Skip to main content

Advertisement

Log in

Genetic diversity and taxonomy: a reassessment of species designation in tuatara (Sphenodon: Reptilia)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The identification of species boundaries for allopatric populations is important for setting conservation priorities and can affect conservation management decisions. Tuatara (Sphenodon) are the only living members of the reptile order Sphenodontia and are restricted to islands around New Zealand that are free of introduced mammals. We present new data of microsatellite DNA diversity and substantially increased mtDNA sequence for all 26 sampled tuatara populations. We also re-evaluate existing allozyme data for those populations, and together use them to examine the taxonomic status of those populations. Although one could interpret the data to indicate different taxonomic designations, we conclude that, contrary to current taxonomy, Sphenodon is best described as a single species that contains distinctive and important geographic variants. We also examine amounts of genetic variation within populations and discuss the implications of these findings for the conservation management of this iconic taxon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitken N, Hay JM, Sarre SD et al (2001) Microsatellite DNA markers for tuatara (Sphenodon spp.). Conserv Genet 2:183–185

    Article  CAS  Google Scholar 

  • Allendorf FW (2001) Genetics and viability of insular populations of reptiles. N Z J Zool 28:361

    Google Scholar 

  • Allendorf FW, Leary RF (1988) Conservation and distribution of genetic variation in a polytypic species, the cutthroat trout. Conserv Biol 2:170–184

    Article  Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Malden

    Google Scholar 

  • Anonymous (1987) Tuatara traded for drugs. Oryx 21:125

  • Apesteguía S, Novas FE (2003) Large Cretaceous sphenodontian from Patagonia provides insight into lepidosaur evolution in Gondwana. Nature 425:609–612

    Article  PubMed  Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Google Scholar 

  • Benton MJ (1993) The fossil record 2. Chapman & Hall, London

    Google Scholar 

  • Benton MJ (2000) Vertebrate palaeontology, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Bowcock AM, Ruíz-Linares A, Tomfohrde J et al (1994) High resolution human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  CAS  PubMed  Google Scholar 

  • Brehm A, Harris DJ, Alves C, Jesus J, Thomarat F, Vicente L (2003) Structure and evolution of the mitochondrial DNA complete control region in the lizard Lacerta dugesii (Lacertidae, Sauria). J Mol Evol 56:46–53

    Article  CAS  PubMed  Google Scholar 

  • Brook FJ, McArdle BH (1999) Morphological variation, biogeography and local extinction of the northern New Zealand landsnail Placostylus hongii (Gastropoda: Bulimulidae). J R Soc N Z 29:407–434

    Google Scholar 

  • Buller WL (1877) Notes on the tuatara lizard (Sphenodon punctatum), with a description of a supposed new species. Trans Proc N Z Inst 1876(9):317–325

    Google Scholar 

  • Buller WL (1878) Notice of a new variety of tuatara lizard (Sphenodon) from East Cape Island. Trans Proc N Z Inst 1877(10):220–221

    Google Scholar 

  • Buller WL (1879) Further notes on the habits of the tuatara lizard. Trans Proc N Z Inst 1878(11):349–351

    Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    CAS  PubMed  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  Google Scholar 

  • Cree A, Butler D (1993) Tuatara recovery plan (Sphenodon spp.). Threatened species recovery plan series no. 9. New Zealand Department of Conservation, Wellington

  • Daugherty CH, Cree A, Hay JM, Thompson MB (1990) Neglected taxonomy and continuing extinctions of tuatara (Sphenodon). Nature 347:177–179

    Article  Google Scholar 

  • Daugherty CH, Towns DR, Cree A, Hay JM (1992) The roles of legal protection versus intervention in conserving the New Zealand tuatara, Sphenodon. Dev Landsc Manag Urb Plan 7:247–259

    Google Scholar 

  • Dawbin WH (1962) The tuatara in its natural habitat. Endeavour 21:16–24

    Article  Google Scholar 

  • Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Duncan RP, Blackburn TM, Worthy TH (2002) Prehistoric bird extinctions and human hunting. Proc R Soc Lond B Biol Sci 269:517–521

    Article  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Felsenstein J (2005) PHYLIP (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Finch MO, Lambert DM (1996) Kinship and genetic divergence among populations of tuatara Sphenodon punctatus as revealed by minisatellite DNA profiling. Mol Ecol 5:651–658

    Article  CAS  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Fraser WM (1925) The Poor Knights Islands: a brief account of the Maori occupation. N Z J Sci Technol 8:8–14

    Google Scholar 

  • Gaggiotti OE, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520

    Article  CAS  PubMed  Google Scholar 

  • Gaze P (2001) Tuatara recovery plan 2001–2011. Threatened species recovery plan series no. 47. New Zealand Department of Conservation, Wellington

  • Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW (1995) Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci USA 92:6723–6727

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). Available via http://www.unil.ch/izea/softwares/fstat.html Accessed Feb 2002

  • Goudet J, Raymond M, Demeeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    CAS  PubMed  Google Scholar 

  • Hanley TC, Caccone A (2005) Development of primers to characterize the mitochondrial control region of Galápagos land and marine iguanas (Conolophus and Amblyrynchus). Mol Ecol Notes 5:599–601

    Article  CAS  Google Scholar 

  • Hay JM, Daugherty CH, Cree A, Maxson LR (2003) Low genetic divergence obscures phylogeny among populations of Sphenodon, remnant of an ancient reptile lineage. Mol Phylogenet Evol 29:1–19

    Article  PubMed  Google Scholar 

  • Hay JM, Sarre S, Daugherty CH (2004) Nuclear mitochondrial pseudogenes as molecular outgroups for phylogenetically isolated taxa: a case study in Sphenodon. Heredity 93:468–475

    Article  CAS  PubMed  Google Scholar 

  • Hayward BW (1986) Origin of the offshore islands of northern New Zealand and their landform development. The offshore islands of Northern New Zealand, New Zealand Department of Lands and Survey information series 16, New Zealand Department of Lands and Survey, Wellington, New Zealand, pp 129–138

  • Hayward BW (1991) Geology and geomorphology of the Poor Knights Islands, northern New Zealand. Tane 33:23–37

    Google Scholar 

  • Keogh JS, Scott IAW, Hayes C (2005) Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes. Evolution 59:226–233

    PubMed  Google Scholar 

  • King M (2003) The penguin history of New Zealand. Penguin Books, Auckland

    Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1999) Extinction risks from anthropogenic, ecological and genetic factors. In: Landweber LF, Dobson AP (eds) Genetics and the extinction of species: DNA and the conservation of biodiversity. Princeton University Press, Princeton

    Google Scholar 

  • Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494

    Article  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998a) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998b) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963–974

    Article  CAS  PubMed  Google Scholar 

  • MacAvoy ES, McGibbon LM, Sainsbury JP et al (2007) Genetic variation in island populations of tuatara (Sphenodon spp.) inferred from microsatellite markers. Conserv Genet 8:305–318

    Article  CAS  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Menozzi P, Piazza A, Cavalli-Sforza L (1978) Synthetic maps of human gene frequencies in Europeans. Science 201:786–792

    Article  CAS  PubMed  Google Scholar 

  • Moore JA, Nelson NJ, Keall SN, Daugherty CH (2008) Implications of social dominance and multiple paternity for the genetic diversity of a captive-bred reptile population (tuatara). Conserv Genet 9:1243–1252

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a number of individuals. Genetics 89:538–590

    Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Nelson NJ, Keall SN, Brown D, Daugherty CH (2002a) Establishing a new wild population of tuatara (Sphenodon guntheri). Conserv Biol 16:887–894

    Article  Google Scholar 

  • Nelson NJ, Keall SN, Pledger S, Daugherty CH (2002b) Male-biased sex ratio in a small tuatara population. J Biogeogr 29:633–640

    Article  Google Scholar 

  • Newman DG (1986) Can tuatara and mice co-exist? The status of tuatara, Sphenodon punctatus (Reptilia: Rhynchocephalia), on the Whangamata Islands. The offshore islands of New Zealand, New Zealand Department of Lands and Survey information series 16, New Zealand Department of Lands and Survey, Wellington, New Zealand, pp 179–185

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  CAS  PubMed  Google Scholar 

  • Paetkau D, Waits LP, Clarkson PL, Craighead L, Strobeck C (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genetics 147:1943–1957

    CAS  PubMed  Google Scholar 

  • Parent CE, Caccone A, Petren K (2008) Colonization and diversification of Galápagos terrestrial fauna: a phylogenetic and biogeographical synthesis. Proc R Soc B 363:3347–3361

    Google Scholar 

  • Paterson H (2005) The competitive Darwin. Paleobiology 31:56–76

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reich D, Price AL, Patterson N (2008) Principal component analysis of genetic data. Nat Genet 40:491–492

    Article  CAS  PubMed  Google Scholar 

  • Rest JS, Ast JC, Austin CC et al (2003) Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. Mol Phylogenet Evol 29:289–297

    Article  CAS  PubMed  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  • Sarre SD, Schwaner T, Georges A (1990) Genetic variation among insular populations of the sleepy lizard, Trachydosaurus rugosus gray (Squamata: Scincidae). Aust J Zool 38:603–616

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetic data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

  • Soulé M, Yang SY (1973) Genetic variation in side-blotched lizards on islands in the Gulf of California. Evolution 27:593–600

    Article  Google Scholar 

  • Subramanian S, Hay JM, Mohandesan E, Millar CD, Lambert DM (2008) Molecular and morphological evolution in tuatara are decoupled. Trends in Genetics 25:16–18

    Article  Google Scholar 

  • Swofford DL (2003) PAUP* phylogenetic analysis using parsimony (*and other methods) Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Terrasa B, Pérez-Mellado V, Brown RP, Picornell A, Castro JA, Ramon MM (2009) Foundations for conservation of intraspecific genetic diversity revealed by analysis of phylogeographical structure in the endangered endemic lizard Podarcis lilfordi. Divers Distrib 15:207–221

    Article  Google Scholar 

  • Waples RS (1991) Pacific salmon, Onchorhynchus spp., and the definition of ‘species’ under the endangered species act. Mar Fish Rev 53:11–22

    Google Scholar 

  • Waser PM, Strobeck C (1998) Genetic signatures of interpopulation dispersal. Trends Ecol Evol 13:43–44

    Article  Google Scholar 

  • Whitaker AH (1968) The lizards of the Poor Knights Islands, New Zealand. N Z J Sci 11:623–651

    Google Scholar 

  • Whittaker RJ, Triantis KA, Ladle RJ (2008) A general dynamic theory of oceanic island biogeography. J Biogeogr 35:977–994

    Article  Google Scholar 

  • Wilson AC, Cann RL, Carr SM et al (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc Lond 26:375–400

    Article  Google Scholar 

Download references

Acknowledgments

We thank Niccy Aitken and members of the Sarre and Lambert labs for technical and analytical assistance and reviewers for helpful comments on the manuscript. JMH and this research were funded by a New Zealand Foundation for Research Science and Technology Postdoctoral Fellowship, and subsequently a Marsden Fund grant to DML and the Allan Wilson Centre for Molecular Ecology and Evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer M. Hay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hay, J.M., Sarre, S.D., Lambert, D.M. et al. Genetic diversity and taxonomy: a reassessment of species designation in tuatara (Sphenodon: Reptilia). Conserv Genet 11, 1063–1081 (2010). https://doi.org/10.1007/s10592-009-9952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9952-7

Keywords

Navigation