Abstract
Our understanding of the molecular signaling pathways regulating the initiation and progression of atherosclerosis or remodeling in response to injury has begun to cross the boundaries from regulation of well-described canonical pathways to the interplay between these pathways. The focus of this review is to summarize our current understanding of a finite group of transcription factors and kinases involved in vascular injury and atherosclerosis, including nuclear factor-κB (NF-κB), early growth response factor-I (Egr-I), activator protein-I (AP-I), hypoxia inducible factor-Iα (HIF-Iα), homeobox, and T cell factor/lymphoid enhancer factor (Tcf-Lef), as well as the kinases janus kinase/signal transducers and activators of transcription (JAK/STAT), protein kinase C (PKC), p38, Rho, ERK5, JNK, p44/p42, and phosphoinositide 3 (PI3) kinase/AKT.
Similar content being viewed by others
References and Recommended Reading
Ganesh SK, Skelding KA, Mehta L, et al.: Rationale and study design of the CardioGene Study: genomics of instent restenosis. Pharmacogenomics 2004, 5:952–1004.
de Winther MP, Kanters E, Kraal G, Hofker MH: Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005, 25:904–914.
Bolick DT, Orr AW, Whetzel A, et al.: 12/15-lipoxygenase regulates intercellular adhesion molecule-1 expression and monocyte adhesion to endothelium through activation of RhoA and nuclear factor-kappaB. Arterioscler Thromb Vasc Biol 2005, 25:2301–2307.
Lotzer K, Funk CD, Habenicht AJ: The 5-lipoxygenase pathway in arterial wall biology and atherosclerosis. Biochim Biophys Acta 2005, 1736:30–37.
Natarajan R, Reddy MA, Malik KU, et al.: Signaling mechanisms of nuclear factor-kappab-mediated activation of inflammatory genes by 13-hydroperoxyoctadecadienoic acid in cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2001, 21:1408–1413.
Brand K, Page S, Rogler G, et al.: Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest 1996, 97:1715–1722.
Wilson SH, Best PJ, Edwards WD, et al.: Nuclear factor-kappaB immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis 2002, 160:147–153.
Landry DB, Couper LL, Bryant SR, Lindner V: Activation of the NF-kappa B and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Am J Pathol 1997, 151:1085–1095.
Lindner V: The NF-kappaB and IkappaB system in injured arteries. Pathobiology 1998, 66:311–320.
Rodriguez-Porcel M, Lerman LO, Holmes DR Jr, et al.: Chronic antioxidant supplementation attenuates nuclear factor-kappa B activation and preserves endothelial function in hypercholesterolemic pigs. Cardiovasc Res 2002, 53:1010–1018.
Lin R, Liu J, Peng N, et al.: Lovastatin reduces nuclear factor kappaB activation induced by C-reactive protein in human vascular endothelial cells. Biol Pharm Bull 2005, 28:1630–1634.
Guan Z, Basi D, Li Q, et al.: Loss of redox factor 1 decreases NF-kappaB activity and increases susceptibility of endothelial cells to apoptosis. Arterioscler Thromb Vasc Biol 2005, 25:96–101.
Hall JL, Wang X, Van A, et al.: Overexpression of Ref-1 inhibits hypoxia and tumor necrosis factor-induced endothelial cell apoptosis through nuclear factor-kappaB-independent and -dependent pathways. Circ Res 2001, 88:1247–1253.
Kanters E, Pasparakis M, Gijbels MJ, et al.: Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003, 112:1176–1185.
Kanters E, Gijbels MJ, van der Made I, et al.: Hematopoietic NF-kappaB1 deficiency results in small atherosclerotic lesions with an inflammatory phenotype. Blood 2004, 103:934–940.
Jawien J, Gajda M, Mateuszuk L, et al.: Inhibition of nuclear factor-kappaB attenuates artherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol 2005, 56:483–489.
Lee SH, Schloss DJ, Jarvis L, et al.: Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 2001, 276:4128–4133.
Zhu XY, Rodriguez-Porcel M, Bentley MD, et al.: Antioxidant intervention attenuates myocardial neovascularization in hypercholesterolemia. Circulation 2004, 109:2109–2115.
Wilson SH, Herrmann J, Lerman LO, et al.: Simvastatin preserves the structure of coronary adventitial vasa vasorum in experimental hypercholesterolemia independent of lipid lowering. Circulation 2002, 105:415–418.
Fuchs S, Kornowski R, Leon MB, Epstein SE: Anti-angiogenesis: a new potential strategy to inhibit restenosis. Int J Cardiovasc Intervent 2001, 4:3–6.
Duckers HJ, Boehm M, True AL, et al.: Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med 2001, 7:693–698.
