Abstract
It is common for bacteria to produce chemically diverse sets of small Fe-binding molecules called siderophores. Studies of siderophore bioinorganic chemistry have firmly established the role of these molecules in Fe uptake and provided great insight into Fe complexation. However, we still do not fully understand why microbes make so many siderophores. In many cases, the release of small structural variants or siderophore fragments has been ignored, or considered as an inefficiency of siderophore biosynthesis. Yet, in natural settings, microbes live in complex consortia and it has become increasingly clear that the secondary metabolite repertoires of microbes reflect this dynamic environment. Multiple siderophore production may, therefore, provide a window into microbial life in the wild. This minireview focuses on three biochemical routes by which multiple siderophores can be released by the same organism—multiple biosynthetic gene clusters, fragment release, and precursor-directed biosynthesis—and highlights emergent themes related to each. We also emphasize the plurality of reasons for multiple siderophore production, which include enhanced iron uptake via synergistic siderophore use, microbial warfare and cooperation, and non-classical functions such as the use of siderophores to take up metals other than Fe.
Similar content being viewed by others
References
Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) J Nat Prod 52:1189–1208
Firn RD, Jones CG (2003) Nat Prod Rep 20:382–391
Fischbach MA, Clardy J (2007) Nat Chem Biol 3:353–355
Challis GL, Hopwood DA (2003) Proc Natl Acad Sci USA 100:14555–14561
Hantke K (1981) Mol Gen Genet 182:288–292
Zimmermann L, Hantke K, Braun V (1984) J Bacteriol 159:271–277
Bagg A, Neilands JB (1987) Biochemistry 26:5471–5477
Crumbliss AL, Harrington JM (2009) Adv Inorg Chem 61:179–250
Sandy M, Butler A (2009) Chem Rev 109:4580–4595
Hider RC, Kong X (2010) Nat Prod Rep 27:637–657
Kraemer SM (2004) Aquat Sci 66:3–18
Crosa JH (1989) Microbiol Rev 53:517–530
Crosa JH, Walsh CT (2002) Microbiol Mol Biol Rev 66:223–249
Challis GL (2005) Chem Bio Chem 6:601–611
Fischbach MA, Walsh CT (2006) Chem Rev 106:3468–3496
Luckey M, Pollack JR, Wayne R, Ames BN, Neilands JB (1972) J Bacteriol 111:731–738
Granger J, Price NM (1999) Limnol Oceanogr 44:541–555
Loper JE, Henkels MD (1999) Appl Environ Microbiol 65:5357–5363
Yamanaka K, Oikawa H, Ogawa H-O, Hosono K, Shinmachi F, Takano H, Sakuda S, Beppu T, Ueda K (2005) Microbiology 151:2899–2905
D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Chem Biol 17:254–264
Cordero OX, Ventouras L-A, DeLong EF, Polz MF (2012) Proc Natl Acad Sci USA 109:20059–20064
Miethke M, Kraushaar T, Marahiel MA (2013) FEBS Lett 587:206–213
Tanabe T, Funahashi T, Miyamoto K, Tsujibo H, Yamamoto S (2011) Biol Pharm Bull 34:570–574
Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R (2012) Mol Microbiol 86:628–644
Galet J, Deveau A, Hôtel L, Frey-Klett P, Leblond P, Aigle B (2015) Appl Environ Microbiol 81:3132–3141
Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Süssmuth RD (2004) Biometals 17:471–481
Fischbach MA, Lin H, Liu DR, Walsh CT (2005) Proc Natl Acad Sci 102:571–576
Fischbach MA, Lin H, Liu DR, Walsh CT (2006) Nat Chem Biol 2:132–138
Böttcher T, Clardy J (2014) Angew Chem Int Ed Engl 53:3510–3513
Ishida S, Arai M, Niikawa H, Kobayashi M (2011) Biol Pharm Bull 34:917–920
Deveau A, Gross H, Palin B, Mehnaz S, Schnepf M, Leblond P, Dorrestein PC, Aigle B (2016) FEMS Microbiol Ecol 92:fiw107
Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009) Proc Natl Acad Sci USA 106:17071–17076
