Abstract
The high throughput of structure determination pipelines relies on increased automation and, consequently, a reduction of time spent on interactive quality control. In order to meet and exceed current standards in model accuracy, new approaches are needed for the facile identification and correction of model errors during refinement. One such approach is provided by the validation and structure-improvement tools of the MOLPROBITY web service. To test their effectiveness in high-throughput mode, a large subset of the crystal structures from the SouthEast Collaboratory for Structural Genomics (SECSG) has used protocols based on the MOLPROBITY tools. Comparison of 29 working-set and 19 control-set SECSG structures shows that working-set outlier scores for updated Ramachandran-plot, sidechain rotamer, and all-atom steric criteria have been improved by factors of 5- to 10-fold (relative to the control set or to a Protein Data Bank sample), while quality of covalent geometry, Rwork, Rfree, electron density and difference density are maintained or improved. Some parts of this correction process are already fully automated; other parts involve manual rebuilding of conformations flagged by the tests as trapped in the wrong local minimum, often altering features of functional significance. The ease and effectiveness of this technique shows that macromolecular crystal structures from either traditional or high-throughput determinations can feasibly reach a new level of excellence in conformational accuracy and reliability.
Similar content being viewed by others
References
S.L. Mowbray C. Helgstrand J.A. Sigrell A.D. Cameron T.A. Jones (1999) Acta Cryst. D 55 1309–1319 Occurrence Handle10.1107/S0907444999005211
G.J. Kleywegt (1999) Acta Cryst. D 55 1878–1884 Occurrence Handle10.1107/S0907444999010495 Occurrence Handle1:STN:280:DC%2BD3c%2FgtlWnsg%3D%3D
R.A. Laskowski M.W. MacArthur D.S. Moss J.M. Thornton (1993) J. Appl. Crystallogr. 26 283–291 Occurrence Handle10.1107/S0021889892009944 Occurrence Handle1:CAS:528:DyaK3sXit12lurY%3D
G. Vriend (1990) J. Mol. Graph. 8 52–56 Occurrence Handle10.1016/0263-7855(90)80070-V Occurrence Handle1:CAS:528:DyaK3cXitFGksL8%3D Occurrence Handle2268628
T.A. Jones J.-Y. Zou S.W. Cowan M. Kjeldgaard (1991) Acta Cryst. A 47 110–119 Occurrence Handle10.1107/S0108767390010224
S.C. Lovell I.W. Davis W.B. Arendall SuffixIII P.I.W. Bakker Particlede J.M. Word M.G. Prisant J.S. Richardson D.C. Richardson (2003) Proteins 50 437–450 Occurrence Handle10.1002/prot.10286 Occurrence Handle1:CAS:528:DC%2BD3sXpvVKlsA%3D%3D Occurrence Handle12557186
I.W. Davis L.W. Murray J.S. Richardson D.C. Richardson (2004) Nucleic Acids Res. 32 IssueIDWeb Server Issue W615–W619 Occurrence Handle1:CAS:528:DC%2BD2cXlvFKmsLY%3D Occurrence Handle15215462
A.A. Vaguine J. Richelle S.J. Wodak (1999) Acta Cryst. D 55 191–205 Occurrence Handle10.1107/S0907444998006684
G.J. Kleywegt M.R. Harris J.Y. Zou T.C. Taylor A. Wahlby T.A. Jones (2004) Acta Cryst. D 60 2240–2249 Occurrence Handle10.1107/S0907444904013253
F. Akker Particlevan den W.G.J. Hol (1999) Acta Cryst. D 55 206–218 Occurrence Handle10.1107/S0907444998007161
