Skip to main content

Advertisement

Log in

Inhibition of FGFR signaling by PD173074 improves antitumor immunity and impairs breast cancer metastasis

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Aberrant fibroblast growth factor (FGF) and FGF receptor (FGFR) system have been associated with breast cancer. The objectives of our study were to investigate the effects and mechanisms of FGFR inhibition on tumor growth and metastasis on breast cancer. Our studies showed that the FGFR inhibitor PD173074 decreased the viability of several human breast cancer cells, as well as 4T1 murine mammary tumor cells. Therefore, we chose 4T1 cells to study PD173074’s antitumor mechanism. Flow cytometry showed that PD173074 induced 4T1 cell apoptosis in a concentration-dependent manner. Western blot demonstrated that PD173074-induced apoptosis was correlated with the inhibition of Mcl-1 and survivin. Moreover, PD173074 also significantly increased the ratio of Bax/Bcl-2. PD173074 could also block 4T1 cell migration and invasion in vitro. In 4T1 tumor-bearing mice, PD173074 significantly inhibited tumor growth without obvious side effects. Meanwhile, PD173074 functionally reduced microvessel density and proliferation index and induced tumor apoptosis. Importantly, we found that FGFR inhibition by PD173074 reduced myeloid-derived suppressor cells (MDSCs) in the blood, spleens and tumors, accompanied by the increased infiltration of CD4+ and CD8+ T cells in the spleens and tumors. Furthermore, PD173074 significantly inhibited breast tumor metastasis to the lung of inoculated 4T1 breast cancer cells, which was accompanied by a reduction in MDSCs. Our findings suggested that FGFR inhibition could delay breast tumor progression, impair lung metastasis and break immunosuppression by effecting on tumor microenvironment, which may provide a promising therapeutic approach for breast cancer patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide

PBS:

Phosphate-buffered saline

TUNEL:

Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling

DMSO:

Dimethyl sulfoxide

FCM:

Flow cytometry

SPF:

Specific-pathogen-free

SD:

Standard deviation

MVD:

Microvessel density

MDSCs:

Myeloid-derived suppressor cells

RTKs:

Receptor tyrosine kinases

CrEL:

Cremophor EL

i.p.:

Intraperitoneally

PVDF:

Polyvinylidene difluoride

N.S:

Normal saline

H&E:

Hematoxylin and eosin

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63:11–30

    Article  PubMed  Google Scholar 

  2. Weigelt B, Peterse JL, van’t Veer LJ et al (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  CAS  PubMed  Google Scholar 

  3. Kang YB, Siegel PM, Shu WP et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  CAS  PubMed  Google Scholar 

  4. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Zhang T, Li JJ, Dong YM et al (2012) Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion. Breast Cancer Res Treat 135:445–458

    Article  CAS  PubMed  Google Scholar 

  6. Aas T, Børresen AL, Geisler S et al (1996) Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nature Med 2:811–814

    Article  CAS  PubMed  Google Scholar 

  7. Doyle LA, Yang W, Abruzzo LV et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci 95:15665–15670

    Article  CAS  PubMed  Google Scholar 

  8. Kovalchuk O, Filkowski J, Meservy J et al (2008) Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 7:2152–2159

    Article  CAS  PubMed  Google Scholar 

  9. Peters G, Brookes S, Smith R et al (1989) The mouse homolog of the hst/k-FGF gene is adjacent to int-2 and is activated by proviral insertion in some virally induced mammary tumors. Proc Natl Acad Sci 86:5678–5682

    Article  CAS  PubMed  Google Scholar 

  10. Ray ME, Yang ZQ, Albertson D et al (2004) Genomic and expression analysis of the 8p11-12 amplicon in human breast cancer cell lines. Cancer Res 64:40–47

    Article  CAS  PubMed  Google Scholar 

  11. Reis-Filho JS, Simpson PT, Turner NC et al (2006) FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res 12:6652–6662

    Article  CAS  PubMed  Google Scholar 

  12. Hynes NE, Dey JH (2010) Potential for targeting the fibroblast growth factor receptors in breast cancer. Cancer Res 70:199–5202

    Article  Google Scholar 

  13. Zhao GS, Li WY, Chen DH et al (2011) A novel, selective inhibitor of fibroblast growth factor receptors that shows a potent broad spectrum of antitumor activity in several tumor xenograft models. Mol Cancer Ther 10:2200–2210

    Article  CAS  PubMed  Google Scholar 

  14. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129

    Article  CAS  PubMed  Google Scholar 

  15. Klint P, Claesson-Welsh L (1999) Signal transduction by fibroblast growth factor receptors. Front Biosci 4:165–177

    Article  Google Scholar 

  16. Gavine PR, Mooney L, Kilgour E et al (2012) AZD4547: an orally bioavailable, potent, and selective inhibitor of the fibroblast growth factor receptor Tyrosine kinase family. Cancer Res 72:2045–2056

    Article  CAS  PubMed  Google Scholar 

  17. Martinez-Torrecuadrada J, Cifuentes G, Lopez-Serra P et al (2005) Targeting the extracellular domain of fibroblast growth factor receptor 3 with human single-chain fv antibodies inhibits bladder carcinoma cell line proliferation. Clin Cancer Res 11:6280–6290

    Article  CAS  PubMed  Google Scholar 

  18. Liang G, Liu ZG, Wu JZ et al (2012) Anticancer molecules targeting fibroblast growth factor receptors. Trends Pharmacol Sci 33:531–541

