Skip to main content

Advertisement

Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The family of matricellular proteins comprises molecules with disparate biology. The main characteristic of matricellular proteins is to be expressed during tissue renewal and repair in order to “normalize” the tissue. Tumors are wound that do not heal, and tumor growth and metastasis can be viewed as a consequence of aberrant homeostasis, during which matricellular proteins are often upregulated. In the tumor microenvironment, they can be produced by both tumor cells and surrounding stromal cells, such as fibroblasts and macrophages. In this context, matricellular proteins can exert several functions that actively contribute to tumor progression. They may (a) regulate cellular adhesion and migration and extracellular matrix deposition, (b) control tumor infiltration by macrophages or other leukocytes, (c) affect tumor angiogenesis, (d) regulate TGFβ and other growth factor receptor signals, (e) directly stimulate integrin receptors to transduce pro-survival or pro-migratory signals, and (f) regulate the wnt/β-catenin pathways. Most of these functions contribute to settle a chronic low inflammatory state, whose involvement in tissue transformation and tumor progression is now established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9, 239–252.

    Article  PubMed  CAS  Google Scholar 

  2. Sangaletti, S., & Colombo, M. P. (2008). Matricellular proteins at the crossroad of inflammation and cancer. Cancer Letters, 267, 245–253.

    Article  PubMed  CAS  Google Scholar 

  3. Bornstein, P. (2009). Matricellular proteins: an overview. Journal of Cell Communication Signal, 3(3–3), 163–165.

    Article  Google Scholar 

  4. Yang, Z., Kyriakides, T. R., & Bornstein, P. (2000). Matricellular proteins as modulators of cell-matrix interactions: adhesive defect in thrombospondin 2-null fibroblasts is a consequence of increased levels of matrix metalloproteinase-2. Molecular Biology of the Cell, 11, 3353–3364.

    PubMed  CAS  Google Scholar 

  5. Yan, Q., Weaver, M., Perdue, N., & Sage, E. H. (2005). Matricellular protein SPARC is translocated to the nuclei of immortalized murine lens epithelial cells. Journal of Cell Physiology, 203, 286–294.

    Article  CAS  Google Scholar 

  6. Perbal, B. (2006). New insight into CCN3 interactions—nuclear CCN3: fact or fantasy? Cell Communication Signal, 4, 6.

    Article  CAS  Google Scholar 

  7. Fisher, L. W., Torchia, D. A., Fohr, B., Young, M. F., & Fedarko, N. S. (2001). Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochemical and Biophysical Research Communications, 280, 460–465.

    Article  PubMed  CAS  Google Scholar 

  8. Senger, D. R., Wirth, D. F., & Hynes, R. O. (1979). Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell, 16, 885–893.

    Article  PubMed  CAS  Google Scholar 

  9. Ashkar, S., Weber, G. F., Panoutsakopoulou, V., Sanchirico, M. E., Jansson, M., Zawaideh, S., et al. (2000). Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science, 287, 860–864.

    Article  PubMed  CAS  Google Scholar 

  10. O'Regan, A. W., Nau, G. J., Chupp, G. L., & Berman, J. S. (2000). Osteopontin (Eta-1) in cell-mediated immunity: teaching an old dog new tricks. Immunology Today, 21, 475–478.

    Article  PubMed  Google Scholar 

  11. Weiss, J. M., Renkl, A. C., Maier, C. S., Kimmig, M., Liaw, L., Ahrens, T., et al. (2001). Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes. Journal of Experimental Medicine, 194, 1219–1229.

    Article  PubMed  CAS  Google Scholar 

  12. El-Tanani, M. K. (2008). Role of osteopontin in cellular signaling and metastatic phenotype. Frontiers in Bioscience, 13, 4276–4284.

    Article  PubMed  CAS  Google Scholar 

  13. El-Tanani, M. K., Campbell, F. C., Kurisetty, V., Jin, D., McCann, M., & Rudland, P. S. (2006). The regulation and role of osteopontin in malignant transformation and cancer. Cytokine and Growth Factor Reviews, 17, 463–474.

    Article  PubMed  CAS  Google Scholar 

  14. Rittling, S. R., & Chambers, A. F. (2004). Role of osteopontin in tumour progression. British Journal of Cancer, 90, 1877–1881.

    Article  PubMed  CAS  Google Scholar 

  15. Wai, P. Y., & Kuo, P. C. (2008). Osteopontin: regulation in tumor metastasis. Cancer and Metastasis Reviews, 27, 103–118.

