Skip to main content

Advertisement

Detrimental effects of proteasome inhibition activity in Drosophila melanogaster: implication of ER stress, autophagy, and apoptosis

  • Original Research
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

In eukaryotes, the ubiquitin–proteasome machinery regulates a number of fundamental cellular processes through accurate and tightly controlled protein degradation pathways. We have, herein, examined the effects of proteasome functional disruption in Dmp53 +/+ (wild-type) and Dmp53 −/− Drosophila melanogaster fly strains through utilization of Bortezomib, a proteasome-specific inhibitor. We report that proteasome inhibition drastically shortens fly life-span and impairs climbing performance, while it also causes larval lethality and activates developmentally irregular cell death programs during oogenesis. Interestingly, Dmp53 gene seems to play a role in fly longevity and climbing ability. Moreover, Bortezomib proved to induce endoplasmic reticulum (ER) stress that was able to result in the engagement of unfolded protein response (UPR) signaling pathway, as respectively indicated by fly Xbp1 activation and Ref(2)P-containing protein aggregate formation. Larva salivary gland and adult brain both underwent strong ER stress in response to Bortezomib, thus underscoring the detrimental role of proteasome inhibition in larval development and brain function. We also propose that the observed upregulation of autophagy operates as a protective mechanism to “counterbalance” Bortezomib-induced systemic toxicity, which is tightly associated, besides ER stress, with activation of apoptosis, mainly mediated by functional Drice caspase and deregulated dAkt kinase. The reduced life-span of exposed to Bortezomib flies overexpressing Atg1_RNAi or Atg18_RNAi supports the protective nature of autophagy against proteasome inhibition-induced stress. Our data reveal the in vivo significance of proteasome functional integrity as a major defensive system against cellular toxicity likely occurring during critical biological processes and morphogenetic courses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer. 2004;4:349–60.

    Article  PubMed  CAS  Google Scholar 

  • Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L, Klunder JM, Ma YT, Plamondon L, Stein RL. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett. 1998;8:333–8.

    Article  PubMed  CAS  Google Scholar 

  • Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999;59:2615–22.

    PubMed  CAS  Google Scholar 

  • An WG, Hwang SG, Trepel JB, Blagosklonny MV. Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia. 2000;14:1276–83.

    Article  PubMed  CAS  Google Scholar 

  • Antonelou MH, Papassideri IS, Karababa FJ, Stravopodis DJ, Loutradi A, Margaritis LH. Defective organization of the erythroid cell membrane in a novel case of congenital anemia. Blood Cells Mol Dis. 2003;30:43–54.

    Article  PubMed  CAS  Google Scholar 

  • Asselin E, Mills GB, Tsang BK. XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res. 2001;61:1862–8.

    PubMed  CAS  Google Scholar 

  • Avila A, Silverman N, Diaz-Meco MT, Moscat J. The Drosophila atypical protein kinase C-ref(2)p complex constitutes a conserved module for signaling in the toll pathway. Mol Cell Biol. 2002;22:8787–95.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming RC, Harris GL, Nezis IP, Schubert DR, Simonsen A, Finley KD. p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy. 2011;7:572–83.

  • Belloni D, Veschini L, Foglieni C, Dell'Antonio G, Caligaris-Cappio F, Caligaris-Cappio F, Ferrarini M, Ferrero E. Bortezomib induces autophagic death in proliferating human endothelial cells. Exp Cell Res. 2010;316:1010–8.

    Article  PubMed  CAS  Google Scholar 

  • Berry DL, Baehrecke EH. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell. 2007;131:1137–48.

    Article  PubMed  CAS  Google Scholar 

  • Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol. 2009;452:181–97.

    Article  PubMed  Google Scholar 

  • Boccadoro M, Morgan G, Cavenagh J. Preclinical evaluation of the proteasome inhibitor Bortezomib in cancer therapy. Cancer Cell Int. 2005;5:18.

