its receptor apolipoprotein E receptor 2. J Neuropathol Exp Neurol 67:68–77

    Google Scholar 

  91. Schneider MJ, Fiering SN, Thai B, Wu SY, St Germain E et al (2006) Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147:580–589

    CAS  PubMed  Google Scholar 

  92. Schneider MJ, Fiering SN, Pallud SE, Parlow AF, St Germain DL et al (2001) Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol 15(12):2137–2148

    CAS  PubMed  Google Scholar 

  93. De Jesus LA, Carvalho SD, Riberio MO, Schneider M, Kim SW et al (2001) The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest 108:1379–1385

    PubMed Central  PubMed  Google Scholar 

  94. Ng L, Goodyear RJ, Woods CA, Schneider MJ, Diamond E et al (2004) Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc Natl Acad Sci U S A 101:3474–3479

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Galton VA, Schneider MJ, Clark AS, St Germain DL (2009) Life without T4 to T3 conversion: studies in mice devoid of the 5’ deiodinases. Endocrinology 150:2957–2963

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D (2006) Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116:476–484

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Ng L, Hernandez A, He W, Ren T, Srinivas M et al (2009) A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and function. Endocrinology 150:1952–1960

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Ng L, Lyubarsky A, Nikonov SS, Ma M, Srinivas M et al (2010) Type 3 deiodinase, a thyroid-hormone-inactivating enzyme, controls survival and maturation of cone photoreceptors. J Neurosci 30:3347–3357

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Peeters RP, Hernandez A, Ng L, Ma M, Sharlin DS et al (2013) Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor α1. Endocrinology 154:550–561

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Kasaikina MV, Fomenko DE, Labunskyy VM, Lachke SA, Qiu W et al (2011) Roles of the 15-kDa selenoprotein (sep15) in redox homeostasis and cataract development revealed by the analysis of sep15 knockout mice. J Biol Chem 286:33203–33212

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Pitts MW, Reeves MA, Hashimoto AC, Ogawa A, Kremer P et al (2013) Deletion of selenoprotein M leads to obesity without cognitive deficits. J Biol Chem 288:26121–26134

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Esworthy RS, Mann JR, Sam M, Chu FF (2000) Low glutathione peroxidase activity in Gpx1 knockout mice protects jejunum crypts from gamma-irradation. Am J Physiol Gastrointest Liver Physiol 279:G426–G436

    CAS  PubMed  Google Scholar 

  103. Jin RC, Mahoney CE, Coleman Anderson L, Ottaviano F, Croce K et al (2011) Glutathione peroxidase-3 deficiency promotes platelet-dependent thrombosis in vivo. Circulation 123:1963–1973

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Rederstorff M, Castets P, Arbogast S, Lainé J, Vassilopoulos S et al (2011) Increased muscle stress-sensitivity induced by selenoprotein N inactivation in mouse: a mammalian model for SEPN1-related myopathy. PLoS One 6:e23094

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Fomenko DE, Novoselov SV, Natarajan SK, Lee BC, Koc A et al (2009) MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: roles of MsrB1 in redox regulation and identification of a novel selenoprotein form. J Biol Chem 284:5986–5993

    CAS  PubMed Central  PubMed  Google Scholar 

  106. D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M et al (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479

    PubMed  Google Scholar 

  107. Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumbry MC et al (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481–489

    CAS  PubMed  Google Scholar 

  108. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W et al (1999) Reeler/disabled-like disruption of neuronal migration in knock-out mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701

    CAS  PubMed  Google Scholar 

  109. Weeber EJ, Beffert U, Jones C, Christian JM, Forster E et al (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952

    CAS  PubMed  Google Scholar 

  110. Willnow TE, Hilpert J, Armstrong SA, Rohlmann A, Hammer RE et al (1996) Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci U S A 93:8460–8464

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Raman AV, Pitts MW, Seyedali A, Hashimoto AC, Seale LA et al (2012) Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes Brain Behav 11:601–613