    Article  PubMed  CAS  Google Scholar 

  16. Tuck, A. B., O'Malley, F. P., Singhal, H., Harris, J. F., Tonkin, K. S., Kerkvliet, N., et al. (1998). Osteopontin expression in a group of lymph node negative breast cancer patients. International Journal of Cancer, 79, 502–508.

    Article  CAS  Google Scholar 

  17. Chambers, A. F., Wilson, S. M., Kerkvliet, N., O'Malley, F. P., Harris, J. F., & Casson, A. G. (1996). Osteopontin expression in lung cancer. Lung Cancer, 15, 311–323.

    Article  PubMed  CAS  Google Scholar 

  18. Thalmann, G. N., Sikes, R. A., Devoll, R. E., Kiefer, J. A., Markwalder, R., Klima, I., et al. (1999). Osteopontin: possible role in prostate cancer progression. Clinical Cancer Research, 5, 2271–2277.

    PubMed  CAS  Google Scholar 

  19. Yeatman, T. J., & Chambers, A. F. (2003). Osteopontin and colon cancer progression. Clinical & Experimental Metastasis, 20, 85–90.

    Article  CAS  Google Scholar 

  20. Furger, K. A., Menon, R. K., Tuck, A. B., Bramwell, V. H., & Chambers, A. F. (2001). The functional and clinical roles of osteopontin in cancer and metastasis. Current Molecular Medicine, 1, 621–632.

    Article  PubMed  CAS  Google Scholar 

  21. Fedarko, N. S., Jain, A., Karadag, A., Van Eman, M. R., & Fisher, L. W. (2001). Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clinincal Cancer Research, 7, 4060–4066.

    CAS  Google Scholar 

  22. Singhal, H., Bautista, D. S., Tonkin, K. S., O'Malley, F. P., Tuck, A. B., Chambers, A. F., et al. (1997). Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clinical Cancer Research, 3, 605–611.

    PubMed  CAS  Google Scholar 

  23. Bramwell, V. H., Doig, G. S., Tuck, A. B., Wilson, S. M., Tonkin, K. S., Tomiak, A., et al. (2006). Serial plasma osteopontin levels have prognostic value in metastatic breast cancer. Clinical Cancer Research, 12, 3337–3343.

    Article  PubMed  CAS  Google Scholar 

  24. Wu, C. Y., Wu, M. S., Chiang, E. P., Wu, C. C., Chen, Y. J., Chen, C. J., et al. (2007). Elevated plasma osteopontin associated with gastric cancer development, invasion and survival. Gut, 56, 782–789.

    Article  PubMed  CAS  Google Scholar 

  25. Chakraborty, G., Jain, S., Behera, R., Ahmed, M., Sharma, P., Kumar, V., et al. (2006). The multifaceted roles of osteopontin in cell signaling, tumor progression and angiogenesis. Current Molecular Medicine, 6, 819–830.

    Article  PubMed  CAS  Google Scholar 

  26. Bramwell, V. H., Tuck, A. B., Wilson, S. M., Stitt, L. W., Cherian, A. K., Rorke, S. C., et al. (2005). Expression of osteopontin and HGF/met in adult soft tissue tumors. Cancer Biology and Therapy, 4, 1336–1341.

    PubMed  CAS  Google Scholar 

  27. Tuck, A. B., Elliott, B. E., Hota, C., Tremblay, E., & Chambers, A. F. (2000). Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). Journal of Cellular Biochemistry, 78, 465–475.

    Article  PubMed  CAS  Google Scholar 

  28. Tuck, A. B., Hota, C., Wilson, S. M., & Chambers, A. F. (2003). Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Oncogene, 22, 1198–1205.

    Article  PubMed  CAS  Google Scholar 

  29. Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.

    Article  PubMed  CAS  Google Scholar 

  30. Pollard, J. W. (2008). Macrophages define the invasive microenvironment in breast cancer. Journal Leukocyte Biology, 84, 623–630.

    Article  CAS  Google Scholar 

  31. Psaila, B., Kaplan, R. N., Port, E. R., & Lyden, D. (2006). Priming the 'soil' for breast cancer metastasis: the pre-metastatic niche. Breast Disease, 26, 65–74.

    PubMed  CAS  Google Scholar 

  32. Yang, L., Huang, J., Ren, X., Gorska, A. E., Chytil, A., Aakre, M., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell, 13, 23–35.

    Article  PubMed  CAS  Google Scholar 

  33. Lund, S. A., Giachelli, C. M., & Scatena, M. (2009). The role of osteopontin in inflammatory processes. Journal Cell Communication Signal, 3, 311–322.