Blaschke F, Bruemmer D, Law RE: Egr-1 is a major vascular pathogenic transcription factor in atherosclerosis and restenosis. Rev Endocr Metab Disord 2004, 5:249–254.
Santiago FS, Lowe HC, Day FL, et al.: Early growth response factor-1 induction by injury is triggered by release and paracrine activation by fibroblast growth factor-2. Am J Pathol 1999, 154:937–944.
Silverman ES, Khachigian LM, Santiago FS, et al.: Vascular smooth muscle cells express the transcriptional corepressor NAB2 in response to injury. Am J Pathol 1999, 155:1311–1317.
Silverman ES, Collins T: Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol 1999, 154:665–670.
Du B, Fu C, Kent KC, et al.: Elevated Egr-1 in human atherosclerotic cells transcriptionally represses the transforming growth factor-beta type II receptor. J Biol Chem 2000, 275:39039–39047.
McCaffrey TA, Fu C, Du B, et al.: High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. J Clin Invest 2000, 105:653–662.
Fahmy RG, Khachigian LM: Antisense Egr-1 RNA driven by the CMV promoter is an inhibitor of vascular smooth muscle cell proliferation and regrowth after injury. J Cell Biochem 2002, 84:575–582.
Lowe HC, Fahmy RG, Kavurma MM, et al.: Catalytic oligodeoxynucleotides define a key regulatory role for early growth response factor-1 in the porcine model of coronary in-stent restenosis. Circ Res 2001, 89:670–677.
Santiago FS, Atkins DG, Khachigian LM: Vascular smooth muscle cell proliferation and regrowth after mechanical injury in vitro are Egr-1/NGFI-A-dependent. Am J Pathol 1999, 155:897–905.
Santiago FS, Lowe HC, Kavurma MM, et al.: New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat Med 1999, 5:1264–1269.
Li C, Xu Q: Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 2000, 12:435–445.
Yasumoto H, Kim S, Zhan Y, et al.: Dominant negative c-jun gene transfer inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia in rats. Gene Ther 2001, 8:1682–1689.
Ahn JD, Morishita R, Kaneda Y, et al.: Inhibitory effects of novel AP-1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo. Circ Res 2002, 90:1325–1332.
Gorski DH, Walsh K: Control of vascular cell differentiation by homeobox transcription factors. Trends Cardiovasc Med 2003, 13:213–220.
Bergwerff M, Gittenberger-de Groot AC, Wisse LJ, et al.: Loss of function of the Prx1 and Prx2 homeobox genes alters architecture of the great elastic arteries and ductus arteriosus. Virchows Arch 2000, 436:12–19.
Chisaka O: Functional analysis of mouse Hox genes by gene targeting. Tanpakushitsu Kakusan Koso 1991, 36:2409–2417.
Kirby ML, Hunt P, Wallis K, Thorogood P: Abnormal patterning of the aortic arch arteries does not evoke cardiac malformations. Dev Dyn 1997, 208:34–47.
Bostrom K, Tintut Y, Kao SC, et al.: HOXB7 overexpression promotes differentiation of C3H10T1/2 cells to smooth muscle cells. J Cell Biochem 2000, 78:210–221.
Perlman H, Luo Z, Krasinski K, et al.: Adenovirus-mediated delivery of the Gax transcription factor to rat carotid arteries inhibits smooth muscle proliferation and induces apoptosis. Gene Ther 1999, 6:758–763.
Smith RC, Branellec D, Gorski DH, et al.: p21CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. Genes Dev 1997, 11:1674–1689.
Fuchs SY, Ougolkov AV, Spiegelman VS, Minamoto T: Oncogenic beta-catenin signaling networks in colorectal cancer. Cell Cycle 2005, 4:1522–1539.
Grant SF, Thorleifsson G, Reynisdottir I, et al.: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006, In press.
Wang X, Adhikari N, Li Q, et al.: The role of [beta]-transducin repeat-containing protein ([beta]-TrCP) in the regulation of NF-[kappa]B in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2004, 24:85–90.
Wang X, Adhikari N, Li Q, Hall JL: LDL receptor-related protein LRP6 regulates proliferation and survival through the Wnt cascade in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2004, 287:H2376-H2383.
Wang X, Xiao Y, Mou Y, et al.: A role for the beta-catenin/T-cell factor signaling cascade in vascular remodeling. Circ Res 2002, 90:340–347.
Griendling KK, Ushio-Fukai M, Lassegue B, Alexander RW: Angiotensin II signaling in vascular smooth muscle. New concepts. Hypertension 1997, 29:366–373.
Marrero MB, Schieffer B, Li B, et al.: Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and platelet-derived growth factor-induced vascular smooth muscle cell proliferation. J Biol Chem 1997, 272:24684–24690.
Schieffer B, Luchtefeld M, Braun S, et al.: Role of NAD(P)H oxidase in angiotensin II-induced JAK/STAT signaling and cytokine induction. Circ Res 2000, 87:1195–1201.
Tang C, Vaughan AM, Oram JF: Janus kinase 2 modulates the apolipoprotein interactions with ABCA1 required for removing cellular cholesterol. J Biol Chem 2004, 279:7622–7628.
Grote K, Luchtefeld M, Schieffer B: JANUS under stress—role of JAK/STAT signaling pathway in vascular diseases. Vascul Pharmacol 2005, 43:357–363.
Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M: Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000, 20:2175–2183.
Griendling KK, Ushio-Fukai M: Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 2000, 91:21–27.
Griendling KK, Ushio-Fukai M: Redox control of vascular smooth muscle proliferation. J Lab Clin Med 1998, 132:9–15.
Schieffer B, Schieffer E, Hilfiker-Kleiner D, et al.: Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation 2000, 101:1372–1378.
Kakisis JD, Pradhan S, Cordova A, et al.: The role of STAT-3 in the mediation of smooth muscle cell response to cyclic strain. Int J Biochem Cell Biol 2005, 37:1396–1406.
Chida K, Hara T, Hirai T, et al.: Disruption of protein kinase Ceta results in impairment of wound healing and enhancement of tumor formation in mouse skin carcinogenesis. Cancer Res 2003, 63:2404–2408.
Mayr M, Chung YL, Mayr U, et al.: Loss of PKC-delta alters cardiac metabolism. Am J Physiol Heart Circ Physiol 2004, 287:H937-H945.
Andrassy M, Belov D, Harja E, et al.: Central role of PKCbeta in neointimal expansion triggered by acute arterial injury. Circ Res 2005, 96:476–483.
Leitges M, Mayr M, Braun U, et al.: Exacerbated vein graft arteriosclerosis in protein kinase Cdelta-null mice. J Clin Invest 2001, 108:1505–1512.
Ju H, Nerurkar S, Sauermelch CF, et al.: Sustained activation of p38 mitogen-activated protein kinase contributes to the vascular response to injury. J Pharmacol Exp Ther 2002, 301:15–20.
Ohashi N, Matsumori A, Furukawa Y, et al.: Role of p38 mitogen-activated protein kinase in neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol 2000, 20:2521–2526.
Mudgett JS, Ding J, Guh-Siesel L, et al.: Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A 2000, 97:10454–10459.
Beardmore VA, Hinton HJ, Eftychi C, et al.: Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol Cell Biol 2005, 25:10454–10464.
Seasholtz TM, Brown JH: RHO Signaling in vascular diseases. Mol Interv 2004, 4:348–357.
von Ballmoos MW, Dubler D, Mirlacher M, et al.: Increased apolipoprotein deposits in early atherosclerotic lesions distinguish symptomatic from asymptomatic patients. Arterioscler Thromb Vasc Biol 2005, In press.
Archacki SR, Angheloiu G, Tian XL, et al.: Identification of new genes differentially expressed in coronary artery disease by expression profiling. Physiol Genomics 2003, 15:65–74.
Negoro N, Hoshiga M, Seto M, et al.: The kinase inhibitor fasudil (HA-1077) reduces intimal hyperplasia through inhibiting migration and enhancing cell loss of vascular smooth muscle cells. Biochem Biophys Res Commun 1999, 262:211–215.
Sawada N, Itoh H, Ueyama K, et al.: Inhibition of rho-associated kinase results in suppression of neointimal formation of balloon-injured arteries. Circulation 2000, 101:2030–2033.
Shibata R, Kai H, Seki Y, et al.: Role of Rho-associated kinase in neointima formation after vascular injury. Circulation 2001, 103:284–289.
Matsumoto Y, Uwatoku T, Oi K, et al.: Long-term inhibition of Rho-kinase suppresses neointimal formation after stent implantation in porcine coronary arteries: involvement of multiple mechanisms. Arterioscler Thromb Vasc Biol 2004, 24:181–186.
Miyata K, Shimokawa H, Kandabashi T, et al.: Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Arterioscler Thromb Vasc Biol 2000, 20:2351–2358.
Eto Y, Shimokawa H, Hiroki J, et al.: Gene transfer of dominant negative Rho kinase suppresses neointimal formation after balloon injury in pigs. Am J Physiol Heart Circ Physiol 2000, 278:H1744-H1750.
Mallat Z, Gojova A, Sauzeau V, et al.: Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice. Circ Res 2003, 93:884–888.
Kataoka C, Egashira K, Inoue S, et al.: Important role of Rhokinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 2002, 39:245–250.
Herdeg C, Fitzke M, Oberhoff M, et al.: Effects of atorvastatin on in-stent stenosis in normo- and hypercholesterolemic rabbits. Int J Cardiol 2003, 91:59–69.