    Article  PubMed  Google Scholar 

  • Brancolini C. Inhibitors of the ubiquitin–proteasome system and the cell death machinery: how many pathways are activated? Curr Mol Pharmacol. 2008;1:24–37.

    PubMed  CAS  Google Scholar 

  • Cavaletti G, Nobile-Orazio E. Bortezomib-induced peripheral neurotoxicity: still far from a painless gain. Haematologica. 2007;92:1308–10.

    Article  PubMed  CAS  Google Scholar 

  • Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003;17:590–603.

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Chang D, Goh M, Klibanov SA, Ljungman M. Role of p53 in cell cycle regulation and apoptosis following exposure to proteasome inhibitors. Cell Growth Differ. 2000;11:239–46.

    PubMed  CAS  Google Scholar 

  • Chu CT, Caruso JL, Cummings TJ, Ervin J, Rosenberg C, Hulette CM. Ubiquitin immunochemistry as a diagnostic aid for community pathologists evaluating patients who have dementia. Mod Pathol. 2000;13:420–6.

    Article  PubMed  CAS  Google Scholar 

  • Clarke PG, Puyal J. Autophagic cell death exists. Autophagy. 2012;8:867–9.

    Article  PubMed  Google Scholar 

  • Clausen TH, Lamark T, Isakson P, Finley K, Larsen KB, Brech A, Overvatn A, Stenmark H, Bjorkoy G, Simonsen A, Johansen T. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy. 2010;6:330–44.

    Article  PubMed  CAS  Google Scholar 

  • Crawford LJ, Walker B, Ovaa H, Chauhan D, Anderson KC, Morris TC, Irvine AE. Comparative selectivity and specificity of the proteasome inhibitors BzLLLCOCHO, PS-341, and MG-132. Cancer Res. 2006;66:6379–86.

    Article  PubMed  CAS  Google Scholar 

  • Cusack Jr JC, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J, Baldwin Jr AS. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res. 2001;61:3535–40.

    PubMed  CAS  Google Scholar 

  • DeMartino GN, Proske RJ, Moomaw CR, Strong AA, Song X, Hisamatsu H, Tanaka K, Slaughter CA. Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J Biol Chem. 1996;271:3112–8.

    Article  PubMed  CAS  Google Scholar 

  • Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN, Jiang J, Laidig GJ, Lewis ER, Parlati F, Shenk KD, Smyth MS, Sun CM, Vallone MK, Woo TM, Molineaux CJ, Bennett MK. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 2007;67:6383–91.

    Article  PubMed  CAS  Google Scholar 

  • Deveraux Q, Ustrell V, Pickart C, Rechsteiner M. A 26S protease subunit that binds ubiquitin conjugates. J Biol Chem. 1994;269:7059–61.

    PubMed  CAS  Google Scholar 

  • Dick LR, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, Stein RL. Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin beta-lactone. J Biol Chem. 1996;271:7273–6.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich P, Rideout HJ, Wang Q, Stefanis L. Lack of p53 delays apoptosis, but increases ubiquitinated inclusions, in proteasomal inhibitor-treated cultured cortical neurons. Mol Cell Neurosci. 2003;24:430–41.

    Article  PubMed  CAS  Google Scholar 

  • Drummond-Barbosa D, Spradling AC. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol. 2001;231:265–78.

    Article  PubMed  CAS  Google Scholar 

  • Einsele H. Bortezomib. Recent results. Cancer Res. 2010;184:173–87.

    CAS  Google Scholar 

  • Elsasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS, Muller B, Feng MT, Tubing F, Dittmar GA, Finley D. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol. 2002;4:725–30.

    Article  PubMed  CAS  Google Scholar 

  • Foley K, Cooley L. Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development. 1998;125:1075–82.

    PubMed  CAS  Google Scholar 

  • Ghavami S, Yeganeh B, Stelmack GL, Kashani HH, Sharma P, Cunnington R, Rattan S, Bathe K, Klonisch T, Dixon IM, Freed DH, Halayko AJ. Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death Dis. 2012;3:e330.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature. 2003;426:895–9.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans. 2007;35:12–7.

