Skip to main content

Dkk1, -2, and -3 expression in mouse craniofacial development

  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Summary

The Dickkopf family is important for embryogenesis and postnatal development and growth. Dkk1 is a strong head inducer and knockout of this gene leads to absence of anterior head structures, which are predominantly formed through neural crest migration. During early craniofacial development, Dkk1 to Dkk3 show developmentally regulated expression in a number of elements. However, their expression and roles in late times of craniofacial development are largely unknown. This study focuses on the expression profile of Dkk1-3 on late embryonic and early postnatal stages. It was found that Dkks were involved in a variety of craniofacial developmental processes, including facial outgrowth, myogenesis, osteogenesis, palatogenesis, olfactory epithelium and tooth development; and the expression persisted to postnatal stage in the muscles and bones. Their expression patterns suggest important roles in these processes; further study is warranted to elucidate these roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anakwe K, Robson L, Hadley J, Buxton P, Church V, Allen S, Hartmann C, Harfe B, Nohno T, Brown AM, Evans DJ, Francis-West P (2003). Wnt signalling regulates myogenic differentiation in the developing avian wing. Development 130 (15): 3503–3514

    Article  PubMed  CAS  Google Scholar 

  • Ang SJ, Stump RJ, Lovicu FJ, McAvoy JW (2004). Spatial and temporal expression of Wnt and Dickkopf genes during murine lens development. Gene Expr Patterns 4 (3): 289–295

    Article  PubMed  CAS  Google Scholar 

  • Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002). High bone density due to a mutation in LDL-receptor-related protein (5). N Engl J Med 346 (20): 1513–1521

    Article  PubMed  CAS  Google Scholar 

  • Byun T, Karimi M, Marsh JL, Milovanovic T, Lin F, Holcombe RF (2005). Expression of secreted Wnt antagonists in gastrointestinal tissues: potential role in stem cell homeostasis. J Clin Pathol 58 (5): 515–519

    Article  PubMed  CAS  Google Scholar 

  • Davidson G, Mao B, del Barco Barrantes I, Niehrs C (2002). Kremen proteins interact with Dickkopf1 to regulate anteroposterior CNS patterning. Development 129 (24): 5587–5596

    Article  PubMed  CAS  Google Scholar 

  • De Langhe SP, Sala FG, Del Moral PM, Fairbanks TJ, Yamada KM, Warburton D, Burns RC, Bellusci S (2005). Dickkopf-1 (DKK1) reveals that fibronectin is a major target of Wnt signaling in branching morphogenesis of the mouse embryonic lung. Dev Biol 277 (2): 316–331

    Article  PubMed  CAS  Google Scholar 

  • Fjeld K, Kettunen P, Furmanek T, Kvinnsland IH, Luukko K (2005). Dynamic expression of Wnt signaling-related Dickkopf1, −2, and −3 mRNAs in the developing mouse tooth. Dev Dyn 233 (1): 161–166

    Article  PubMed  CAS  Google Scholar 

  • Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391 (6665): 357–362

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Sancho JM, Aguilera O, Garcia JM, Pendas-Franco N, Pena C, Cal S, Garcia de Herreros A, Bonilla F, Munoz A (2005). The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer. Oncogene 24 (6): 1098–1103

    Article  PubMed  CAS  Google Scholar 

  • Grotewold L, Ruther U (2002a). Bmp Fgf and Wnt signalling in programmed cell death and chondrogenesis during vertebrate limb development: the role of Dickkopf-(1). Int J Dev Biol 46 (7): 943–947

    CAS  Google Scholar 

  • Grotewold L, Ruther U (2002b). The Wnt antagonist Dickkopf-1 is regulated by Bmp signaling and c-Jun and modulates programmed cell death. Embo J 21 (5): 966–975

    Article  CAS  Google Scholar 

  • Hashimoto H, Itoh M, Yamanaka Y, Yamashita S, Shimizu T, Solnica-Krezel L, Hibi M, Hirano T (2000). Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev Biol 217(1): 138–152

    Article  PubMed  CAS  Google Scholar 

  • Heller RS, Klein T, Ling Z, Heimberg H, Katoh M, Madsen OD, Serup P (2003). Expression of Wnt, Frizzled, sFRP, and DKK genes in adult human pancreas. Gene Expr 11(3–4): 141–147