    Article  Google Scholar 

  34. McAllister, S. S., Gifford, A. M., Greiner, A. L., Kelleher, S. P., Saelzler, M. P., Ince, T. A., et al. (2008). Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell, 133, 994–1005.

    Article  PubMed  CAS  Google Scholar 

  35. Nomiyama, T., Perez-Tilve, D., Ogawa, D., Gizard, F., Zhao, Y., Heywood, E. B., et al. (2007). Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. Journal of Clinical Investigation, 117, 2877–2888.

    Article  PubMed  CAS  Google Scholar 

  36. Park, E. J., Lee, J. E., Yu, G., He, G., Ali, S. Z., Holzer, R. G., et al. (2010). Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing il-6 and tnf expression. Cell, 140, 197–208.

    Article  PubMed  CAS  Google Scholar 

  37. Philip, S., Bulbule, A., & Kundu, G. C. (2001). Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. Journal of Biological Chemistry, 276, 44926–44935.

    Article  PubMed  CAS  Google Scholar 

  38. Wai, P. Y., Mi, Z., Guo, H., Sarraf-Yazdi, S., Gao, C., Wei, J., et al. (2005). Osteopontin silencing by small interfering RNA suppresses in vitro and in vivo CT26 murine colon adenocarcinoma metastasis. Carcinogenesis, 26, 741–751.

    Article  PubMed  CAS  Google Scholar 

  39. Chen, Y. J., Wei, Y. Y., Chen, H. T., Fong, Y. C., Hsu, C. J., Tsai, C. H., et al. (2009). Osteopontin increases migration and MMP-9 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappa B-dependent pathway in human chondrosarcoma cells. Journal of Cell Physiology, 221, 98–108.

    Article  CAS  Google Scholar 

  40. Das, R., Philip, S., Mahabeleshwar, G. H., Bulbule, A., & Kundu, G. C. (2005). Osteopontin: it's role in regulation of cell motility and nuclear factor kappa B-mediated urokinase type plasminogen activator expression. IUBMB Life, 57, 441–447.

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki, M., Mose, E., Galloy, C., & Tarin, D. (2007). Osteopontin gene expression determines spontaneous metastatic performance of orthotopic human breast cancer xenografts. American Journal of Pathology, 171, 682–692.

    Article  PubMed  CAS  Google Scholar 

  42. Sun, B. S., Dong, Q. Z., Ye, Q. H., Sun, H. J., Jia, H. L., Zhu, X. Q., et al. (2008). Lentiviral-mediated miRNA against osteopontin suppresses tumor growth and metastasis of human hepatocellular carcinoma. Hepatology, 48, 1834–1842.

    Article  PubMed  CAS  Google Scholar 

  43. Castellano, G., Malaponte, G., Mazzarino, M. C., Figini, M., Marchese, F., Gangemi, P., et al. (2008). Activation of the osteopontin/matrix metalloproteinase-9 pathway correlates with prostate cancer progression. Clinical Cancer Research, 14, 7470–7480.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang, A., Liu, Y., Shen, Y., Xu, Y., Li, X. (2009). Osteopontin silencing by small interfering RNA induces apoptosis and suppresses invasion in human renal carcinoma Caki-1 cells. Medical Oncology (in press)

  45. Song, G., Ouyang, G., Mao, Y., Ming, Y., Bao, S., Hu, T. (2008). Osteopontin promotes gastric cancer metastasis by augmenting cell survival and invasion through Akt-mediated HIF-1alpha up-regulation and MMP9 activation. Journal of Cellular and Molecular Medicine 13(8b): 1706-1718.

    Google Scholar 

  46. Song, G., Cai, Q. F., Mao, Y. B., Ming, Y. L., Bao, S. D., & Ouyang, G. L. (2008). Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1alpha expression through the PI3-K/Akt pathway. Cancer Science, 99, 1901–1907.

    PubMed  CAS  Google Scholar 

  47. Scatena, M., Almeida, M., Chaisson, M. L., Fausto, N., Nicosia, R. F., & Giachelli, C. M. (1998). NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. Journal of Cellular Biological, 141, 1083–1093.

    Article  CAS  Google Scholar 

  48. Rice, J., Courter, D. L., Giachelli, C. M., & Scatena, M. (2006). Molecular mediators of alphavbeta3-induced endothelial cell survival. Journal of Vascular Research, 43, 422–436.