A.T. Brunger (1992) Nature 355 472–475 Occurrence Handle10.1038/355472a0
H.M. Berman J. Westbrook Z. Feng G. Gilliland T.N. Bhat H. Weissig I.N. Shindyalov P.E. Bourne (2000) Nucleic Acids Res. 28 235–242 Occurrence Handle10.1093/nar/28.1.235 Occurrence Handle1:CAS:528:DC%2BD3cXhvVKjt7w%3D Occurrence Handle10592235
J.C. Norvell A.Z. Machalek (2000) Nat. Struct. Biol. 7 931 Occurrence Handle10.1038/80694 Occurrence Handle1:CAS:528:DC%2BD3cXnvVOgt78%3D Occurrence Handle11103990
Z. Dauter (2002) Acta Cryst D 58 1958–1967 Occurrence Handle10.1107/S0907444902016645
Z.-Q. Fu J.P. Rose B.-C. Wang (2004) Acta Cryst. D 60 499–506 Occurrence Handle10.1107/S0907444904000617
P.D. Adams R.W. Grosse-Kunstleve L.-W. Hung T.R. Ioerger A.J. McCoy N.W. Moriarty R.J. Read J.C. Sacchettini N.K. Sauter T.C. Terwilliger (2002) Acta Cryst. D 58 1948–1954 Occurrence Handle10.1107/S0907444902016657
J. Badger J. Hendle (2002) Acta Cryst. D 58 284–291 Occurrence Handle10.1107/S0907444901020133
S.A. Lesley P. Kuhn A. Godzik A.M. Deacon I. Mathews A. Kreusch G. Spraggon H.E. Klock D. McMullan T. Shin J. Vincent A. Robb L.S. Brinen M.D. Miller T.M. McPhillips M.A. Miller D. Scheibe J.M. Canaves C. Guda L. Jaroszewski T.L. Selby M.-A. Elsliger J. Wooley S.S. Taylor K.O. Hodgson I.A. Wilson P.G. Schultz R.C. Stevens (2002) Proc. Natl. Acad. Sci. USA 99 11664–11669 Occurrence Handle10.1073/pnas.142413399 Occurrence Handle1:CAS:528:DC%2BD38XntFWqsbw%3D Occurrence Handle12193646
G.T. Montelione D. Zheng Y.J. Huang K.C. Gunsalus T. Szyperski (2000) Nat. Struct. Biol. 7 982–985 Occurrence Handle10.1038/80768 Occurrence Handle1:CAS:528:DC%2BD3cXnvVOgtLk%3D Occurrence Handle11104006
Huang, Y.J., Powers, R. and Montelione, G.T. (2005) J. Am. Chem. Soc., 127, 1665–1674
M.W.W. Adams H.A. Dailey L.J. Delucas M. Luo J.H. Prestegard J.P. Rose B.-C. Wang (2003) Acc. Chem. Res. 36 191–198 Occurrence Handle10.1021/ar0101382 Occurrence Handle1:CAS:528:DC%2BD3sXhtlGkt70%3D Occurrence Handle12641476
T.C. Terwilliger J. Berendzen (1999) Acta Cryst. D 55 849–861 Occurrence Handle10.1107/S0907444999000839
T.R. Schneider G.M. Sheldrick (2002) Acta Cryst. D 58 1772–1779 Occurrence Handle10.1107/S0907444902011678
B.-C. Wang (1985) Methods Enzymol. 115 90–112 Occurrence Handle1:CAS:528:DyaL28XhsVCru7c%3D Occurrence Handle4079800
No. 4 Collaborative Computational Project (1994) Acta Cryst. D 50 760–763 Occurrence Handle10.1107/S0907444994003112
T.C. Terwilliger (2002) Acta Cryst. D 58 1937–1940 Occurrence Handle10.1107/S0907444902016438
A. Perrakis R. Morris V.S. Lamzin (1999) Nat. Struct. Biol. 6 458–463 Occurrence Handle10.1038/8263 Occurrence Handle1:CAS:528:DyaK1MXjtlajurs%3D Occurrence Handle10331874
G.N. Murshudov A.A. Vagin E.J. Dodson (1997) Acta Cryst. D 53 240–255 Occurrence Handle10.1107/S0907444996012255 Occurrence Handle1:STN:280:DC%2BD2czpsFegsw%3D%3D
E. Potterton P. Briggs M. Turkenburg E.J. Dodson (2003) Acta Cryst. D 59 1131–1137 Occurrence Handle10.1107/S0907444903008126
M.D. Winn (2003) J. Synchron. Rad. 10 23–25 Occurrence Handle10.1107/S0909049502017235 Occurrence Handle1:STN:280:DC%2BD3s%2FgsFymug%3D%3D