    PubMed  CAS  Google Scholar 

  • Horwitz EM (2004). Dkk-1-mediated expansion of adult stem cells. Trends Biotechnol 22(8): 386–388

    Article  PubMed  CAS  Google Scholar 

  • Kawano Y, Kypta R (2003). Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116 (Pt 13): 2627–2634

    Article  PubMed  CAS  Google Scholar 

  • Kazanskaya O, Glinka A, Niehrs C (2000). The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning. Development 127(22): 4981–4992

    PubMed  CAS  Google Scholar 

  • Kurose K, Sakaguchi M, Nasu Y, Ebara S, Kaku H, Kariyama R, Arao Y, Miyazaki M, Tsushima T, Namba M, Kumon H, Huh NH (2004). Decreased expression of REIC/Dkk-3 in human renal clear cell carcinoma. J Urol 171(3): 1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Lee AY, He B, You L, Xu Z, Mazieres J, Reguart N, Mikami I, Batra S, Jablons DM (2004). Dickkopf-1 antagonizes Wnt signaling independent of beta-catenin in human mesothelioma. Biochem Biophys Res Commun 323(4): 1246–1250

    Article  PubMed  CAS  Google Scholar 

  • Li X, Liu P, Liu W, Maye P, Zhang J, Zhang Y, Hurley M, Guo C, Boskey A, Sun L, Harris SE, Rowe DW, Ke HZ, Wu D (2005) Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 37(9): 945–952

    Google Scholar 

  • Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML (2002). A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70(1): 11–19

    Article  PubMed  CAS  Google Scholar 

  • Mao B, Niehrs C (2003). Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302(1–2): 179–183

    Article  PubMed  CAS  Google Scholar 

  • Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C (2002). Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417(6889): 664–667

    Article  PubMed  CAS  Google Scholar 

  • Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C(2001). LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411(6835): 321–325

    Article  PubMed  CAS  Google Scholar 

  • Monaghan AP, Kioschis P, Wu W, Zuniga A, Bock D, Poustka A, Delius H, Niehrs C (1999). Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech Dev 87 (1–2): 45–56

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP, Niehrs C, Belmonte JC, Westphal H (2001). Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1(3): 423–434

    Article  PubMed  CAS  Google Scholar 

  • Murrell W, Feron F, Wetzig A, Cameron N, Splatt K, Bellette B, Bianco J, Perry C, Lee G, Mackay-Sim A (2005). Multipotent stem cells from adult olfactory mucosa. Dev Dyn 233(2): 496–515

    Article  PubMed  Google Scholar 

  • Nie X (2005) Apoptosis proliferation and gene expression patterns in mouse developing tongue. Anat Embryol (DOI (10).1007/s00429-005-0009-5) Sep 6: 1–8

  • Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11(12): 951–961

    Article  PubMed  CAS  Google Scholar 

  • Shinya M, Eschbach C, Clark M, Lehrach H, Furutani-Seiki M (2000). Zebrafish Dkk1, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mech Dev 98(1–2): 3–17

    Article  PubMed  CAS  Google Scholar 

  • Shuler CF, Dalrymple KR (2001). Molecular regulation of tongue and craniofacial muscle differentiation. Crit Rev Oral Biol Med 12(1): 3–17

    Article  PubMed  CAS  Google Scholar 

  • Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD, Jr (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26): 2483–2494

    Article  PubMed  CAS  Google Scholar 

  • Tzahor E, Kempf H, Mootoosamy RC, Poon AC, Abzhanov A, Tabin CJ, Dietrich S, Lassar AB (2003). Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle. Genes Dev 17(24): 3087–3099

    Article  PubMed  CAS  Google Scholar 

  • Wirths O, Waha A, Weggen S, Schirmacher P, Kuhne T, Goodyer CG, Albrecht S, Von Schweinitz D, Pietsch T (2003). Overexpression of human Dickkopf-1, an antagonist of wingless/WNT signaling, in human hepatoblastomas and Wilms’ tumors. Lab Invest 83(3): 429–434

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out in the Department of Biomedicine and financed by Faculty of Dentistry, University of Bergen. I thank the faculties for the financial support and excellent facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuguang Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, X. Dkk1, -2, and -3 expression in mouse craniofacial development. J Mol Hist 36, 367–372 (2005). https://doi.org/10.1007/s10735-005-9008-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-005-9008-3

Key words