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Seale LA, Hashimoto AC, Kurokawa S, Gilman CL, Seyedali A et al (2012) Disruption of the selenocysteine lyase-mediated selenium recycling pathway leads to metabolic syndrome in mice. Mol Cell Biol 32:4141–4154

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Byrns CN, Pitts MW, Gilman CA, Hashimoto AC, Berry MJ (2014) Mice lacking selenoprotein P and selenocysteine lyase exhibit severe neurological dysfunction, neurodegeneration, and audiogenic seizures. J Biol Chem 289:9662–9674

    CAS  PubMed  Google Scholar 

  114. Schweizer U, Streckfu F, Pelt P, Carlson BA, Hatfield DA et al (2005) Hepatically derived selenoprotein P is a key factor for kidney but not brain selenium supply. Biochem J 386:221–226

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Soerensen J, Jakupoglu C, Beck H, Forster H, Schmidt J et al (2010) The role of thioredoxin reductases in brain development. PLoS One 3:e1813

    Google Scholar 

  116. Dumitrescu AM, Liao XH, Abdullah MS, Lado-Abeal J, Majed FA et al (2005) Mutations in SECISBP2 result in abnormal thyroid metabolism. Nat Genet 37:1247–1252

    CAS  PubMed  Google Scholar 

  117. Azevedo MF, Barra GB, Naves LA, Ribeiro Velasco LF, Godoy Garcia Castro P et al (2010) Selenoprotein-related disease in a young girl caused by nonsense mutations in the SBP2 gene. J Clin Endocrinol Metab 95:4066–4071

    CAS  PubMed  Google Scholar 

  118. Moghadaszadeh B, Petit N, Jaillard C, Brockington M, Roy SQ et al (2001) Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet 29:17–18

    CAS  PubMed  Google Scholar 

  119. Schoenmakers E, Agostini M, Mitchell C, Schoenmakers N, Papp L et al (2010) Mutations in the selenocysteine-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest 120:4220–4235

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Ben Zeev B, Hoffman C, Lev D, Watemberg N, Malinger G et al (2003) Progressive cerebello-cerebral atrophy: a new syndrome with microcephaly, mental retardation, and spastic quadriplegia. J Med Genet 40:e96

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Agamy O, Ben Zeev B, Lev D, Marcus B, Fine D et al (2010) Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am J Hum Genet 87:538–544

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Schweizer U, Dehina N, Schomburg L (2011) Disorders of selenium metabolism and selenoprotein function. Curr Opin Pediatr 23:429–435

    CAS  PubMed  Google Scholar 

  123. Murpy MP, LeVine H III (2010) Alzheimer’s disease and the β-amyloid peptide. J Alzheimers Dis 19(1):311–323

    Google Scholar 

  124. Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8:425–427

    CAS  PubMed  Google Scholar 

  125. Tung YT, Hsu WM, Wang BJ, Wu SY, Yen CT et al (2008) Sodium selenite inhibits gamma-secretase activity through activation of ERK. Neurosci Lett 440:38–43

    CAS  PubMed  Google Scholar 

  126. Gwon AR, Park JS, Park JH, Baik SH, Jeong HY et al (2010) Selenium attenuates Aβ production and Aβ-induced neuronal death. Neurosci Lett 469:391–395

    CAS  PubMed  Google Scholar 

  127. Corcoran NM, Martin D, Hutter-Paier B, Windisch M, Nguyen T et al (2010) Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J Clin Neurosci 17:1025–1033

    CAS  PubMed  Google Scholar 

  128. Van Eersel J, Ke YD, Liu X, Delerue F, Kril JJ et al (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci U S A 107:13888–13893

    PubMed Central  PubMed  Google Scholar 

  129. Takemoto AS, Berry MJ, Bellinger FP (2010) Role of selenprotein P in Alzheimer’s disease. Ethn Dis 20(1 Suppl 1):S1-92-5