    Article  PubMed  CAS  Google Scholar 

  • He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 2012;481:511–5.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann JL, Briones Jr F, Brisbay S, Logothetis CJ, McDonnell TJ. Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl-2 and p53. Oncogene. 1998;17:2889–99.

    Article  PubMed  CAS  Google Scholar 

  • Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13:89–102.

    PubMed  CAS  Google Scholar 

  • Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J, Anderson KC. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 2001;61:3071–6.

    PubMed  CAS  Google Scholar 

  • Jahani-Asl A, Basak A, Tsang BK. Caspase-3-mediated cleavage of Akt: involvement of non-consensus sites and influence of phosphorylation. FEBS Lett. 2007;581:2883–8.

    Article  PubMed  CAS  Google Scholar 

  • Jung T, Catalgol B, Grune T. The proteasomal system. Mol Aspects Med. 2009;30:191–296.

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Shi Y, Hanson KA, Williams LM, Sakasai R, Bowler MJ, Tibbetts RS. Potentiation of amyotrophic lateral sclerosis (ALS)-associated TDP-43 aggregation by the proteasome-targeting factor, ubiquilin 1. J Biol Chem. 2009;284:8083–92.

    Article  PubMed  CAS  Google Scholar 

  • King RC. Origin and development of the egg chamber within the adult ovarioles. Ovarian development in Drosophila melanogaster. New York: Academic Press; 1970.

    Google Scholar 

  • Kockel L, Kerr KS, Melnick M, Bruckner K, Hebrok M, Perrimon N. Dynamic switch of negative feedback regulation in Drosophila Akt-TOR signaling. PLoS Genet. 2010;6:e1000990.

    Article  PubMed  Google Scholar 

  • Konstantakou EG, Voutsinas GE, Karkoulis PK, Aravantinos G, Margaritis LH, Stravopodis DJ. Human bladder cancer cells undergo cisplatin-induced apoptosis that is associated with p53-dependent and p53-independent responses. Int J Oncol. 2009;35:401–16.

    PubMed  CAS  Google Scholar 

  • Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280–93.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Doumanis J. The fly caspases. Cell Death Differ. 2000;7:1039–44.

    Article  PubMed  CAS  Google Scholar 

  • Kuranaga E. Caspase signaling in animal development. Dev Growth Differ. 2011;53:137–48.

    Article  PubMed  CAS  Google Scholar 

  • Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci U S A. 2003;100:9946–51.

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Froelich CJ, Fujita N, Tsuruo T, Kim JH. Reconstitution of caspase-3 confers low glucose-enhanced tumor necrosis factor-related apoptosis-inducing ligand cytotoxicity and Akt cleavage. Clin Cancer Res. 2004;10:1894–900.

    Article  PubMed  CAS  Google Scholar 

  • Ling YH, Liebes L, Jiang JD, Holland JF, Elliott PJ, Adams J, Muggia FM, Perez-Soler R. Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin Cancer Res. 2003;9:1145–54.

    PubMed  CAS  Google Scholar 

  • Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. Int J Biochem Cell Biol. 2004;36:2405–19.

    Article  PubMed  CAS  Google Scholar 

  • Lopes UG, Erhardt P, Yao R, Cooper GM. p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem. 1997;272:12893–6.

    Article  PubMed  CAS  Google Scholar 

  • Lundgren J, Masson P, Mirzaei Z, Young P. Identification and characterization of a Drosophila proteasome regulatory network. Mol Cell Biol. 2005;25:4662–75.

    Article  PubMed  CAS  Google Scholar 

  • MacLaren AP, Chapman RS, Wyllie AH, Watson CJ. p53-dependent apoptosis induced by proteasome inhibition in mammary epithelial cells. Cell Death Differ. 2001;8:210–8.

    Article  PubMed  CAS  Google Scholar 

  • Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiol Rev. 2006;86:1133–49.

    Article  PubMed  CAS  Google Scholar 

  • Margaritis LH. Structure and physiology of the eggshell. In: L. I. Gilbert, Kerkut, G.A., ed. Comprehensive insect biochemistry, physiology and pharmacology. Pergammon Press, Oxford; 1985 vol. 1

  • Margaritis LH. The eggshell of Drosophila melanogaster. New staging characteristics and fine structural analysis of choriogenesis. Canadian Journal of Zoology. 1986; 2152–75.

  • Martelli AM, Faenza I, Billi AM, Manzoli L, Evangelisti C, Fala F, Cocco L. Intranuclear 3'-phosphoinositide metabolism and Akt signaling: new mechanisms for tumorigenesis and protection against apoptosis? Cell Signal. 2006;18:1101–7.

    Article  PubMed  CAS  Google Scholar 

  • Matus S, Nassif M, Glimcher LH, Hetz C. XBP-1 deficiency in the nervous system reveals a homeostatic switch to activate autophagy. Autophagy. 2009;5:1226–8.

    Article  PubMed  Google Scholar 

  • McCall K. Eggs over easy: cell death in the Drosophila ovary. Dev Biol. 2004;274:3–14.

    Article  PubMed  CAS  Google Scholar 

  • McCall K, Steller H. Requirement for DCP-1 caspase during Drosophila oogenesis. Science. 1998;279:230–4.

    Article  PubMed  CAS  Google Scholar 

  • Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel PM, Kruger E. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J Biol Chem. 2003;278:21517–25.

    Article  PubMed  CAS  Google Scholar 

  • Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A. 1999;96:10403–8.

    Article  PubMed  CAS  Google Scholar 

  • Mimnaugh EG, Xu W, Vos M, Yuan X, Neckers L. Endoplasmic reticulum vacuolization and valosin-containing protein relocalization result from simultaneous hsp90 inhibition by geldanamycin and proteasome inhibition by velcade. Mol Cancer Res. 2006;4:667–81.

    Article  PubMed  CAS  Google Scholar 

  • Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X, Bailey C, Joseph M, Libermann TA, Treon SP, Munshi NC, Richardson PG, Hideshima T, Anderson KC. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A. 2002;99:14374–9.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000;403:98–103.

    Article  PubMed  CAS  Google Scholar 

  • Naujokat C, Sezer O, Zinke H, Leclere A, Hauptmann S, Possinger K. Proteasome inhibitors induced caspase-dependent apoptosis and accumulation of p21WAF1/Cip1 in human immature leukemic cells. Eur J Haematol. 2000;65:221–36.

    Article  PubMed  CAS  Google Scholar 

  • Nencioni A, Grunebach F, Patrone F, Ballestrero A, Brossart P. Proteasome inhibitors: antitumor effects and beyond. Leukemia. 2007;21:30–6.

    Article  PubMed  CAS  Google Scholar 

  • Nezis IP, Stravopodis DJ, Papassideri I, Robert-Nicoud M, Margaritis LH. Stage-specific apoptotic patterns during Drosophila oogenesis. Eur J Cell Biol. 2000;79:610–20.

    Article  PubMed  CAS  Google Scholar 

  • Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine D, Rusten TE, Stenmark H, Brech A. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J Cell Biol. 2008;180:1065–71.

    Article  PubMed  CAS  Google Scholar 

  • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26:9220–31.

    Article  PubMed  CAS  Google Scholar 

  • Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, Padmanabhan R, Hild M, Berry DL, Garza D, Hubbert CC, Yao TP, Baehrecke EH, Taylor JP. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007;447:859–63.

    Article  PubMed  CAS  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282:24131–45.

    Article  PubMed  CAS  Google Scholar 

  • Peterson JS, Barkett M, McCall K. Stage-specific regulation of caspase activity in Drosophila oogenesis. Dev Biol. 2003;260:113–23.