    Article  PubMed  CAS  Google Scholar 

  49. Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 8, 958–969.

    Article  PubMed  CAS  Google Scholar 

  50. Guo, H., Cai, C. Q., Schroeder, R. A., & Kuo, P. C. (2001). Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. Journal of Immunology, 166, 1079–1086.

    CAS  Google Scholar 

  51. Wai, P. Y., Guo, L., Gao, C., Mi, Z., Guo, H., & Kuo, P. C. (2006). Osteopontin inhibits macrophage nitric oxide synthesis to enhance tumor proliferation. Surgery, 140, 132–140.

    Article  PubMed  Google Scholar 

  52. Cantor, H., & Shinohara, M. L. (2009). Regulation of T-helper-cell lineage development by osteopontin: the inside story. Nature Reviews Immunology, 9, 137–141.

    Article  PubMed  CAS  Google Scholar 

  53. Murugaiyan, G., Mittal, A., & Weiner, H. L. (2008). Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. Journal of Immunology, 181, 7480–7488.

    CAS  Google Scholar 

  54. Shinohara, M. L., Kim, J. H., Garcia, V. A., & Cantor, H. (2008). Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity, 29, 68–78.

    Article  PubMed  CAS  Google Scholar 

  55. Murugaiyan, G., & Saha, B. (2009). Protumor vs. antitumor functions of IL-17. Journal of Immunology, 183, 4169–4175.

    Article  CAS  Google Scholar 

  56. Senger, D. R., Ledbetter, S. R., Claffey, K. P., Papadopoulos-Sergiou, A., Peruzzi, C. A., & Detmar, M. (1996). Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. American Journal of Pathology, 149, 293–305.

    PubMed  CAS  Google Scholar 

  57. Dai, J., Peng, L., Fan, K., Wang, H., Wei, R., Ji, G., et al. (2009). Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene, 28, 3412–3422.

    Article  PubMed  CAS  Google Scholar 

  58. Hirama, M., Takahashi, F., Takahashi, K., Akutagawa, S., Shimizu, K., Soma, S., et al. (2003). Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Letters, 198, 107–117.

    Article  PubMed  CAS  Google Scholar 

  59. Tang, H., Wang, J., Bai, F., Zhai, H., Gao, J., Hong, L., et al. (2008). Positive correlation of osteopontin, cyclooxygenase-2 and vascular endothelial growth factor in gastric cancer. Cancer Investigation, 26, 60–67.

    Article  PubMed  CAS  Google Scholar 

  60. Jessen, K. A., Liu, S. Y., Tepper, C. G., Karrim, J., McGoldrick, E. T., Rosner, A., et al. (2004). Molecular analysis of metastasis in a polyomavirus middle T mouse model: the role of osteopontin. Breast Cancer Research, 6, R157–R169.

    Article  PubMed  CAS  Google Scholar 

  61. Crawford, H. C., Matrisian, L. M., & Liaw, L. (1998). Distinct roles of osteopontin in host defense activity and tumor survival during squamous cell carcinoma progression in vivo. Cancer Research, 58, 5206–5215.

    PubMed  CAS  Google Scholar 

  62. Nemoto, H., Rittling, S. R., Yoshitake, H., Furuya, K., Amagasa, T., Tsuji, K., et al. (2001). Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. Journal of Bone and Mineral Research, 16, 652–659.

    Article  PubMed  CAS  Google Scholar 

  63. Feng, F., & Rittling, S. R. (2000). Mammary tumor development in MMTV-c-myc/MMTV-v-Ha-ras transgenic mice is unaffected by osteopontin deficiency. Breast Cancer Research and Treatment, 63, 71–79.

    Article  PubMed  CAS  Google Scholar 

  64. Ye, Q. H., Qin, L. X., Forgues, M., He, P., Kim, J. W., Peng, A. C., et al. (2003). Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nature Medicine, 9, 416–423.

    Article  PubMed  CAS  Google Scholar 

  65. Termine, J. D., Kleinman, H. K., Whitson, S. W., Conn, K. M., McGarvey, M. L., & Martin, G. R. (1981). Osteonectin, a bone-specific protein linking mineral to collagen. Cell, 26, 99–105.

    Article  PubMed  CAS  Google Scholar 

  66. Mason, I. J., Taylor, A., Williams, J. G., Sage, H., & Hogan, B. L. (1986). Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell 'culture shock' glycoprotein of Mr 43, 000. EMBO Journal, 5, 1465–1472.