    PubMed Central  PubMed  Google Scholar 

  130. Crack PJ, Cimdins K, Ali U, Hertzog PJ, Iannello RC (2006) Lack of glutathione peroxidase-1 exacerbates Aβ-mediated neurotoxicity in cortical neurons. J Neural Transm 113:645–657

    CAS  PubMed  Google Scholar 

  131. Ran Q, Gu M, Van Remmen H, Strong R, Roberts JL et al (2006) Glutathione peroxidase 4 protects cortical neurons from oxidative injury and amyloid toxicity. J Neurosci Res 84:202–208

    CAS  PubMed  Google Scholar 

  132. Lovell MA, Xiong S, Lyubartseva G, Markesbery WR (2009) Organoselenium (Sel-Plex diet) decreases amyloid burden and RNA and DNA oxidative damage in APP/PS1 mice. Free Radic Biol Med 46:1527–1533

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Hwang DY, Cho JS, Shim SB, Jee SW, Lee SH et al (2005) Differential expressed genes in transgenic mice carried human mutant presenilin-2 (N141I): correlation of selenoprotein M with Alzheimer’s disease. Neurochem Res 30:1009–1019

    CAS  PubMed  Google Scholar 

  134. Yim SY, Chae KR, Shim SB, Hong JT, Park JY et al (2009) ERK activation induced by selenium treatment significantly downregulates β/γ secretase activity and tau phosphorylation in the trangenic rat overexpressing human selenoprotein M. Int J Mol Med 24:91–96

    CAS  PubMed  Google Scholar 

  135. Loef M, Schrauzer GN, Walach H (2011) Selenium and Alzheimer’s disease: a systematic review. 26: 81–104

  136. Ansari MA, Scheff SW (2010) Oxidative stress in the progression of Alzheimer’s disease in the frontal cortex. J Neuropathol Exp Neurol 69:155–167

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant activity in the brain in Alzheimer’s disease. Neurology 45:1594–1601

    CAS  PubMed  Google Scholar 

  138. Schuessel K, Leutner S, Cairns NJ, Muller WE, Eckert A (2004) Impact of gender on upregulation of antioxidant defense mechanisms in Alzheimer’s disease brain. J Neural Transm 111:1167–1182

    CAS  PubMed  Google Scholar 

  139. Kish SJ, Morito CL, Hornykiewicz O (1986) Brain glutathione peroxidase in neurodegenerative disorders. Neurochem Pathol 4:23–28

    CAS  PubMed  Google Scholar 

  140. Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS et al (1998) Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol 150:40–44

    CAS  PubMed  Google Scholar 

  141. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P et al (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472

    PubMed  Google Scholar 

  142. Weber GF, Maertens P, Meng XZ, Pippenger CE (1991) Glutathione peroxidase deficiency and childhood seizures. Lancet 337:1443–1444

    CAS  PubMed  Google Scholar 

  143. Ramaekers VT, Calomme M, Vanden Berghe D, Makropoulos W (1994) Selenium deficiency triggering intractable seizures. Neuropediatrics 25:217–223

    CAS  PubMed  Google Scholar 

  144. Ashrafi MR, Shams S, Nouri M, Mohseni M, Shabanian R et al (2007) A probable causative factor for an old problem: selenium and glutathione peroxidase appear to play important roles in epilepsy pathogenesis. Epilepsia 48:1750–1755

    CAS  PubMed  Google Scholar 

  145. Amiri M, Farzin L, Moassesi ME, Sajadi F (2010) Serum trace element levels in febrile convulsion. Biol Trace Elem Res 135:38–44

    CAS  PubMed  Google Scholar 

  146. Seven M, Basaran SY, Cengiz M, Unal S, Yuksel A (2013) Deficiency of selenium and zinc as a causative factor for idiopathic intractable epilepsy. Epilepsy Res 104:35–39