    Article  CAS  PubMed  Google Scholar 

  19. Jorgen W, Kaise H, Ellen MH et al (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437:199–213

    Article  Google Scholar 

  20. Dey JH, Bianchi F, Voshol J et al (2010) Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis. Cancer Res 70:4151–4162

    Article  CAS  PubMed  Google Scholar 

  21. Issa A, Gill JW, Heideman MR et al (2013) Combinatorial targeting of FGF and ErbB receptors blocks growth and metastatic spread of breast cancer models. Breast Cancer Res 15:R8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Mohammadi M, Froum S, Hamby JM et al (1998) Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J 17:5896–5904

    Article  CAS  PubMed  Google Scholar 

  23. Pardo OE, Latigo J, Jeffery RE et al (2009) The fibroblast growth factor receptor inhibitor PD173074 blocks small cell lung cancer growth in vitro and in vivo. Cancer Res 69:8645–8651

    Article  CAS  PubMed  Google Scholar 

  24. Sharpe R, Pearson A, Herrera-Abreu MT et al (2011) FGFR signaling promotes the growth of triple-negative and basal-like breast cancer cell lines both in vitro and in vivo. Clin Cancer Res 17:5275–5286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kortylewski M, Swiderski P, Herrmann A et al (2009) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nature Biotech 27:925–932

    Article  CAS  Google Scholar 

  26. Kim S, Takahashi H, Lin WW et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kodumudi KN, Woan K, Gilvary DL et al (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16:4583–4594

    Article  CAS  PubMed  Google Scholar 

  30. Xu YZ, Zheng RL, Zhou Y et al (2011) Small molecular anticancer agent SKLB703 induces apoptosis in human hepatocellular carcinoma cells via the mitochondrial apoptotic pathway in vitro and inhibits tumor growth in vivo. Cancer Lett 313:44–53

    Article  CAS  PubMed  Google Scholar 

  31. Kortylewski M, Kujawski M, Wang TH et al (2011) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321

    Article  Google Scholar 

  32. Wu WS, Ye HY, Li Wan et al (2013) Millepachine, a novel chalcone, induces G2/M arrest by inhibiting CDK1 activity and causing apoptosis via ROS-mitochondrial apoptotic pathway in human hepatocarcinoma cells in vitro and in vivo. Carcinogenesis 34:1636–1643

    Article  CAS  PubMed  Google Scholar 

  33. Xin H, Herrmann A, Reckamp K et al (2011) Antiangiogenic and antimetastatic activity of JAK inhibitor AZD1480. Cancer Res 71:6601–6610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kujawski M, Kortylewski M, Lee H et al (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118:3367–3377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7:139–147

    Article  CAS  PubMed  Google Scholar 

  36. Pulaski BA, Ostrand-Rosenberg S (1998) Reduction of established spontaneous mammary carcinoma metastases following immunotherapy with major histocompatibility complex class II and B7.1 cell-based tumor vaccines. Cancer Res 58:1486–1493

    CAS  PubMed  Google Scholar 

  37. Pulaski BA, Terman DS, Khan S et al (2000) Cooperativity of staphylococcal aureus enterotoxin B superantigen, major histocompatibility complex class II, and CD80 for immunotherapy of advanced spontaneous metastases in a clinically relevant postoperative mouse breast cancer model. Cancer Res 60:2710–2715

    CAS  PubMed  Google Scholar 

  38. Wang YS, Li D, Shi HS et al (2009) Intratumoral expression of mature human neutrophil peptide-1 mediates antitumor immunity in mice. Clin Cancer Res 15:6901–6911

    Article  CAS  PubMed  Google Scholar 

  39. Koziczak M, Holbro T, Hynes NE et al (2004) Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins. Oncogene 23:3501–3508

    Article  CAS  PubMed  Google Scholar 

  40. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411:342–348

    Article  CAS  PubMed  Google Scholar 

  41. Dimitroff CJ, Klohs W, Sharma A et al (1999) Anti-angiogenic activity of selected receptor tyrosine kinase inhibitors, PD166285 and PD173074: implications for combination treatment with photodynamic therapy. Invest New Drugs 17:121–135

    Article  CAS  PubMed  Google Scholar 

  42. Bui JD, Schreiber RD et al (2007) Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol 19:203–208

    Article  CAS  PubMed  Google Scholar 

  43. Koebel CM, Vermi W, Swann JB et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907

    Article  CAS  PubMed  Google Scholar 

  44. Zou WP (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  CAS  PubMed  Google Scholar 

  45. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51

    Article  CAS  PubMed  Google Scholar 

  46. Yang L, Huang JH, Ren XB et al (2008) Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+ CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Nagaraj S, Gabrilovich DI (2010) Myeloid-derived suppressor cells in human cancer. Cancer J 16:38–353

    Article  Google Scholar 

  48. Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  CAS  PubMed  Google Scholar 

  49. Hiratsuka S, Watanabe A, Aburtani H et al (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375

    Article  CAS  PubMed  Google Scholar 

  50. Gao DC, Joshi N, Ryu S et al (2012) Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res 72:1384–1394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Yu-Peng Yan, Yong-Xia Zhu and Li Liu for helping in cell culturing. This study was funded by the National Key Basic Research Program of China (2010 CB 529900) and the National Natural Science Foundation of China (81123003).

Conflict of interest

The authors declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luoting Yu or Yuquan Wei.

Additional information

Tinghong Ye and Xiawei Wei have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, T., Wei, X., Yin, T. et al. Inhibition of FGFR signaling by PD173074 improves antitumor immunity and impairs breast cancer metastasis. Breast Cancer Res Treat 143, 435–446 (2014). https://doi.org/10.1007/s10549-013-2829-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2829-y

Keywords

Navigation