    Article  PubMed  CAS  Google Scholar 

  • Pritchett TL, Tanner EA, McCall K. Cracking open cell death in the Drosophila ovary. Apoptosis. 2009;14:969–79.

    Article  PubMed  Google Scholar 

  • Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem. 2001;276:33869–74.

    Article  PubMed  CAS  Google Scholar 

  • Ruggero D, Sonenberg N. The Akt of translational control. Oncogene. 2005;24:7426–34.

    Article  PubMed  CAS  Google Scholar 

  • Ryoo HD, Steller H. Unfolded protein response in Drosophila: why another model can make it fly. Cell Cycle. 2007;6:830–5.

    Article  PubMed  CAS  Google Scholar 

  • Ryoo HD, Domingos PM, Kang MJ, Steller H. Unfolded protein response in a Drosophila model for retinal degeneration. EMBO J. 2007;26:242–52.

    Article  PubMed  CAS  Google Scholar 

  • Scott RC, Schuldiner O, Neufeld TP. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell. 2004;7:167–78.

    Article  PubMed  CAS  Google Scholar 

  • Shen S, Kepp O, Kroemer G. The end of autophagic cell death? Autophagy. 2012;8:1–3.

    Article  PubMed  CAS  Google Scholar 

  • Shiba K, Arai T, Sato S, Kubo S, Ohba Y, Mizuno Y, Hattori N. Parkin stabilizes PINK1 through direct interaction. Biochem Biophys Res Commun. 2009;383:331–5.

    Article  PubMed  CAS  Google Scholar 

  • Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4:176–84.

    PubMed  CAS  Google Scholar 

  • Song Z, Guan B, Bergman A, Nicholson DW, Thornberry NA, Peterson EP, Steller H. Biochemical and genetic interactions between Drosophila caspases and the proapoptotic genes rpr, hid, and grim. Mol Cell Biol. 2000;20:2907–14.

    Article  PubMed  CAS  Google Scholar 

  • Southwood CM, Garbern J, Jiang W, Gow A. The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron. 2002;36:585–96.

    Article  PubMed  CAS  Google Scholar 

  • Spradling AC. Germline cysts: communes that work. Cell. 1993;72:649–51.

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Anantharam V, Zhang D, Latchoumycandane C, Kanthasamy A, Kanthasamy AG. Proteasome inhibitor MG-132 induces dopaminergic degeneration in cell culture and animal models. Neurotoxicology. 2006;27:807–15.

    Article  PubMed  CAS  Google Scholar 

  • Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7:880–5.

    Article  PubMed  CAS  Google Scholar 

  • Szlanka T, Haracska L, Kiss I, Deak P, Kurucz E, Ando I, Viragh E, Udvardy A. Deletion of proteasomal subunit S5a/Rpn10/p54 causes lethality, multiple mitotic defects and overexpression of proteasomal genes in Drosophila melanogaster. J Cell Sci. 2003;116:1023–33.

    Article  PubMed  CAS  Google Scholar 

  • Tai HC, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci. 2008;9:826–38.

    Article  PubMed  CAS  Google Scholar 

  • Tank EM, True HL. Disease-associated mutant ubiquitin causes proteasomal impairment and enhances the toxicity of protein aggregates. PLoS Genet. 2009;5:e1000382.

    Article  PubMed  Google Scholar 

  • Tonoki A, Kuranaga E, Tomioka T, Hamazaki J, Murata S, Tanaka K, Miura M. Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol. 2009;29:1095–106.

    Article  PubMed  CAS  Google Scholar 

  • Tydlacka S, Wang CE, Wang X, Li S, Li XJ. Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons. J Neurosci. 2008;28:13285–95.

    Article  PubMed  CAS  Google Scholar 

  • Velentzas AD, Nezis IP, Stravopodis DJ, Papassideri IS, Margaritis LH. Apoptosis and autophagy function cooperatively for the efficacious execution of programmed nurse cell death during Drosophila virilis oogenesis. Autophagy. 2007a;3:130–2.