    CAS  PubMed  Google Scholar 

  147. Yürekli VA, Nazıroğlu M (2013) Selenium and topiramate attenuates blood oxidative toxicity in patients with epilepsy: a clinical pilot study. Biol Trace Elem Res 152:180–186

    PubMed  Google Scholar 

  148. Savaskan NE, Bräuer AU, Kühbacher M, Eyüpoglu IY, Kyriakopoulos A et al (2003) Selenium deficiency increases susceptibility to glutamate-induced excitotoxicity. FASEB J 17:112–114

    CAS  PubMed  Google Scholar 

  149. Jones NC, Nguyen T, Corcoran NM, Velakoulis D, Chen T et al (2012) Targeting hyperphosphorylated tau with sodium selenate suppresses seizures in rodent models. Neurobiol Dis 45:897–901

    CAS  PubMed  Google Scholar 

  150. Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665

    CAS  PubMed  Google Scholar 

  151. Bellinger FP, Bellinger MT, Seale LA, Takemoto AS, Raman AV et al (2011) Glutathione peroxidase 4 is associated with neuromelanin in substantia nigra and dystrophic axons in putamen of Parkinson’s brain. Mol Neurodegener 6:8

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Bellinger FP, Raman AV, Rueli RH, Bellinger MT, Dewing AS et al (2012) Changes in selenoprotein P in substantia nigra and putamen in Parkinson's disease. J Park Dis 2:115–126

    CAS  Google Scholar 

  153. Power JH, Blumbergs PC (2009) Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson’s disease and dementia with Lewy bodies. Acta Neuropathol 117:63–73

    CAS  PubMed  Google Scholar 

  154. Bensadoun JC, Mirochnitchenko O, Inouye M, Aebischer P, Zurn AD (1998) Attenuation of 6-OHDA-induced neurotoxicity in glutathione peroxidase transgenic mice. Eur J Neurosci 10:3231–3236

    CAS  PubMed  Google Scholar 

  155. Kim HC, Jhoo WK, Choi DY, Im DH, Shin EJ et al (1999) Protection of methamphetamine nigrostriatal toxicity by dietary selenium. Brain Res 851:76–86

    CAS  PubMed  Google Scholar 

  156. Imam SZ, Newport GD, Islam F, Slikker W Jr, Ali SF (1999) Selenium, an antioxidant, protects against methamphetamine-induced dopaminergic neurotoxicity. Brain Res 818:575–578

    CAS  PubMed  Google Scholar 

  157. Khan HA (2010) Selenium partially reverses the depletion of striatal dopamine and its metabolites in MPTP-treated C57BL mice. Neurochem Int 57:489–491

    CAS  PubMed  Google Scholar 

  158. Zafar KS, Siddiqui A, Sayeed I, Ahmad M, Salim S et al (2003) Dose-dependent protective effect of selenium in rat model of Parkinson's disease: neurobehavioral and neurochemical evidences. J Neurochem 84:438–446

    CAS  PubMed  Google Scholar 

  159. Lewis DA, Curley AA, Glausier JR, Volk DW (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35:57–67

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M et al (2013) Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci U S A 110:9130–9135

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Hakak Y, Walker JR, Li C, Wong WH, Davis KL et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 98:4746–4751

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R et al (2005) Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci U S A 102:15533–15538

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Fang W, Goldberg ML, Pohl NM, Bi X, Tong C et al (2010) Functional and physical interaction between the selenium-binding protein 1 (SBP1) and glutathione peroxidase 1 selenoprotein. Carcinogenesis 31:1360–1366

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Pitts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitts, M.W., Byrns, C.N., Ogawa-Wong, A.N. et al. Selenoproteins in Nervous System Development and Function. Biol Trace Elem Res 161, 231–245 (2014). https://doi.org/10.1007/s12011-014-0060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0060-2

Keywords