Skip to main content

Advertisement

Log in

Invasion and metastasis of renal cell carcinoma

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Renal cell carcinoma (RCC) represents over 80 % of kidney cancer, and about 30 % of the patients with RCC develop metastasis after the surgery. Invasion of basement membrane (BM) and extracellular matrix (ECM) is an essential event in tumor invasion and metastasis. Matrix metalloproteinases (MMPs), which digest the main components of BM and ECM, are expressed in RCC. Heparanase, which degrades heparan sulfate proteoglycans, is predominantly expressed in high-grade RCCs with a positive correlation with pathological tumor stage and poor prognosis. Bone metastasis is common among the patients with RCC, and increased osteoclastic activity was observed at metastatic sites. Receptor activator of nuclear factor κB ligand (RANKL), which plays an important role in osteoclastogenesis, is predominantly expressed in high-grade RCC and its expression level is associated with bone metastasis and prognosis. Epithelial-mesenchymal transition (EMT), a switch of epithelial cells to sarcomatoid phenotype, is considered to be critical step during metastasis, and Snail, a major regulator of EMT, is predominantly expressed in high-grade RCC, and high Snail expression is a worse prognostic factor. Accordingly, heparanase, RANKL and Snail may be targets for the development of anti-tumor therapies for RCCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eble JN, Sauter G, Epstein JI, Sesterhenn IA (eds) (2005) World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of the Urinary System and Male Genital Organs. IARC Press, Lyon

  2. Jung K, Lein M, Laube C, Lichtinghagen R (2001) Blood specimen collection methods influence the concentration and the diagnostic validity of matrix metalloproteinase 9 in blood. Clin Chim Acta 314:241–244

    Article  CAS  PubMed  Google Scholar 

  3. Fuhrman SA, Lasky LC, Limas C (1982) Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 6:655–663

    Article  CAS  PubMed  Google Scholar 

  4. Jung K, Nowak L, Lein M, Priem F, Schnorr D, Loening SA (1997) Matrix metalloproteinases 1 and 3, tissue inhibitor of metalloproteinase-1 and the complex of metalloproteinase-1/tissue inhibitor in plasma of patients with prostate cancer. Int J Cancer 74:220–223

    Article  CAS  PubMed  Google Scholar 

  5. Janzen NK, Kim HL, Figlin RA, Belldegrun AS (2003) Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol Clin North Am 30:843–852

    Article  PubMed  Google Scholar 

  6. Suzuki K, Mizuno R, Mikami S, Tanaka N, Kanao K, Kikuchi E, Miyajima A, Nakagawa K, Oya M (2012) Prognostic significance of high nuclear grade in patients with pathologic T1a renal cell carcinoma. Jpn J Clin Oncol 42:831–835

    Article  PubMed  Google Scholar 

  7. Eccles SA (1999) Heparanase: breaking down barriers in tumors. Nat Med 5:735–736

    Article  CAS  PubMed  Google Scholar 

  8. Engbring JA, Kleinman HK (2003) The basement membrane matrix in malignancy. J Pathol 200:465–470

    Article  CAS  PubMed  Google Scholar 

  9. Chambers AF, Matrisian LM (1997) Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270

    Article  CAS  PubMed  Google Scholar 

  10. Curran S, Murray GI (2000) Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer 36:1621–1630

    Article  CAS  PubMed  Google Scholar 

  11. Shiomi T, Lemaitre V, D’Armiento J, Okada Y (2010) Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int 60:477–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kugler A, Hemmerlein B, Thelen P, Kallerhoff M, Radzun HJ, Ringert RH (1998) Expression of metalloproteinase 2 and 9 and their inhibitors in renal cell carcinoma. J Urol 160:1914–1918

    Article  CAS  PubMed  Google Scholar 

  13. Lein M, Jung K, Laube C, Hubner T, Winkelmann B, Stephan C, Hauptmann S, Rudolph B, Schnorr D, Loening SA (2000) Matrix-metalloproteinases and their inhibitors in plasma and tumor tissue of patients with renal cell carcinoma. Int J Cancer 85:801–804

    Article  CAS  PubMed  Google Scholar 

  14. Vlodavsky I, Beckhove P, Lerner I, Pisano C, Meirovitz A, Ilan N, Elkin M (2012) Significance of heparanase in cancer and inflammation. Cancer Microenviron 5:115–832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Nakajima M, Irimura T, Di Ferrante N, Nicolson GL (1984) Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem 259:2283–2290

    CAS  PubMed  Google Scholar 

  16. Dall’Oglio MF, Ribeiro-Filho LA, Antunes AA, Crippa A, Nesrallah L, Goncalves PD, Leite KR, Srougi M (2007) Microvascular tumor invasion, tumor size and Fuhrman grade: a pathological triad for prognostic evaluation of renal cell carcinoma. J Urol 178:425–428

    Article  PubMed  Google Scholar 

  17. Mikami S, Oya M, Shimoda M, Mizuno R, Ishida M, Kosaka T, Mukai M, Nakajima M, Okada Y (2008) Expression of heparanase in renal cell carcinomas: implications for tumor invasion and prognosis. Clin Cancer Res 14:6055–6061

    Article  CAS  PubMed  Google Scholar 

  18. Zekri J, Ahmed N, Coleman RE, Hancock BW (2001) The skeletal metastatic complications of renal cell carcinoma. Int J Oncol 19:379–382

