Skip to main content

A test of enhancing model accuracy in high-throughput crystallography

  • Published:
Journal of Structural and Functional Genomics

Abstract

The high throughput of structure determination pipelines relies on increased automation and, consequently, a reduction of time spent on interactive quality control. In order to meet and exceed current standards in model accuracy, new approaches are needed for the facile identification and correction of model errors during refinement. One such approach is provided by the validation and structure-improvement tools of the MOLPROBITY web service. To test their effectiveness in high-throughput mode, a large subset of the crystal structures from the SouthEast Collaboratory for Structural Genomics (SECSG) has used protocols based on the MOLPROBITY tools. Comparison of 29 working-set and 19 control-set SECSG structures shows that working-set outlier scores for updated Ramachandran-plot, sidechain rotamer, and all-atom steric criteria have been improved by factors of 5- to 10-fold (relative to the control set or to a Protein Data Bank sample), while quality of covalent geometry, Rwork, Rfree, electron density and difference density are maintained or improved. Some parts of this correction process are already fully automated; other parts involve manual rebuilding of conformations flagged by the tests as trapped in the wrong local minimum, often altering features of functional significance. The ease and effectiveness of this technique shows that macromolecular crystal structures from either traditional or high-throughput determinations can feasibly reach a new level of excellence in conformational accuracy and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Mowbray C. Helgstrand J.A. Sigrell A.D. Cameron T.A. Jones (1999) Acta Cryst. D 55 1309–1319 Occurrence Handle10.1107/S0907444999005211

    Article  Google Scholar 

  2. G.J. Kleywegt (1999) Acta Cryst. D 55 1878–1884 Occurrence Handle10.1107/S0907444999010495 Occurrence Handle1:STN:280:DC%2BD3c%2FgtlWnsg%3D%3D

    Article  CAS  Google Scholar 

  3. R.A. Laskowski M.W. MacArthur D.S. Moss J.M. Thornton (1993) J. Appl. Crystallogr. 26 283–291 Occurrence Handle10.1107/S0021889892009944 Occurrence Handle1:CAS:528:DyaK3sXit12lurY%3D

    Article  CAS  Google Scholar 

  4. G. Vriend (1990) J. Mol. Graph. 8 52–56 Occurrence Handle10.1016/0263-7855(90)80070-V Occurrence Handle1:CAS:528:DyaK3cXitFGksL8%3D Occurrence Handle2268628

    Article  CAS  PubMed  Google Scholar 

  5. T.A. Jones J.-Y. Zou S.W. Cowan M. Kjeldgaard (1991) Acta Cryst. A 47 110–119 Occurrence Handle10.1107/S0108767390010224

    Article  Google Scholar 

  6. S.C. Lovell I.W. Davis W.B. Arendall SuffixIII P.I.W. Bakker Particlede J.M. Word M.G. Prisant J.S. Richardson D.C. Richardson (2003) Proteins 50 437–450 Occurrence Handle10.1002/prot.10286 Occurrence Handle1:CAS:528:DC%2BD3sXpvVKlsA%3D%3D Occurrence Handle12557186

    Article  CAS  PubMed  Google Scholar 

  7. I.W. Davis L.W. Murray J.S. Richardson D.C. Richardson (2004) Nucleic Acids Res. 32 IssueIDWeb Server Issue W615–W619 Occurrence Handle1:CAS:528:DC%2BD2cXlvFKmsLY%3D Occurrence Handle15215462

    CAS  PubMed  Google Scholar 

  8. A.A. Vaguine J. Richelle S.J. Wodak (1999) Acta Cryst. D 55 191–205 Occurrence Handle10.1107/S0907444998006684

    Article  Google Scholar 

  9. G.J. Kleywegt M.R. Harris J.Y. Zou T.C. Taylor A. Wahlby T.A. Jones (2004) Acta Cryst. D 60 2240–2249 Occurrence Handle10.1107/S0907444904013253

    Article  Google Scholar 

  10. F. Akker Particlevan den W.G.J. Hol (1999) Acta Cryst. D 55 206–218 Occurrence Handle10.1107/S0907444998007161

    Article  Google Scholar 

  11. A.T. Brunger (1992) Nature 355 472–475 Occurrence Handle10.1038/355472a0

    Article  Google Scholar 

  12. H.M. Berman J. Westbrook Z. Feng G. Gilliland T.N. Bhat H. Weissig I.N. Shindyalov P.E. Bourne (2000) Nucleic Acids Res. 28 235–242 Occurrence Handle10.1093/nar/28.1.235 Occurrence Handle1:CAS:528:DC%2BD3cXhvVKjt7w%3D Occurrence Handle10592235

    Article  CAS  PubMed  Google Scholar 

  13. J.C. Norvell A.Z. Machalek (2000) Nat. Struct. Biol. 7 931 Occurrence Handle10.1038/80694 Occurrence Handle1:CAS:528:DC%2BD3cXnvVOgt78%3D Occurrence Handle11103990