Ni W, Egashira K, Kataoka C, et al.: Antiinflammatory and antiarteriosclerotic actions of HMG-CoA reductase inhibitors in a rat model of chronic inhibition of nitric oxide synthesis. Circ Res 2001, 89:415–421.
Hayashi M, Lee JD: Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice. J Mol Med 2004, 82:800–808.
Abe J, Kusuhara M, Ulevitch RJ, et al.: Big mitogenactivated protein kinase 1 (BMK1) is a redox-sensitive kinase. J Biol Chem 1996, 271:16586–16590.
Regan CP, Li W, Boucher DM, et al.: Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci U S A 2002, 99:9248–9253.
Yang J, Boerm M, McCarty M, et al.: Mekk3 is essential for early embryonic cardiovascular development. Nat Genet 2000, 24:309–313.
Pi X, Garin G, Xie L, et al.: BMK1/ERK5 is a novel regulator of angiogenesis by destabilizing hypoxia inducible factor 1alpha. Circ Res 2005, 96:1145–1151.
Yan C, Luo H, Lee JD, et al.: Molecular cloning of mouse ERK5/BMK1 splice variants and characterization of ERK5 functional domains. J Biol Chem 2001, 276:10870–10878.
Hayashi M, Kim SW, Imanaka-Yoshida K, et al.: Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest 2004, 113:1138–1148.
Lin Q, Schwarz J, Bucana C, Olson EN: Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 1997, 276:1404–1407.
Sumara G, Belwal M, Ricci R: “Jnking” atherosclerosis. Cell Mol Life Sci 2005, 62:2487–2494.
Kuan CY, Yang DD, Samanta Roy DR, et al.: The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999, 22:667–676.
Sabapathy K, Jochum W, Hochedlinger K, et al.: Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 1999, 89:115–124.
Ricci R, Sumara G, Sumara I, et al.: Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science 2004, 306:1558–1561.
Pages G, Guerin S, Grall D, et al.: Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 1999, 286:1374–1377.
Kuida K, Boucher DM: Functions of MAP kinases: insights from gene-targeting studies. J Biochem (Tokyo) 2004, 135:653–656.
Senokuchi T, Matsumura T, Sakai M, et al.: Extracellular signal-regulated kinase and p38 mitogen-activated protein kinase mediate macrophage proliferation induced by oxidized low-density lipoprotein. Atherosclerosis 2004, 176:233–245.
Dumitru CD, Ceci JD, Tsatsanis C, et al.: TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 2000, 103:1071–1083.
Eliopoulos AG, Dumitru CD, Wang CC, et al.: Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. EMBO J 2002, 21:4831–4840.
Eliopoulos AG, Wang CC, Dumitru CD, Tsichlis PN: Tpl2 transduces CD40 and TNF signals that activate ERK and regulates IgE induction by CD40. EMBO J 2003, 22:3855–3864.
Chan TO, Rittenhouse SE, Tsichlis PN: AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 1999, 68:965–1014.
Brodbeck D, Cron P, Hemmings BA: A human protein kinase Bgamma with regulatory phosphorylation sites in the activation loop and in the C-terminal hydrophobic domain. J Biol Chem 1999, 274:9133–9136.
Brodbeck D, Hill MM, Hemmings BA: Two splice variants of protein kinase B gamma have different regulatory capacity depending on the presence or absence of the regulatory phosphorylation site serine 472 in the carboxyl-terminal hydrophobic domain. J Biol Chem 2001, 276:29550–29558.
Walter DH, Dimmeler S, Zeiher AM: Effects of statins on endothelium and endothelial progenitor cell recruitment. Semin Vasc Med 2004, 4:385–393.
Walter DH, Zeiher AM, Dimmeler S: Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coronary Artery Dis 2004, 15:235–242.
Chen WS, Xu PZ, Gottlob K, et al.: Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 2001, 15:2203–2208.
Cho H, Mu J, Kim JK, et al.: Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001, 292:1728–1731.
Daly C, Wong V, Burova E, et al.: Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev 2004, 18:1060–1071.
Park KW, Kim DH, You HJ, et al.: Activated forkhead transcription factor inhibits neointimal hyperplasia after angioplasty through induction of p27. Arterioscler Thromb Vasc Biol 2005, 25:742–747.
Greer EL, Brunet A: FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005, 24:7410–7425.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Adhikari, N., Charles, N., Lehmann, U. et al. Transcription factor and kinase-mediated signaling in atherosclerosis and vascular injury. Curr Atheroscler Rep 8, 252–260 (2006). https://doi.org/10.1007/s11883-006-0081-1
Issue Date:
DOI: https://doi.org/10.1007/s11883-006-0081-1