A.T. Brunger P.D. Adams G.M. Clore W.L. DeLano P. Gros R.W. Grosse-Kunstleve J.-S. Jiang J. Kuszewski M. Nilges N.S. Pannu R.J. Read L.M. Rice T. Simonson G.L. Warren (1998) Acta Cryst. D 54 905–921 Occurrence Handle10.1107/S0907444998003254
D.E. McRee (1999) J. Struct. Biol. 125 156–165 Occurrence Handle10.1006/jsbi.1999.4094 Occurrence Handle1:CAS:528:DyaK1MXis1Krt7k%3D Occurrence Handle10222271
J.S. Richardson W.B. Arendall SuffixIII D.C. Richardson (2003) NoChapterTitle C.W. Carter SuffixJr. R.M. Sweet (Eds) Methods in Enzymology: Macromolecular Crystallography, Pt. D NumberInSeriesVol. 374 Academic Press New York 385–412
S.C. Lovell J.M. Word J.S. Richardson D.C. Richardson (2000) Proteins 40 389–408 Occurrence Handle10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2 Occurrence Handle1:CAS:528:DC%2BD3cXlsFCrtLc%3D Occurrence Handle10861930
J.M. Word S.C. Lovell J.S. Richardson D.C. Richardson (1999) J. Mol. Biol. 285 1735–1747 Occurrence Handle10.1006/jmbi.1998.2401 Occurrence Handle1:CAS:528:DyaK1MXhtV2ht7g%3D Occurrence Handle9917408
J.M. Word S.C. Lovell T.H. LaBean H.C. Taylor M.E. Zalis B.K. Presley J.S. Richardson D.C. Richardson (1999) J. Mol. Biol. 285 1711–1733 Occurrence Handle10.1006/jmbi.1998.2400 Occurrence Handle1:CAS:528:DyaK1MXhtV2ht7s%3D Occurrence Handle9917407
J.S. Richardson (2003) NoChapterTitle P.E. Bourne H. Weissig (Eds) Structural Bioinformatics John Wiley & Sons, Inc. New York 305–320
J.M. Word R.C. Bateman SuffixJr. B.K. Presley S.C. Lovell D.C. Richardson (2000) Protein Sci. 9 2251–2259 Occurrence Handle1:CAS:528:DC%2BD3MXhsFOgtg%3D%3D Occurrence Handle11152136
J.S. Sack (1988) J. Mol. Graph. 6 224–225 Occurrence Handle10.1016/S0263-7855(98)80040-4
A. Murzin S.E. Brenner T. Hubband C. Chothia (1995) J. Mol. Biol. 247 536–540 Occurrence Handle10.1006/jmbi.1995.0159 Occurrence Handle1:CAS:528:DyaK2MXltVGgsr4%3D Occurrence Handle7723011
G. Butterfoss J.S. Richardson J. Hermans (2005) Acta Cryst. D 61 88–98 Occurrence Handle10.1107/S0907444904027325
V.A. Higman J. Boyd L.J. Smith C. Redfield (2004) J. Biomol. NMR 30 327–346 Occurrence Handle10.1007/s10858-004-3218-y Occurrence Handle1:CAS:528:DC%2BD2cXhtFWqsbnL Occurrence Handle15754058
G.J. Kleywegt T.A. Jones (1996) Structure 4 1395–1400 Occurrence Handle10.1016/S0969-2126(96)00147-5 Occurrence Handle1:CAS:528:DyaK2sXmsFCq Occurrence Handle8994966
L.L. Videau W.B. Arendall SuffixIII J.S. Richardson (2004) Proteins 56 298–309 Occurrence Handle10.1002/prot.20101 Occurrence Handle1:CAS:528:DC%2BD2cXlsFGmsrY%3D Occurrence Handle15211513
J.S. Richardson D.C. Richardson (2003) NoChapterTitle J.T.L. Wang C.H. Wu P.P. Wang (Eds) Computational Biology and Genome Informatics World Scientific Publishing Company London 139–161
H. Hu M. Elstner J. Hermans (2003) Proteins 50 451–463 Occurrence Handle10.1002/prot.10279 Occurrence Handle1:CAS:528:DC%2BD3sXpvVKlsQ%3D%3D Occurrence Handle12557187
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Arendall, W.B., Tempel, W., Richardson, J.S. et al. A test of enhancing model accuracy in high-throughput crystallography. J Struct Funct Genomics 6, 1–11 (2005). https://doi.org/10.1007/s10969-005-3138-4
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10969-005-3138-4