    Article  CAS  PubMed  Google Scholar 

  14. Z. Dauter (2002) Acta Cryst D 58 1958–1967 Occurrence Handle10.1107/S0907444902016645

    Article  Google Scholar 

  15. Z.-Q. Fu J.P. Rose B.-C. Wang (2004) Acta Cryst. D 60 499–506 Occurrence Handle10.1107/S0907444904000617

    Article  Google Scholar 

  16. P.D. Adams R.W. Grosse-Kunstleve L.-W. Hung T.R. Ioerger A.J. McCoy N.W. Moriarty R.J. Read J.C. Sacchettini N.K. Sauter T.C. Terwilliger (2002) Acta Cryst. D 58 1948–1954 Occurrence Handle10.1107/S0907444902016657

    Article  Google Scholar 

  17. J. Badger J. Hendle (2002) Acta Cryst. D 58 284–291 Occurrence Handle10.1107/S0907444901020133

    Article  Google Scholar 

  18. S.A. Lesley P. Kuhn A. Godzik A.M. Deacon I. Mathews A. Kreusch G. Spraggon H.E. Klock D. McMullan T. Shin J. Vincent A. Robb L.S. Brinen M.D. Miller T.M. McPhillips M.A. Miller D. Scheibe J.M. Canaves C. Guda L. Jaroszewski T.L. Selby M.-A. Elsliger J. Wooley S.S. Taylor K.O. Hodgson I.A. Wilson P.G. Schultz R.C. Stevens (2002) Proc. Natl. Acad. Sci. USA 99 11664–11669 Occurrence Handle10.1073/pnas.142413399 Occurrence Handle1:CAS:528:DC%2BD38XntFWqsbw%3D Occurrence Handle12193646

    Article  CAS  PubMed  Google Scholar 

  19. G.T. Montelione D. Zheng Y.J. Huang K.C. Gunsalus T. Szyperski (2000) Nat. Struct. Biol. 7 982–985 Occurrence Handle10.1038/80768 Occurrence Handle1:CAS:528:DC%2BD3cXnvVOgtLk%3D Occurrence Handle11104006

    Article  CAS  PubMed  Google Scholar 

  20. Huang, Y.J., Powers, R. and Montelione, G.T. (2005) J. Am. Chem. Soc., 127, 1665–1674

    Google Scholar 

  21. M.W.W. Adams H.A. Dailey L.J. Delucas M. Luo J.H. Prestegard J.P. Rose B.-C. Wang (2003) Acc. Chem. Res. 36 191–198 Occurrence Handle10.1021/ar0101382 Occurrence Handle1:CAS:528:DC%2BD3sXhtlGkt70%3D Occurrence Handle12641476

    Article  CAS  PubMed  Google Scholar 

  22. T.C. Terwilliger J. Berendzen (1999) Acta Cryst. D 55 849–861 Occurrence Handle10.1107/S0907444999000839

    Article  Google Scholar 

  23. T.R. Schneider G.M. Sheldrick (2002) Acta Cryst. D 58 1772–1779 Occurrence Handle10.1107/S0907444902011678

    Article  Google Scholar 

  24. B.-C. Wang (1985) Methods Enzymol. 115 90–112 Occurrence Handle1:CAS:528:DyaL28XhsVCru7c%3D Occurrence Handle4079800

    CAS  PubMed  Google Scholar 

  25. No. 4 Collaborative Computational Project (1994) Acta Cryst. D 50 760–763 Occurrence Handle10.1107/S0907444994003112

    Article  Google Scholar 

  26. T.C. Terwilliger (2002) Acta Cryst. D 58 1937–1940 Occurrence Handle10.1107/S0907444902016438

    Article  Google Scholar 

  27. A. Perrakis R. Morris V.S. Lamzin (1999) Nat. Struct. Biol. 6 458–463 Occurrence Handle10.1038/8263 Occurrence Handle1:CAS:528:DyaK1MXjtlajurs%3D Occurrence Handle10331874

    Article  CAS  PubMed  Google Scholar 

  28. G.N. Murshudov A.A. Vagin E.J. Dodson (1997) Acta Cryst. D 53 240–255 Occurrence Handle10.1107/S0907444996012255 Occurrence Handle1:STN:280:DC%2BD2czpsFegsw%3D%3D

    Article  CAS  Google Scholar 

  29. E. Potterton P. Briggs M. Turkenburg E.J. Dodson (2003) Acta Cryst. D 59 1131–1137 Occurrence Handle10.1107/S0907444903008126

    Article  Google Scholar 

  30. M.D. Winn (2003) J. Synchron. Rad. 10 23–25 Occurrence Handle10.1107/S0909049502017235 Occurrence Handle1:STN:280:DC%2BD3s%2FgsFymug%3D%3D

    Article  CAS  Google Scholar 

  31. A.T. Brunger P.D. Adams G.M. Clore W.L. DeLano P. Gros R.W. Grosse-Kunstleve J.-S. Jiang J. Kuszewski M. Nilges N.S. Pannu R.J. Read L.M. Rice T. Simonson G.L. Warren (1998) Acta Cryst. D 54 905–921 Occurrence Handle10.1107/S0907444998003254