    PubMed  CAS  Google Scholar 

  67. Emerson, R. O., Sage, E. H., Ghosh, J. G., & Clark, J. I. (2006). Chaperone-like activity revealed in the matricellular protein SPARC. Journal Cellular Biochemistry, 98, 701–705.

    Article  CAS  Google Scholar 

  68. Martinek, N., Shahab, J., Saathoff, M., & Ringuette, M. (2008). Haemocyte-derived SPARC is required for collagen IV-dependent stability of basal laminae in Drosophila embryos. Journal of Cell Science, 121, 1671–1680.

    Article  PubMed  CAS  Google Scholar 

  69. Martinek, N., Shahab, J., Sodek, J., & Ringuette, M. (2007). Is SPARC an evolutionarily conserved collagen chaperone? Journal of Dental Research, 86, 296–305.

    Article  PubMed  CAS  Google Scholar 

  70. Gilmour, D. T., Lyon, G. J., Carlton, M. B., Sanes, J. R., Cunningham, J. M., Anderson, J. R., et al. (1998). Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO Journal, 17, 1860–1870.

    Article  PubMed  CAS  Google Scholar 

  71. Delany, A. M., Amling, M., Priemel, M., Howe, C., Baron, R., & Canalis, E. (2000). Osteopenia and decreased bone formation in osteonectin-deficient mice. Journal of Clinical Investigation, 105, 915–923.

    Article  PubMed  CAS  Google Scholar 

  72. Bradshaw, A. D., Puolakkainen, P., Dasgupta, J., Davidson, J. M., Wight, T. N., & Helene Sage, E. (2003). SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. Journal of Investigative Dermatology, 120, 949–955.

    Article  PubMed  CAS  Google Scholar 

  73. Schellings, M. W., Vanhoutte, D., Swinnen, M., Cleutjens, J. P., Debets, J., van Leeuwen, R. E., et al. (2009). Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. Journal Experimental Medicine, 206, 113–123.

    Article  CAS  Google Scholar 

  74. McCurdy, S., Baicu, C. F., Heymans, S., & Bradshaw, A. D. (2009). Cardiac extracellular matrix remodeling: Fibrillar collagens and Secreted Protein Acidic and Rich in Cysteine (SPARC). J Mol Cell Cardiol, 48(3), 544–549.

    Article  PubMed  CAS  Google Scholar 

  75. Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139, 891–906.

    Article  PubMed  CAS  Google Scholar 

  76. Bradshaw, A. D., Reed, M. J., & Sage, E. H. (2002). SPARC-null mice exhibit accelerated cutaneous wound closure. Journal of Histochemistry and Cytochemistry, 50, 1–10.

    PubMed  CAS  Google Scholar 

  77. Savani, R. C., Zhou, Z., Arguiri, E., Wang, S., Vu, D., Howe, C. C., et al. (2000). Bleomycin-induced pulmonary injury in mice deficient in SPARC. American Journal of Physiology-Lung Cellular and Molecular Physiology, 279, L743–L750.

    PubMed  CAS  Google Scholar 

  78. Sangaletti, S., Gioiosa, L., Guiducci, C., Rotta, G., Rescigno, M., Stoppacciaro, A., et al. (2005). Accelerated dendritic-cell migration and T-cell priming in SPARC-deficient mice. Journal of Cell Science, 118, 3685–3694.

    Article  PubMed  CAS  Google Scholar 

  79. Fidler IJ (2001) Seed and soil revisited: contribution of the organ microenvironment to cancer metastasis. Surg Oncol Clin N Am 10:257-269 vii-viiii

    Google Scholar 

  80. Popivanova, B. K., Kitamura, K., Wu, Y., Kondo, T., Kagaya, T., Kaneko, S., et al. (2008). Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. Journal of Clinical Investigation, 118, 560–570.

    PubMed  CAS  Google Scholar 

  81. Thun, M. J., Namboodiri, M. M., & Heath, C. W., Jr. (1991). Aspirin use and reduced risk of fatal colon cancer. New England Journal of Medicine, 325, 1593–1596.

    Article  PubMed  CAS  Google Scholar 

  82. Kim, S., Takahashi, H., Lin, W. W., Descargues, P., Grivennikov, S., Kim, Y., et al. (2009). Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 457, 102–106.

    Article  PubMed  CAS  Google Scholar 

  83. Borrello, M. G., Alberti, L., Fischer, A., Degl'innocenti, D., Ferrario, C., Gariboldi, M., et al. (2005). Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proceedings of the National Academy of Science USA, 102, 14825–14830.