    PubMed  CAS  Google Scholar 

  • Velentzas AD, Nezis IP, Stravopodis DJ, Papassideri IS, Margaritis LH. Mechanisms of programmed cell death during oogenesis in Drosophila virilis. Cell Tissue Res. 2007b;327:399–414.

    Article  PubMed  Google Scholar 

  • Velentzas PD, Velentzas AD, Mpakou VE, Papassideri IS, Stravopodis DJ, Margaritis LH. Proteasome inhibition induces developmentally deregulated programs of apoptotic and autophagic cell death during Drosophila melanogaster oogenesis. Cell Biol Int. 2011;35:15–27.

    Article  PubMed  CAS  Google Scholar 

  • Vernace VA, Arnaud L, Schmidt-Glenewinkel T, Figueiredo-Pereira ME. Aging perturbs 26S proteasome assembly in Drosophila melanogaster. FASEB J. 2007;21:2672–82.

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–10.

    Article  PubMed  CAS  Google Scholar 

  • Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem. 1999;68:1015–68.

    Article  PubMed  CAS  Google Scholar 

  • Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer. 2002;2:594–604.

    Article  PubMed  CAS  Google Scholar 

  • Wagenknecht B, Hermisson M, Eitel K, Weller M. Proteasome inhibitors induce p53/p21-independent apoptosis in human glioma cells. Cell Physiol Biochem. 1999;9:117–25.

    Article  PubMed  CAS  Google Scholar 

  • Young JT, Heikkila JJ. Proteasome inhibition induces hsp30 and hsp70 gene expression as well as the acquisition of thermotolerance in Xenopus laevis A6 cells. Cell Stress Chaperones. 2010;15:323–34.

    Article  PubMed  CAS  Google Scholar 

  • Young P, Deveraux Q, Beal RE, Pickart CM, Rechsteiner M. Characterization of two polyubiquitin binding sites in the 26S protease subunit 5a. J Biol Chem. 1998;273:5461–7.

    Article  PubMed  CAS  Google Scholar 

  • Zhu K, Dunner Jr K, McConkey DJ. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene. 2010;29:451–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Janssen-Cilag Pharmaceuticals, AEBE, Athens, Greece, for kindly and generously providing the chemotherapeutic drug Velcade (effective substance: Bortezomib). Moreover, they wish to express their thanks to the Assistant Professor Ioannis P. Trougakos (Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece) for his technical support and assistance regarding the fluorometry experiments. They also thank Bloomington Drosophila Stock Center (Indiana, USA) and Vienna Drosophila RNAi Center (VDRC) (Vienna, Austria) for providing fly stocks. They are grateful to Professor Hermann Steller and Dr. Travis Gorenc (Howard Hughes Medical Institute, The Rockefeller University, New York, USA) for kindly providing the UAS_Xbp1-EGFP transgenic fly strain, Dr. Andor Udvardy (Biological Center of the Hungarian Academy Sci., Szeged, Hungary) for kindly providing the Pros54/Rpn10 and IIG7 monoclonal antibodies, Dr. Ioannis Nezis (Department of Biochemistry, Center for Cancer Biomedicine, University of Oslo, Oslo, Norway) for kindly providing the Ref(2)P polyclonal antibody and Associate Professor George Diallinas (Department of Botany, Faculty of Biology, University of Athens, Athens, Greece) for kindly providing the GFP monoclonal antibody. This research project (PENED) was co-financed by E.U.-European Social Fund (75 %) and the Greek Ministry of Development-GSRT (25 %).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios J. Stravopodis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velentzas, P.D., Velentzas, A.D., Mpakou, V.E. et al. Detrimental effects of proteasome inhibition activity in Drosophila melanogaster: implication of ER stress, autophagy, and apoptosis. Cell Biol Toxicol 29, 13–37 (2013). https://doi.org/10.1007/s10565-012-9235-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-012-9235-9

Keywords