    Article  Google Scholar 

  32. D.E. McRee (1999) J. Struct. Biol. 125 156–165 Occurrence Handle10.1006/jsbi.1999.4094 Occurrence Handle1:CAS:528:DyaK1MXis1Krt7k%3D Occurrence Handle10222271

    Article  CAS  PubMed  Google Scholar 

  33. J.S. Richardson W.B. Arendall SuffixIII D.C. Richardson (2003) NoChapterTitle C.W. Carter SuffixJr. R.M. Sweet (Eds) Methods in Enzymology: Macromolecular Crystallography, Pt. D NumberInSeriesVol. 374 Academic Press New York 385–412

    Google Scholar 

  34. S.C. Lovell J.M. Word J.S. Richardson D.C. Richardson (2000) Proteins 40 389–408 Occurrence Handle10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2 Occurrence Handle1:CAS:528:DC%2BD3cXlsFCrtLc%3D Occurrence Handle10861930

    Article  CAS  PubMed  Google Scholar 

  35. J.M. Word S.C. Lovell J.S. Richardson D.C. Richardson (1999) J. Mol. Biol. 285 1735–1747 Occurrence Handle10.1006/jmbi.1998.2401 Occurrence Handle1:CAS:528:DyaK1MXhtV2ht7g%3D Occurrence Handle9917408

    Article  CAS  PubMed  Google Scholar 

  36. J.M. Word S.C. Lovell T.H. LaBean H.C. Taylor M.E. Zalis B.K. Presley J.S. Richardson D.C. Richardson (1999) J. Mol. Biol. 285 1711–1733 Occurrence Handle10.1006/jmbi.1998.2400 Occurrence Handle1:CAS:528:DyaK1MXhtV2ht7s%3D Occurrence Handle9917407

    Article  CAS  PubMed  Google Scholar 

  37. J.S. Richardson (2003) NoChapterTitle P.E. Bourne H. Weissig (Eds) Structural Bioinformatics John Wiley & Sons, Inc. New York 305–320

    Google Scholar 

  38. J.M. Word R.C. Bateman SuffixJr. B.K. Presley S.C. Lovell D.C. Richardson (2000) Protein Sci. 9 2251–2259 Occurrence Handle1:CAS:528:DC%2BD3MXhsFOgtg%3D%3D Occurrence Handle11152136

    CAS  PubMed  Google Scholar 

  39. J.S. Sack (1988) J. Mol. Graph. 6 224–225 Occurrence Handle10.1016/S0263-7855(98)80040-4

    Article  Google Scholar 

  40. A. Murzin S.E. Brenner T. Hubband C. Chothia (1995) J. Mol. Biol. 247 536–540 Occurrence Handle10.1006/jmbi.1995.0159 Occurrence Handle1:CAS:528:DyaK2MXltVGgsr4%3D Occurrence Handle7723011

    Article  CAS  PubMed  Google Scholar 

  41. G. Butterfoss J.S. Richardson J. Hermans (2005) Acta Cryst. D 61 88–98 Occurrence Handle10.1107/S0907444904027325

    Article  Google Scholar 

  42. V.A. Higman J. Boyd L.J. Smith C. Redfield (2004) J. Biomol. NMR 30 327–346 Occurrence Handle10.1007/s10858-004-3218-y Occurrence Handle1:CAS:528:DC%2BD2cXhtFWqsbnL Occurrence Handle15754058

    Article  CAS  PubMed  Google Scholar 

  43. G.J. Kleywegt T.A. Jones (1996) Structure 4 1395–1400 Occurrence Handle10.1016/S0969-2126(96)00147-5 Occurrence Handle1:CAS:528:DyaK2sXmsFCq Occurrence Handle8994966

    Article  CAS  PubMed  Google Scholar 

  44. L.L. Videau W.B. Arendall SuffixIII J.S. Richardson (2004) Proteins 56 298–309 Occurrence Handle10.1002/prot.20101 Occurrence Handle1:CAS:528:DC%2BD2cXlsFGmsrY%3D Occurrence Handle15211513

    Article  CAS  PubMed  Google Scholar 

  45. J.S. Richardson D.C. Richardson (2003) NoChapterTitle J.T.L. Wang C.H. Wu P.P. Wang (Eds) Computational Biology and Genome Informatics World Scientific Publishing Company London 139–161

    Google Scholar 

  46. H. Hu M. Elstner J. Hermans (2003) Proteins 50 451–463 Occurrence Handle10.1002/prot.10279 Occurrence Handle1:CAS:528:DC%2BD3sXpvVKlsQ%3D%3D Occurrence Handle12557187

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Richardson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arendall, W.B., Tempel, W., Richardson, J.S. et al. A test of enhancing model accuracy in high-throughput crystallography. J Struct Funct Genomics 6, 1–11 (2005). https://doi.org/10.1007/s10969-005-3138-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-005-3138-4

Keywords: