Skip to main content

Advertisement

Log in

Drug repurposing screening identifies bortezomib and panobinostat as drugs targeting cancer associated fibroblasts (CAFs) by synergistic induction of apoptosis

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Cancer associated fibroblasts (CAFs) are the most abundant components of cancer-microenvironment. They play important roles in cancer initiation, progression, and metastasis. In addition, CAFs can confer drug-resistance to cancer cells. Considering their pro-tumorigenic roles, it is recommended to remove CAFs to prevent cancer recurrence after chemotherapy. Despite their clinical significance, few anti-CAF drugs have been developed. The objective of this study was to find a drug that could suppress the viability of patient-derived CAFs through repurposed screening of 51 drugs that were in clinical trials or received FDA approval. As a result, bortezomib (BTZ), carfilzomib (CFZ), and panobinostat (PST) were identified as anti-CAF drug candidates. It was confirmed that BTZ and PST could decrease the viability of various patients derived CAFs through inducing of caspase-3 mediated apoptosis. Interestingly, combination therapy with BTZ and PST showed better efficacy of inhibiting CAFs than single treatment. The synergistic effect between BTZ and PST on viability of CAFs was observed both in vitro CAF culture and in vivo mouse model. Furthermore, combination therapy with BTZ/PST and conventional anticancer compound docetaxel strongly inhibited tumor growth in xenografts of mouse breast cancer cells with mouse CAFs. In conclusion, our present study revealed that BTZ and PST could significantly reduce the viability of CAFs. Therefore, a combination therapy with BTZ/PST and anticancer drugs might be considered as a new rational for the development of anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16(9):582–598. https://doi.org/10.1038/nrc.2016.73

    Article  PubMed  CAS  Google Scholar 

  2. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(Pt 23):5591–5596. https://doi.org/10.1242/jcs.116392

    Article  PubMed  CAS  Google Scholar 

  3. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348. https://doi.org/10.1016/j.cell.2005.02.034

    Article  PubMed  CAS  Google Scholar 

  4. O'Connell JT, Sugimoto H, Cooke VG, MacDonald BA, Mehta AI, LeBleu VS, Dewar R, Rocha RM, Brentani RR, Resnick MB, Neilson EG, Zeisberg M, Kalluri R (2011) VEGF-A and tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci U S A 108(38):16002–16007. https://doi.org/10.1073/pnas.1109493108

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bergers G, Brekken R, McMahon G, TH V, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744. https://doi.org/10.1038/35036374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Munoz-Galvan S, Gutierrez G, Perez M, Carnero A (2015) MAP17 (PDZKIP1) expression determines sensitivity to the proteasomal inhibitor Bortezomib by preventing Cytoprotective autophagy and NFkappaB activation in breast cancer. Mol Cancer Ther 14(6):1454–1465. https://doi.org/10.1158/1535-7163.MCT-14-1053

    Article  PubMed  CAS  Google Scholar 

  7. Oravecz-Wilson KI, Philips ST, Yilmaz OH, Ames HM, Li L, Crawford BD, Gauvin AM, Lucas PC, Sitwala K, Downing JR, Morrison SJ, Ross TS (2009) Persistence of leukemia-initiating cells in a conditional knockin model of an imatinib-responsive myeloproliferative disorder. Cancer Cell 16(2):137–148. https://doi.org/10.1016/j.ccr.2009.06.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Orimo A, Tomioka Y, Shimizu Y, Sato M, Oigawa S, Kamata K, Nogi Y, Inoue S, Takahashi M, Hata T, Muramatsu M (2001) Cancer-associated myofibroblasts possess various factors to promote endometrial tumor progression. Clinical cancer research : an official journal of the American Association for Cancer Research 7(10):3097–3105

    CAS  Google Scholar 

  9. Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17(2):135–147. https://doi.org/10.1016/j.ccr.2009.12.041

    Article  PubMed  CAS  Google Scholar 

  10. Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, Kaminker J, Ferrara N (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34. https://doi.org/10.1016/j.ccr.2008.12.004

    Article  PubMed  CAS  Google Scholar 

  11. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851. https://doi.org/10.1126/science.1090922

    Article  PubMed  CAS  Google Scholar 

  12. Wang Z, Ma Q, Liu Q, Yu H, Zhao L, Shen S, Yao J (2008) Blockade of SDF-1/CXCR4 signalling inhibits pancreatic cancer progression in vitro via inactivation of canonical Wnt pathway. Br J Cancer 99(10):1695–1703. https://doi.org/10.1038/sj.bjc.6604745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, True L, Nelson PS (2012) Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18(9):1359–1368. https://doi.org/10.1038/nm.2890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jung DW, Che ZM, Kim J, Kim K, Kim KY, Williams D (2010) Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int J Cancer 127(2):332–344. https://doi.org/10.1002/ijc.25060

    Article  PubMed  CAS  Google Scholar 

  15. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1):17–32. https://doi.org/10.1016/j.ccr.2004.06.010

    Article  PubMed  CAS  Google Scholar 

  16. Ohlund D, Elyada E, Tuveson D (2014) Fibroblast heterogeneity in the cancer wound. J Exp Med 211(8):1503–1523. https://doi.org/10.1084/jem.20140692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Domanska UM, Timmer-Bosscha H, Nagengast WB, Oude Munnink TH, Kruizinga RC, Ananias HJ, Kliphuis NM, Huls G, De Vries EG, de Jong IJ, Walenkamp AM (2012) CXCR4 inhibition with AMD3100 sensitizes prostate cancer to docetaxel chemotherapy. Neoplasia 14(8):709–718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120(3):303–313. https://doi.org/10.1016/j.cell.2004.12.018

    Article  PubMed  CAS  Google Scholar 

  19. Vosseler S, Lederle W, Airola K, Obermueller E, Fusenig NE, Mueller MM (2009) Distinct progression-associated expression of tumor and stromal MMPs in HaCaT skin SCCs correlates with onset of invasion. Int J Cancer 125(10):2296–2306. https://doi.org/10.1002/ijc.24589

    Article  PubMed  CAS  Google Scholar 

  20. Zigrino P, Kuhn I, Bauerle T, Zamek J, Fox JW, Neumann S, Licht A, Schorpp-Kistner M, Angel P, Mauch C (2009) Stromal expression of MMP-13 is required for melanoma invasion and metastasis. J Invest Dermatol 129(11):2686–2693. https://doi.org/10.1038/jid.2009.130

    Article  PubMed  CAS  Google Scholar 

  21. Lederle W, Hartenstein B, Meides A, Kunzelmann H, Werb Z, Angel P, Mueller MM (2010) MMP13 as a stromal mediator in controlling persistent angiogenesis in skin carcinoma. Carcinogenesis 31(7):1175–1184. https://doi.org/10.1093/carcin/bgp248

    Article  PubMed  CAS  Google Scholar 

  22. Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139(7):1861–1872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Grum-Schwensen B, Klingelhofer J, Berg CH, El-Naaman C, Grigorian M, Lukanidin E, Ambartsumian N (2005) Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res 65(9):3772–3780. https://doi.org/10.1158/0008-5472.CAN-04-4510

    Article  PubMed  CAS  Google Scholar 

  24. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, Andre S, Piccart M, Campone M, Brain E, Macgrogan G, Petit T, Jassem J, Bibeau F, Blot E, Bogaerts J, Aguet M, Bergh J, Iggo R, Delorenzi M (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15(1):68–74. https://doi.org/10.1038/nm.1908

    Article  PubMed  CAS  Google Scholar 

  25. Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9(9):665–674. https://doi.org/10.1038/nrc2714

    Article  PubMed  CAS  Google Scholar 

  26. Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813. https://doi.org/10.1038/nrc1456

    Article  PubMed  CAS  Google Scholar 

  27. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487(7408):500–504. https://doi.org/10.1038/nature11183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin DP, Koeppen H, Merchant M, Neve R, Settleman J (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487(7408):505–509. https://doi.org/10.1038/nature11249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Liu J, Liao S, Diop-Frimpong B, Chen W, Goel S, Naxerova K, Ancukiewicz M, Boucher Y, Jain RK, Xu L (2012) TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci U S A 109(41):16618–16623. https://doi.org/10.1073/pnas.1117610109

    Article  PubMed  PubMed Central  Google Scholar 

  30. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reichelt S, Howat WJ, Chang A, Dhara M, Wang L, Ruckert F, Grutzmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA (2009) Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461. https://doi.org/10.1126/science.1171362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dufour A, Overall CM (2013) Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci 34(4):233–242. https://doi.org/10.1016/j.tips.2013.02.004

    Article  PubMed  CAS  Google Scholar 

  32. Wen J, Matsumoto K, Taniura N, Tomioka D, Nakamura T (2004) Hepatic gene expression of NK4, an HGF-antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice. Cancer Gene Ther 11(6):419–430. https://doi.org/10.1038/sj.cgt.7700705

    Article  PubMed  CAS  Google Scholar 

  33. Pietras K, Pahler J, Bergers G, Hanahan D (2008) Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 5(1):e19. https://doi.org/10.1371/journal.pmed.0050019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Santos AM, Jung J, Aziz N, Kissil JL, Pure E (2009) Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J Clin Invest 119(12):3613–3625. https://doi.org/10.1172/JCI38988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hofheinz RD, al-Batran SE, Hartmann F, Hartung G, Jager D, Renner C, Tanswell P, Kunz U, Amelsberg A, Kuthan H, Stehle G (2003) Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 26(1):44–48. https://doi.org/10.1159/000069863

    Article  PubMed  CAS  Google Scholar 

  36. Lee KW, Yeo SY, Sung CO, Kim SH (2015) Twist1 is a key regulator of cancer-associated fibroblasts. Cancer Res 75(1):73–85. https://doi.org/10.1158/0008-5472.CAN-14-0350

    Article  PubMed  CAS  Google Scholar 

  37. Miyoshi H, Takahashi M, Gage FH, Verma IM (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci U S A 94(19):10319–10323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, Ebright RY, Stewart ML, Ito D, Wang S, Bracha AL, Liefeld T, Wawer M, Gilbert JC, Wilson AJ, Stransky N, Kryukov GV, Dancik V, Barretina J, Garraway LA, Hon CS, Munoz B, Bittker JA, Stockwell BR, Khabele D, Stern AM, Clemons PA, Shamji AF, Schreiber SL (2013) An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154(5):1151–1161. https://doi.org/10.1016/j.cell.2013.08.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947

    Article  PubMed  CAS  Google Scholar 

  40. Bamias A, Pavlidis N (1998) Systemic chemotherapy in gastric cancer: where do we stand today? Oncologist 3(3):171–177

    PubMed  CAS  Google Scholar 

  41. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338. https://doi.org/10.1038/nrc1074

    Article  PubMed  CAS  Google Scholar 

  42. Burnett JP, Lim G, Li Y, Shah RB, Lim R, Paholak HJ, McDermott SP, Sun L, Tsume Y, Bai S, Wicha MS, Sun D, Zhang T (2017) Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Lett 394:52–64. https://doi.org/10.1016/j.canlet.2017.02.023

    Article  PubMed  CAS  Google Scholar 

  43. Alshaker H, Wang Q, Bohler T, Mills R, Winkler M, Arafat T, Kawano Y, Pchejetski D (2017) Combination of RAD001 (everolimus) and docetaxel reduces prostate and breast cancer cell VEGF production and tumour vascularisation independently of sphingosine-kinase-1. Sci Rep 7(1):3493. https://doi.org/10.1038/s41598-017-03728-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. San-Miguel JF, Einsele H, Moreau P (2016) The role of Panobinostat plus Bortezomib and dexamethasone in treating relapsed or relapsed and refractory multiple myeloma: a European perspective. Adv Ther 33(11):1896–1920. https://doi.org/10.1007/s12325-016-0413-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Attal M, Lauwers-Cances V, Hulin C, Leleu X, Caillot D, Escoffre M, Arnulf B, Macro M, Belhadj K, Garderet L, Roussel M, Payen C, Mathiot C, Fermand JP, Meuleman N, Rollet S, Maglio ME, Zeytoonjian AA, Weller EA, Munshi N, Anderson KC, Richardson PG, Facon T, Avet-Loiseau H, Harousseau JL, Moreau P (2017) Lenalidomide, Bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med 376(14):1311–1320. https://doi.org/10.1056/NEJMoa1611750

    Article  PubMed  CAS  Google Scholar 

  46. Chhabra S (2017) Novel proteasome inhibitors and histone deacetylase inhibitors: progress in myeloma therapeutics. Pharmaceuticals (Basel) 10(2). https://doi.org/10.3390/ph10020040

  47. Wang S, Wang L, Zhou Z, Deng Q, Li L, Zhang M, Liu L, Li Y (2017) Leucovorin enhances the anti-cancer effect of Bortezomib in colorectal cancer cells. Sci Rep 7(1):682. https://doi.org/10.1038/s41598-017-00839-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ishimoto T, Miyake K, Nandi T, Yashiro M, Onishi N, Huang KK, Lin SJ, Kalpana R, Tay ST, Suzuki Y, Cho BC, Kuroda D, Arima K, Izumi D, Iwatsuki M, Baba Y, Oki E, Watanabe M, Saya H, Hirakawa K, Baba H, Tan P (2017) Activation of transforming growth factor Beta 1 signaling in gastric cancer-associated fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells. Gastroenterology 153(1):191–204 e116. https://doi.org/10.1053/j.gastro.2017.03.046

    Article  PubMed  CAS  Google Scholar 

  49. Zhang H, Yue J, Jiang Z, Zhou R, Xie R, Xu Y, Wu S (2017) CAF-secreted CXCL1 conferred radioresistance by regulating DNA damage response in a ROS-dependent manner in esophageal squamous cell carcinoma. Cell Death Dis 8(5):e2790. https://doi.org/10.1038/cddis.2017.180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  PubMed  CAS  Google Scholar 

  51. Lee RH, Yoon N, Reneau JC, Prockop DJ (2012) Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity. Cell Stem Cell 11(6):825–835. https://doi.org/10.1016/j.stem.2012.10.001

    Article  PubMed  CAS  Google Scholar 

  52. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, Westphalen CB, Kitajewski J, Fernandez-Barrena MG, Fernandez-Zapico ME, Iacobuzio-Donahue C, Olive KP, Stanger BZ (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25(6):735–747. https://doi.org/10.1016/j.ccr.2014.04.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Itoh G, Chida S, Yanagihara K, Yashiro M, Aiba N, Tanaka M (2017) Cancer-associated fibroblasts induce cancer cell apoptosis that regulates invasion mode of tumours. Oncogene 36(31):4434–4444. https://doi.org/10.1038/onc.2017.49

    Article  PubMed  CAS  Google Scholar 

  54. Quante M, SP T, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, Friedman R, Varro A, Tycko B, Wang TC (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19(2):257–272. https://doi.org/10.1016/j.ccr.2011.01.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ludwig H, Khayat D, Giaccone G, Facon T (2005) Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer 104(9):1794–1807. https://doi.org/10.1002/cncr.21414

    Article  PubMed  CAS  Google Scholar 

  56. Shanker A, Brooks AD, Tristan CA, Wine JW, Elliott PJ, Yagita H, Takeda K, Smyth MJ, Murphy WJ, Sayers TJ (2008) Treating metastatic solid tumors with bortezomib and a tumor necrosis factor-related apoptosis-inducing ligand receptor agonist antibody. J Natl Cancer Inst 100(9):649–662. https://doi.org/10.1093/jnci/djn113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Brooks AD, Jacobsen KM, Li W, Shanker A, Sayers TJ (2010) Bortezomib sensitizes human renal cell carcinomas to TRAIL apoptosis through increased activation of caspase-8 in the death-inducing signaling complex. Molecular cancer research : MCR 8(5):729–738. https://doi.org/10.1158/1541-7786.MCR-10-0022

    Article  PubMed  CAS  Google Scholar 

  58. Gu Y, Bouwman P, Greco D, Saarela J, Yadav B, Jonkers J, Kuznetsov SG (2014) Suppression of BRCA1 sensitizes cells to proteasome inhibitors. Cell Death Dis 5:e1580. https://doi.org/10.1038/cddis.2014.537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kao C, Chao A, Tsai CL, Chuang WC, Huang WP, Chen GC, Lin CY, Wang TH, Wang HS, Lai CH (2014) Bortezomib enhances cancer cell death by blocking the autophagic flux through stimulating ERK phosphorylation. Cell Death Dis 5:e1510. https://doi.org/10.1038/cddis.2014.468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kretowski R, Borzym-Kluczyk M, Cechowska-Pasko M (2014) Efficient induction of apoptosis by proteasome inhibitor: bortezomib in the human breast cancer cell line MDA-MB-231. Mol Cell Biochem 389(1–2):177–185. https://doi.org/10.1007/s11010-013-1939-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lohberger B, Steinecker-Frohnwieser B, Stuendl N, Kaltenegger H, Leithner A, Rinner B (2016) The proteasome inhibitor Bortezomib affects chondrosarcoma cells via the mitochondria-caspase dependent pathway and enhances death receptor expression and autophagy. PLoS One 11(12):e0168193. https://doi.org/10.1371/journal.pone.0168193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Fineschi S, Reith W, Guerne PA, Dayer JM, Chizzolini C (2006) Proteasome blockade exerts an antifibrotic activity by coordinately down-regulating type I collagen and tissue inhibitor of metalloproteinase-1 and up-regulating metalloproteinase-1 production in human dermal fibroblasts. FASEB J 20(3):562–564. https://doi.org/10.1096/fj.05-4870fje

    Article  PubMed  CAS  Google Scholar 

  63. Fineschi S, Bongiovanni M, Donati Y, Djaafar S, Naso F, Goffin L, Argiroffo CB, Pache JC, Dayer JM, Ferrari-Lacraz S, Chizzolini C (2008) In vivo investigations on anti-fibrotic potential of proteasome inhibition in lung and skin fibrosis. Am J Respir Cell Mol Biol 39(4):458–465. https://doi.org/10.1165/rcmb.2007-0320OC

    Article  PubMed  CAS  Google Scholar 

  64. You BR, Park WH (2011) Proteasome inhibition by MG132 induces growth inhibition and death of human pulmonary fibroblast cells in a caspase-independent manner. Oncol Rep 25(6):1705–1712. https://doi.org/10.3892/or.2011.1211

    Article  PubMed  CAS  Google Scholar 

  65. Pujols L, Fernandez-Bertolin L, Fuentes-Prado M, Alobid I, Roca-Ferrer J, Agell N, Mullol J, Picado C (2012) Proteasome inhibition reduces proliferation, collagen expression, and inflammatory cytokine production in nasal mucosa and polyp fibroblasts. J Pharmacol Exp Ther 343(1):184–197. https://doi.org/10.1124/jpet.111.190710

    Article  PubMed  CAS  Google Scholar 

  66. Legesse-Miller A, Raitman I, Haley EM, Liao A, Sun LL, Wang DJ, Krishnan N, Lemons JM, Suh EJ, Johnson EL, Lund BA, Coller HA (2012) Quiescent fibroblasts are protected from proteasome inhibition-mediated toxicity. Mol Biol Cell 23(18):3566–3581. https://doi.org/10.1091/mbc.E12-03-0192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hideshima T, Richardson PG, Anderson KC (2011) Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol Cancer Ther 10(11):2034–2042. https://doi.org/10.1158/1535-7163.MCT-11-0433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yu C, Friday BB, Yang L, Atadja P, Wigle D, Sarkaria J, Adjei AA (2008) Mitochondrial Bax translocation partially mediates synergistic cytotoxicity between histone deacetylase inhibitors and proteasome inhibitors in glioma cells. Neuro-Oncology 10(3):309–319. https://doi.org/10.1215/15228517-2007-063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Rao R, Nalluri S, Fiskus W, Savoie A, Buckley KM, Ha K, Balusu R, Joshi A, Coothankandaswamy V, Tao J, Sotomayor E, Atadja P, Bhalla KN (2010) Role of CAAT/enhancer binding protein homologous protein in panobinostat-mediated potentiation of bortezomib-induced lethal endoplasmic reticulum stress in mantle cell lymphoma cells. Clin Cancer Res 16(19):4742–4754. https://doi.org/10.1158/1078-0432.CCR-10-0529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Budman DR, Calabro A, Rosen L, Lesser M (2012) Identification of unique synergistic drug combinations associated with downexpression of survivin in a preclinical breast cancer model system. Anti-Cancer Drugs 23(3):272–279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wang H, Cao Q, Dudek AZ (2012) Phase II study of panobinostat and bortezomib in patients with pancreatic cancer progressing on gemcitabine-based therapy. Anticancer Res 32(3):1027–1031

    PubMed  CAS  Google Scholar 

  72. Sato A, Asano T, Isono M, Ito K (2014) Panobinostat synergizes with bortezomib to induce endoplasmic reticulum stress and ubiquitinated protein accumulation in renal cancer cells. BMC Urol 14:71. https://doi.org/10.1186/1471-2490-14-71

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tan D, Phipps C, Hwang WY, Tan SY, Yeap CH, Chan YH, Tay K, Lim ST, Lee YS, Kumar SG, Ng SC, Fadilah S, Kim WS, Goh YT (2015) Panobinostat in combination with bortezomib in patients with relapsed or refractory peripheral T-cell lymphoma: an open-label, multicentre phase 2 trial. Lancet Haematol 2(8):e326–e333. https://doi.org/10.1016/S2352-3026(15)00097-6

    Article  PubMed  Google Scholar 

  74. Teo EC, Valdez BC, Ji J, Li Y, Liu Y, Brammer JE, Hosing C, Nieto Y, Champlin RE, Andersson BS (2016) Synergistic cytotoxicity of busulfan, melphalan, gemcitabine, panobinostat, and bortezomib in lymphoma cells. Leuk Lymphoma 57(11):2644–2652. https://doi.org/10.3109/10428194.2016.1157871

    Article  PubMed  CAS  Google Scholar 

  75. Mondello P, Cuzzocrea S, Navarra M, Mian M (2017) Bone marrow micro-environment is a crucial player for myelomagenesis and disease progression. Oncotarget 8(12):20394–20409. https://doi.org/10.18632/oncotarget.14610

    Article  PubMed  PubMed Central  Google Scholar 

  76. Perez LE, Parquet N, Meads M, Anasetti C, Dalton W (2010) Bortezomib restores stroma-mediated APO2L/TRAIL apoptosis resistance in multiple myeloma. Eur J Haematol 84(3):212–222. https://doi.org/10.1111/j.1600-0609.2009.01381.x

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2015R1A2A1A15054021) and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI14C2517).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Do-Hyun Nam or Seok-Hyung Kim.

Ethics declarations

Conflict of interest

Hak-Min Lee declares that he has no conflict of interest. Eunmyong Lee declares that she has no conflict of interest. So-Young Yeo declares that she has no conflict of interest. Sang Shin declares that he has no conflict of interest. Hyun-Kyu Park declares that he has no conflict of interest. Do-Hyun Nam declares that he has no conflict of interest. Seok-Hyung Kim declares that he has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of Samsung Medical Center at Sungkyunkwan University, where the studies were conducted.

Electronic supplementary material

Supplementary Fig. 1

Combination treatment of bortezomib and panobinostat attenuates the growth of mouse breast cancer cells and CAFs. (a) Representative photograph of gross tumors from xenografts model with cancer cells alone or cancer cells with MMTV-CAF. Either 5 x 105of 168FARN cells alone or with 1.5 × 106 MMTV-CAFs were subcutaneously injected nude mice. (b) Tumor volumes in xenografts model of 168FARN mouse breast cancer cells alone or with MMTV-CAF at a ratio of 1:1 (n = 4 per group). Tumor volumes were measured using a caliper. Difference was evaluated by two- tailed student’s t-test. * P < 0.05. (c-d) Effect of either BTZ or PST alone or in combination treatment on 168FARN mouse breast cancer cells (c) or mouse MMTV-CAF cells (d). 168FARN cells or MMTV-CAF cells were plated and treated with BTZ (left panels), PST (middle panels), or both (right panels) for 2 days. Cell viability was calculated as a percentage to the control. Experiments were done in triplicates. Symbols represent mean ± SEM. (PPTX 324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HM., Lee, E., Yeo, SY. et al. Drug repurposing screening identifies bortezomib and panobinostat as drugs targeting cancer associated fibroblasts (CAFs) by synergistic induction of apoptosis. Invest New Drugs 36, 545–560 (2018). https://doi.org/10.1007/s10637-017-0547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0547-8

Keywords

Navigation