Guan LL, Kanoh K, Kamino K (2001) Appl Environ Microbiol 67:1710–1717
Johnstone TC, Nolan EM (2015) Dalton Trans 44:6320–6339
Adler C, Corbalán NS, Seyedsayamdost MR, Pomares MF, de Cristóbal RE, Clardy J, Kolter R, Vincent PA (2012) PLoS One 7:e46754
Charlang GW, Horowitz NH (1971) Proc Natl Acad Sci 68:260–262
Charlang G, Ng B, Horowitz NH, Horowitz RM (1981) Mol Cell Biol 1:94–100
Haas H (2014) Natural Product Reports 31:1266–1276
Haas H (2003) Appl Microbiol Biotechnol 62:316–330
Johnson L (2008) Mycol Res 112:170–183
Kraepiel AML, Bellenger JP, Wichard T, Morel FMM (2009) Biometals 22:573–581
Kraemer SM, Duckworth OW, Harrington JM, Schenkeveld WDC (2015) Aquat Geochem 21:159–195
Springer SD, Butler A (2016) Coord Chem Rev 306:628–635
Kenney GE, Sadek M, Rosenzweig AC (2016) Metall Integr Biometal Sci 8:931–940
Balasubramanian R, Kenney GE, Rosenzweig AC (2011) J Biol Chem 286:37313–37319
Bellenger JP, Wichard T, Kraepiel AML (2008) Appl Environ Microbiol 74:1478–1484
Bellenger JP, Wichard T, Kustka AB, Kraepiel AML (2008) Nat Geosci 1:243–246
Wichard T, Bellenger JP, Loison A, Kraepiel AML (2008) Environ Sci Technol 42:2408–2413
McRose DL, Baars O, Morel FMM, Kraepiel AML (2017) Environ Microbiol 48:11451–13605
Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A (2003) Proc Natl Acad Sci USA 100:3754–3759
Homann VV, Edwards KJ, Webb EA, Butler A (2009) BioMetals 22:565–571
Gauglitz JM, Iinishi A, Ito Y, Butler A (2014) Biochemistry 53:2624–2631
Ratledge C, Ewing M (1996) Microbiology 142:2207–2212
Gobin J, Horwitz MA (1996) J Exp Med 183:1527–1532
Xu G, Martinez JS, Groves JT, Butler A (2002) J Am Chem Soc 124:13408–13415
Reichard P, Kretzschmar R, Kraemer S (2007) Geochim Cosmochim Acta 71:5635–5650
Cheah S-F, Kraemer SM, Cervini-Silva J, Sposito G (2003) Chem Geol 198:63–75
Cox CD, Adams P (1985) Infect Immun 48:130–138
Albrecht-Gary AM, Blanc S, Rochel N, Ocaktan A, Abdallah M (1994) Inorg Chem 33:6391–6402
Cox CD, Graham R (1979) J Bacteriol 137:357–364
Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GLA, Albrecht-Gary A-M (2012) Dalton Trans 41:2820–2834
Meyer JM, Van VT, Stintzi A, Berge O, Winkelmann G (1995) Biometals 8:309–317
Meyer JM, Hohnadel D, Hallé F (1989) J Gen Microbiol 135:1479–1487
Boukhalfa H, Crumbliss AL (2002) Biometals 15:325–339
Nurchi VM, Pivetta T, Lachowicz JI, Crisponi G (2009) J Inorg Biochem 103:227–236
Sokol PA, Lewis CJ, Dennis JJ (1992) J Med Microbiol 36:184–189
Bulen WA, LeComte JR (1962) Biochem Biophys Res Commun 9:523–528
Page WJ, Collinson SK, Demange P, Dell A, Abdallah MA (1991) Biol Metals 4:217–222
Baars O, Zhang X, Gibson MI, Stone AT, Morel FMM, Seyedsayamdost MR (2017) Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.201709720
Baars O, Zhang X, Morel FMM, Seyedsayamdost MR (2015) Appl Environ Microbiol 82:27–39
Cornish AS, Page WJ (1998) Microbiology 144:1747–1754
Corbin JL, Bulen WA (1969) Biochemistry 8:757–762
Cornish AS, Page WJ (1995) Biometals 8:332–338
Hider RC, Liu ZD (2004) In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry. Taylor and Francis, Boca Raton, pp 1278–1290
Khodr H, Hider R, Duhme-Klair AK (2002) J Biol Inorg Chem 7:891–896
Teitzel GM, Geddie A, De Long SK, Kirisits MJ, Whiteley M, Parsek MR (2006) J Bacteriol 188:7242–7256
Martin LW, Reid DW, Sharples KJ, Lamont IL (2011) Biometals 24:1059–1067
Izrael-Živković L, Rikalović M, Gojgić-Cvijović G, Kazazić S, Vrvić M, Brčeski I, Beškoski V, Lončarević B, Gopčević K, Karadžić I (2018) RSC Advances 8:10549–10560
Dumas Z, Ross-Gillespie A, Kümmerli R (2013) Proc R Soc Lond B Biol Sci 280:20131055
Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Proc Natl Acad Sci 99:7072–7077
Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) Mol Microbiol 61:1308–1321
McRose D, Baars O, Seyedsayamdost MR, Morel FMM (2018) Proc Natl Acad Sci 115:7581–7586
Persmark M, Neilands JB (1992) Biometals 5:29–36
Sandy M, Butler A (2011) J Nat Prod 74:1207–1212
Sandy M, Han A, Blunt J, Munro M, Haygood M, Butler A (2010) J Nat Prod 73:1038–1043
Han AW, Sandy M, Fishman B, Trindade-Silva AE, Soares CAG, Distel DL, Butler A, Haygood MG (2013) PLoS One 8:e76151
O’Brien IG, Gibson F (1970) Biochimica Et Biophysica Acta 215:393–402
Harris WR, Carrano CJ, Cooper SR, Sofen SR, Avdeef AE, McArdle JV, Raymond KN (1979) J Am Chem Soc 101:6097–6104
Bryce GF, Brot N (1972) Biochemistry 11:1708–1715
Langman L, Young IG, Frost GE, Rosenberg H, Gibson F (1972) J Bacteriol 112:1142–1149
Greenwood KT, Luke RK (1978) Biochem Biophys Acta 525:209–218
Brickman TJ, McIntosh MA (1992) J Biol Chem 267:12350–12355
Lin H, Fischbach MA, Walsh CT (2005) J Am Chem Soc 127:11075–11084
Reitz ZL, Sandy M, Butler A (2017) Metallomics 9:824–839
Zane HK, Naka H, Rosconi F, Sandy M, Haygood MG, Butler A (2014) J Am Chem Soc 136:5615–5618
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD (2014) Nat Prod Rep 31:61–108
Ratledge C, Winder FG (1962) Biochem J 84:501–506
Ratledge C, Hall MJ (1971) J Bacteriol 108:314–319
Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Science 349:8764–8864
Bellenger JP, Wichard T, Xu Y, Kraepiel AML (2011) Environ Microbiol 13:1395–1411
Hancock RE, Hantke K, Braun V (1977) Arch Microbiol 114:231–239
Hantke K (1990) FEMS Microbiol Lett 67:5–8
Thiericke R, Rohr J (1993) Nat Prod Rep 10:265–289
Francis J, Macturk HM, Madinaveitia J, Snow GA (1953) Biochem J 55:596–607
Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A (2000) Science 287:1245–1247
Martin JD, Ito Y, Homann VV, Haygood MG, Butler A (2006) J Biol Inorg Chem 11:633–641
Ito Y, Butler A (2005) Limnol Oceanogr 50:1918–1923
Neidleman S (1987) Biotechnol Genet Eng Rev 5:245–268
Konetschny-Rapp S, Jung G, Raymond K, Meiwes J, Zähner H (1992) J Am Chem Soc 114:2224–2230
Schafft M, Diekmann H (1978) Arch Microbiol 117:203–207
Rütschlin S, Gunesch S, Böttcher T (2017) Cell Chem Biol. https://doi.org/10.1016/j.chembiol.2017.03.017
Soe CZ, Telfer TJ, Levina A, Lay PA, Codd R (2016) J Inorg Biochem 162:207–215
Rütschlin S, Gunesch S, Böttcher T (2018) ACS Chem Biol 13:1153–1158
Sattely ES, Walsh CT (2008) J Am Chem Soc 130:12282–12284
Wuest WM, Sattely ES, Walsh CT (2009) J Am Chem Soc 131:5056–5057
Actis LA, Fish W, Crosa JH, Kellerman K, Ellenberger SR, Hauser FM, Sanders-Loehr J (1986) J Bacteriol 167:57–65
Shapiro JA, Wencewicz TA (2015) ACS Infect Dis 2:157–168
Shah P, Swiatlo E (2008) Mol Microbiol 68:4–16
Francis J, Madinaveitia J, Macturk HM, Snow GA (1949) Nature 163:365–366
Neilands JB (1952) J Am Chem Soc 74:4846–4847
Hesseltine CW, Pidacks C, Whitehill AR, Bohonos N, Hutchings B, WIlliams JH (1952) J Am Chem Soc 74:1362–1363
Lilley BN, Bassler BL (2000) Mol Microbiol 36:940–954
Acknowledgements
We thank the Princeton Environmental Institute as well as the National Science Foundation (OCE 1657639 granted to F.M.M.) for funding support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
McRose, D.L., Seyedsayamdost, M.R. & Morel, F.M.M. Multiple siderophores: bug or feature?. J Biol Inorg Chem 23, 983–993 (2018). https://doi.org/10.1007/s00775-018-1617-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00775-018-1617-x