    Article  CAS  Google Scholar 

  84. Melani, C., Chiodoni, C., Forni, G., & Colombo, M. P. (2003). Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood, 102, 2138–2145.

    Article  PubMed  CAS  Google Scholar 

  85. Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166, 678–689.

    CAS  Google Scholar 

  86. Melani, C., Sangaletti, S., Barazzetta, F. M., Werb, Z., & Colombo, M. P. (2007). Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Research, 67, 11438–11446.

    Article  PubMed  CAS  Google Scholar 

  87. Sangaletti, S., Stoppacciaro, A., Guiducci, C., Torrisi, M. R., & Colombo, M. P. (2003). Leukocyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. Journal Experimental Medicine, 198, 1475–1485.

    Article  CAS  Google Scholar 

  88. Bradshaw, A. D. (2009). The role of SPARC in extracellular matrix assembly. Journal Cell Commun Signal, 3(3–4), 239–246.

    Article  Google Scholar 

  89. Said, N. A., Elmarakby, A. A., Imig, J. D., Fulton, D. J., & Motamed, K. (2008). SPARC ameliorates ovarian cancer-associated inflammation. Neoplasia, 10, 1092–1104.

    PubMed  CAS  Google Scholar 

  90. Arnold, S., Mira, E., Muneer, S., Korpanty, G., Beck, A. W., Holloway, S. E., et al. (2008). Forced expression of MMP9 rescues the loss of angiogenesis and abrogates metastasis of pancreatic tumors triggered by the absence of host SPARC. Experimental Biology and Medical (Maywood), 233, 860–873.

    Article  CAS  Google Scholar 

  91. Shi, Q., Bao, S., Song, L., Wu, Q., Bigner, D. D., Hjelmeland, A. B., et al. (2007). Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene, 26, 4084–4094.

    Article  PubMed  CAS  Google Scholar 

  92. Said, N., Najwer, I., & Motamed, K. (2007). Secreted protein acidic and rich in cysteine (SPARC) inhibits integrin-mediated adhesion and growth factor-dependent survival signaling in ovarian cancer. American Journal of Pathology, 170, 1054–1063.

    Article  PubMed  CAS  Google Scholar 

  93. Ng, M. R., & Brugge, J. S. (2009). A stiff blow from the stroma: collagen crosslinking drives tumor progression. Cancer Cells, 16, 455–457.

    Article  CAS  Google Scholar 

  94. Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98, 137–146.

    Article  PubMed  CAS  Google Scholar 

  95. Zaman, M. H., Trapani, L. M., Sieminski, A. L., Mackellar, D., Gong, H., Kamm, R. D., et al. (2006). Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proceedings of the National Academy Sciences USA, 103, 10889–10894.

    Article  CAS  Google Scholar 

  96. Lin, E. Y., Gouon-Evans, V., Nguyen, A. V., & Pollard, J. W. (2002). The macrophage growth factor CSF-1 in mammary gland development and tumor progression. Journal Mammary Gland Biology and Neoplasia, 7, 147–162.

    Article  Google Scholar 

  97. Sangaletti, S., Di Carlo, E., Gariboldi, S., Miotti, S., Cappetti, B., Parenza, M., et al. (2008). Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Research, 68, 9050–9059.

    Article  PubMed  CAS  Google Scholar 

  98. Mantoni, T. S., Schendel, R. R., Rodel, F., Niedobitek, G., Al-Assar, O., Masamune, A., et al. (2008). Stromal SPARC expression and patient survival after chemoradiation for non-resectable pancreatic adenocarcinoma. Cancer Biol Ther, 7(11), 1806–1815.

    CAS  PubMed  Google Scholar 

  99. Infante, J. R., Matsubayashi, H., Sato, N., Tonascia, J., Klein, A. P., Riall, T. A., et al. (2007). Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. Journal Clinical Oncology, 25, 319–325.

    Article  Google Scholar 

  100. Delany, A. M., & Hankenson, K. D. (2009). Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. Journal Cell Commun Signal, 3, 227–238.

    Article  Google Scholar 

  101. Nie, J., & Sage, E. H. (2009). SPARC inhibits adipogenesis by its enhancement of beta-catenin signaling. Journal of Biology Chemistry, 284, 1279–1290.

    Article  CAS  Google Scholar 

  102. Brown, T. J., Shaw, P. A., Karp, X., Huynh, M. H., Begley, H., & Ringuette, M. J. (1999). Activation of SPARC expression in reactive stroma associated with human epithelial ovarian cancer. Gynecologic Oncology, 75, 25–33.