    CAS  PubMed  Google Scholar 

  19. Dougall WC (2012) Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 18:326–335

    Article  CAS  PubMed  Google Scholar 

  20. Wittrant Y, Theoleyre S, Chipoy C, Padrines M, Blanchard F, Heymann D, Redini F (2004) RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta 1704:49–57

    CAS  PubMed  Google Scholar 

  21. Zhang J, Dai J, Yao Z, Lu Y, Dougall W, Keller ET (2003) Soluble receptor activator of nuclear factor κB Fc diminishes prostate cancer progression in bone. Cancer Res 63:7883–7890

    CAS  PubMed  Google Scholar 

  22. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440:692–696

    Article  CAS  PubMed  Google Scholar 

  23. Wittrant Y, Lamoureux F, Mori K, Riet A, Kamijo A, Heymann D, Redini F (2006) RANKL directly induces bone morphogenetic protein-2 expression in RANK-expressing POS-1 osteosarcoma cells. Int J Oncol 28:261–269

    CAS  PubMed  Google Scholar 

  24. Mikami S, Katsube K, Oya M, Ishida M, Kosaka T, Mizuno R, Mochizuki S, Ikeda T, Mukai M, Okada Y (2009) Increased RANKL expression is related to tumour migration and metastasis of renal cell carcinomas. J Pathol 218:530–539

    Article  CAS  PubMed  Google Scholar 

  25. Lipton A, Fizazi K, Stopeck AT, Henry DH, Brown JE, Yardley DA, Richardson GE, Siena S, Maroto P, Clemens M, Bilynskyy B, Charu V, Beuzeboc P, Rader M, Viniegra M, Saad F, Ke C, Braun A, Jun S (2012) Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 48:3082–3092

    Article  CAS  PubMed  Google Scholar 

  26. Keizman D, Ish-Shalom M, Maimon N, Gottfried M (2013) Are bisphosphonates an indispensable tool in the era of targeted therapy for renal cell carcinoma and bone metastases? World J Urol (in press)

  27. Kijima T, Fujii Y, Suyama T, Okubo Y, Yamamoto S, Masuda H, Yonese J, Fukui I (2009) Radiotherapy to bone metastases from renal cell carcinoma with or without zoledronate. BJU Int 103:620–624

    Article  CAS  PubMed  Google Scholar 

  28. Nieto MA (2011) The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 27:347–376

    Article  CAS  PubMed  Google Scholar 

  29. Grunert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4:657–665

    Article  PubMed  Google Scholar 

  30. Canel M, Serrels A, Frame MC, Brunton VG (2013) E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126:393–401

    Article  CAS  PubMed  Google Scholar 

  31. Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746

    Article  CAS  PubMed  Google Scholar 

  32. Alves CC, Carneiro F, Hoefler H, Becker KF (2009) Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci 14:3035–3050

    Article  Google Scholar 

  33. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  CAS  PubMed  Google Scholar 

  34. Katagiri A, Watanabe R, Tomita Y (1995) E-cadherin expression in renal cell cancer and its significance in metastasis and survival. Br J Cancer 71:376–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Esteban MA, Tran MG, Harten SK, Hill P, Castellanos MC, Chandra A, Raval R, O’Brien TS, Maxwell PH (2006) Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Res 66:3567–3575

    Article  CAS  PubMed  Google Scholar 

  36. Evans AJ, Russell RC, Roche O, Burry TN, Fish JE, Chow VW, Kim WY, Saravanan A, Maynard MA, Gervais ML, Sufan RI, Roberts AM, Wilson LA, Betten M, Vandewalle C, Berx G, Marsden PA, Irwin MS, Teh BT, Jewett MA, Ohh M (2007) VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol 27:157–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Harten SK, Shukla D, Barod R, Hergovich A, Balda MS, Matter K, Esteban MA, Maxwell PH (2009) Regulation of renal epithelial tight junctions by the von Hippel–Lindau tumor suppressor gene involves occludin and claudin 1 and is independent of E-cadherin. Mol Biol Cell 20:1089–1101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Mikami S, Katsube K, Oya M, Ishida M, Kosaka T, Mizuno R, Mukai M, Okada Y (2011) Expression of Snail and Slug in renal cell carcinoma: E-cadherin repressor Snail is associated with cancer invasion and prognosis. Lab Invest 91:1443–1458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant-in-Aid for Scientific Research (C) (No. 25460422) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MEXT) (S.M.), Grain-in-Aid for Scientific Research (B) (No. 24390374) from MEXT (M.O.), and Grant-in-Aid for Scientific Research (A) (No. 24249022) from MEXT (Y.O.) and Third Term 10-year Strategy for Cancer Control (Y.O.) from the Foundation of Promotion of Cancer Research, and Project for Development of Innovative Research on Cancer Therapeutics (P-Direct) from MEXT (S. M., R.M, T.K. and M.O.).

Conflicts of interest

None of the authors has any conflicts of interest associated with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Mikami.

Additional information

This paper was shown in the symposium, “Molecular and Morphological approach of research on renal cell carcinoma”, at the Annual Meeting and Scientific Assembly of the 44th Annual Meeting of the Japanese Society for Clinical Molecular Morphology as “atypia of the renal cell carcinoma, invasion and metastasis” and was invited for submission to Medical Molecular Morphology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikami, S., Oya, M., Mizuno, R. et al. Invasion and metastasis of renal cell carcinoma. Med Mol Morphol 47, 63–67 (2014). https://doi.org/10.1007/s00795-013-0064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-013-0064-6

Keywords

Navigation