    Article  PubMed  CAS  Google Scholar 

  103. Koukourakis, M. I., Giatromanolaki, A., Brekken, R. A., Sivridis, E., Gatter, K. C., Harris, A. L., et al. (2003). Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/acidity and with poor prognosis of patients. Cancer Research, 63, 5376–5380.

    PubMed  CAS  Google Scholar 

  104. Alvarez, M. J., Prada, F., Salvatierra, E., Bravo, A. I., Lutzky, V. P., Carbone, C., et al. (2005). Secreted protein acidic and rich in cysteine produced by human melanoma cells modulates polymorphonuclear leukocyte recruitment and antitumor cytotoxic capacity. Cancer Research, 65, 5123–5132.

    Article  PubMed  CAS  Google Scholar 

  105. Rotta, G., Matteoli, G., Mazzini, E., Nuciforo, P., Colombo, M. P., & Rescigno, M. (2008). Contrasting roles of SPARC-related granuloma in bacterial containment and in the induction of anti-Salmonella typhimurium immunity. Journal Experimental Medicine, 205, 657–667.

    Article  CAS  Google Scholar 

  106. Kyriakides, T. R., & Bornstein, P. (2003). Matricellular proteins as modulators of wound healing and the foreign body response. Thrombosis and Haemostasis, 90, 986–992.

    PubMed  CAS  Google Scholar 

  107. Weaver, M. S., Workman, G., & Sage, E. H. (2008). The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. Journal Biological Chemistry, 283, 22826–22837.

    Article  CAS  Google Scholar 

  108. Byzova, T. V., Goldman, C. K., Pampori, N., Thomas, K. A., Bett, A., Shattil, S. J., et al. (2000). A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Molecular Cell, 6, 851–860.

    PubMed  CAS  Google Scholar 

  109. De, S., Chen, J., Narizhneva, N. V., Heston, W., Brainard, J., Sage, E. H., et al. (2003). Molecular pathway for cancer metastasis to bone. Journal Biological Chemistry, 278, 39044–39050.

    Article  CAS  Google Scholar 

  110. Eliceiri, B. P. (2001). Integrin and growth factor receptor crosstalk. Circulation Research, 89, 1104–1110.

    Article  PubMed  CAS  Google Scholar 

  111. Sturm, R. A., Satyamoorthy, K., Meier, F., Gardiner, B. B., Smit, D. J., Vaidya, B., et al. (2002). Osteonectin/SPARC induction by ectopic beta(3) integrin in human radial growth phase primary melanoma cells. Cancer Research, 62, 226–232.

    PubMed  CAS  Google Scholar 

  112. Ledda, M. F., Adris, S., Bravo, A. I., Kairiyama, C., Bover, L., Chernajovsky, Y., et al. (1997). Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells. Nature Medicine, 3, 171–176.

    Article  PubMed  CAS  Google Scholar 

  113. Greten, F. R., Eckmann, L., Greten, T. F., Park, J. M., Li, Z. W., Egan, L. J., et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118, 285–296.

    Article  PubMed  CAS  Google Scholar 

  114. Pan, M. R., Chang, H. C., Chuang, L. Y., & Hung, W. C. (2008). The nonsteroidal anti-inflammatory drug NS398 reactivates SPARC expression via promoter demethylation to attenuate invasiveness of lung cancer cells. Experimental Biology and Medical (Maywood), 233, 456–462.

    Article  CAS  Google Scholar 

  115. Yasui, H., Adachi, M., & Imai, K. (2003). Combination of tumor necrosis factor-alpha with sulindac in human carcinoma cells in vivo. Annals of the New York Academy of Sciences, 1010, 273–277.

    Article  PubMed  CAS  Google Scholar 

  116. Bierie, B., & Moses, H. L. (2009). Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev, 21(1), 49–59.

    Article  PubMed  CAS  Google Scholar 

  117. Frangogiannis, N. G. (2008). The immune system and cardiac repair. Pharmacological Research, 58, 88–111.

    Article  PubMed  CAS  Google Scholar 

  118. Francki, A., McClure, T. D., Brekken, R. A., Motamed, K., Murri, C., Wang, T., et al. (2004). SPARC regulates TGF-beta1-dependent signaling in primary glomerular mesangial cells. Journal of Cellular Biochemistry, 91, 915–925.

    Article  PubMed  CAS  Google Scholar 

  119. Delany, A. M., Kalajzic, I., Bradshaw, A. D., Sage, E. H., & Canalis, E. (2003). Osteonectin-null mutation compromises osteoblast formation, maturation, and survival. Endocrinology, 144, 2588–2596.

    Article  PubMed  CAS  Google Scholar 

  120. Kos, K., Wong, S., Tan, B., Gummesson, A., Jernas, M., Franck, N., et al. (2009). Regulation of the fibrosis and angiogenesis promoter SPARC/osteonectin in human adipose tissue by weight change, leptin, insulin, and glucose. Diabetes, 58, 1780–1788.

    Article  PubMed  CAS  Google Scholar 

  121. Schiemann, B. J., Neil, J. R., & Schiemann, W. P. (2003). SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Molecular Biology of the Cell, 14, 3977–3988.

    Article  PubMed  CAS  Google Scholar 

  122. Said, N., Frierson, H. F., Jr., Chernauskas, D., Conaway, M., Motamed, K., & Theodorescu, D. (2009). The role of SPARC in the TRAMP model of prostate carcinogenesis and progression. Oncogene, 28, 3487–3498.

    Article  PubMed  CAS  Google Scholar 

  123. Murphy-Ullrich, J. E. (2001). The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? Journal of Clinical Investigation, 107, 785–790.

    Article  PubMed  CAS  Google Scholar 

  124. Socha, M. J., Said, N., Dai, Y., Kwong, J., Ramalingam, P., Trieu, V., et al. (2009). Aberrant promoter methylation of SPARC in ovarian cancer. Neoplasia, 11, 126–135.

    PubMed  CAS  Google Scholar 

  125. Suzuki, M., Hao, C., Takahashi, T., Shigematsu, H., Shivapurkar, N., Sathyanarayana, U. G., et al. (2005). Aberrant methylation of SPARC in human lung cancers. British Journal of Cancer, 92, 942–948.

    Article  PubMed  CAS  Google Scholar 

  126. Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.

    Article  PubMed  CAS  Google Scholar 

  127. Dhanesuan, N., Sharp, J. A., Blick, T., Price, J. T., & Thompson, E. W. (2002). Doxycycline-inducible expression of SPARC/Osteonectin/BM40 in MDA-MB-231 human breast cancer cells results in growth inhibition. Breast Cancer Research and Treatment, 75, 73–85.

    Article  PubMed  CAS  Google Scholar 

  128. Koblinski, J. E., Kaplan-Singer, B. R., VanOsdol, S. J., Wu, M., Engbring, J. A., Wang, S., et al. (2005). Endogenous osteonectin/SPARC/BM-40 expression inhibits MDA-MB-231 breast cancer cell metastasis. Cancer Research, 65, 7370–7377.

    Article  PubMed  CAS  Google Scholar 

  129. Wong, S. Y., Crowley, D., Bronson, R. T., & Hynes, R. O. (2008). Analyses of the role of endogenous SPARC in mouse models of prostate and breast cancer. Clinical & Experimental Metastasis, 25, 109–118.

    Article  CAS  Google Scholar 

  130. Delany, A. M., McMahon, D. J., Powell, J. S., Greenberg, D. A., & Kurland, E. S. (2008). Osteonectin/SPARC polymorphisms in Caucasian men with idiopathic osteoporosis. Osteoporosis International, 19, 969–978.

    Article  PubMed  CAS  Google Scholar 

  131. Ricciardelli, C., Sakko, A. J., Ween, M. P., Russell, D. L., & Horsfall, D. J. (2009). The biological role and regulation of versican levels in cancer. Cancer and Metastasis Reviews, 28, 233–245.

    Article  PubMed  Google Scholar 

  132. Ito, T., Hashimoto, Y., Tanaka, E., Kan, T., Tsunoda, S., Sato, F., et al. (2006). An inducible short-hairpin RNA vector against osteopontin reduces metastatic potential of human esophageal squamous cell carcinoma in vitro and in vivo. Clinincal Cancer Research, 12, 1308–1316.

    Article  CAS  Google Scholar 

  133. Mi, Z., Guo, H., Russell, M. B., Liu, Y., Sullenger, B. A., & Kuo, P. C. (2009). RNA aptamer blockade of osteopontin inhibits growth and metastasis of MDA-MB231 breast cancer cells. Molecular Therapy, 17, 153–161.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors’ work has been supported by AIRC and Cariplo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario P. Colombo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiodoni, C., Colombo, M.P. & Sangaletti, S. Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev 29, 295–307 (2010). https://doi.org/10.1007/s10555-010-9221-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9221-8

Keywords