Abstract
We analysed the roles and distribution of metal ions in enzymatic catalysis using available public databases and our new resource Metal-MACiE (http://www.ebi.ac.uk/thornton-srv/databases/Metal_MACiE/home.html). In Metal-MACiE, a database of metal-based reaction mechanisms, 116 entries covering 21% of the metal-dependent enzymes and 70% of the types of enzyme-catalysed chemical transformations are annotated according to metal function. We used Metal-MACiE to assess the functions performed by metals in biological catalysis and the relative frequencies of different metals in different roles, which can be related to their individual chemical properties and availability in the environment. The overall picture emerging from the overview of Metal-MACiE is that redox-inert metal ions are used in enzymes to stabilize negative charges and to activate substrates by virtue of their Lewis acid properties, whereas redox-active metal ions can be used both as Lewis acids and as redox centres. Magnesium and zinc are by far the most common ions of the first type, while calcium is relatively less used. Magnesium, however, is most often bound to phosphate groups of substrates and interacts with the enzyme only transiently, whereas the other metals are stably bound to the enzyme. The most common metal of the second type is iron, which is prevalent in the catalysis of redox reactions, followed by manganese, cobalt, molybdenum, copper and nickel. The control of the reactivity of redox-active metal ions may involve their association with organic cofactors to form stable units. This occurs sometimes for iron and nickel, and quite often for cobalt and molybdenum.
Similar content being viewed by others
References
Bertini I, Gray HB, Stiefel EI, Valentine JS (2006) Biological inorganic chemistry. University Science Books, Sausalito
Frausto da Silva JJR, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press, New York
Bertini I, Sigel A, Sigel H (2001) Handbook on metalloproteins. Marcel Dekker, New York
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242
Rawlings ND, Morton FR, Barrett AJ (2006) Nucleic Acids Res 34:D270–D272
Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) Nucleic Acids Res 32:D431–D433
Holliday GL, Almonacid DE, Bartlett GJ, O’Boyle NM, Torrance JW, Murray-Rust P, Mitchell JB, Thornton JM (2007) Nucleic Acids Res 35:D515–D520
Joyce AR, Palsson BO (2006) Nat Rev Mol Cell Biol 7:198–210
Bertini I, Cavallaro G (2008) J Biol Inorg Chem 13:3–14
Martin AC (2004) Bioinformatics 20:986–988
Blom NS, Tetreault S, Coulombe R, Sygusch J (1996) Nat Struct Biol 3:856–862
Blom N, Sygusch J (1997) Nat Struct Biol 4:36–39
Resnick SM, Lee K, Gibson DT (1996) J Ind Microbiol Biot 17:438–457
Kanehisa M, Goto S (2000) Nucleic Acids Res 28:27–30
McDonald AG, Boyce S, Moss GP, Dixon HB, Tipton KF (2007) BMC Biochem 8:14
Blaszczyk J, Shi G, Yan H, Ji X (2000) Structure 8:1049–1058
Li Y, Blaszczyk J, Wu Y, Shi G, Ji X, Yan H (2005) Biochemistry 44:8590–8599
Carpenter EP, Hawkins AR, Frost JW, Brown KA (1998) Nature 394:299–302
Christianson DW, Fierke CA (1996) Acc Chem Res 29:331–339
Stec B, Holtz KM, Kantrowitz ER (2000) J Mol Biol 299:1303–1311
Zalatan JG, Catrina I, Mitchell R, Grzyska PK, O’Brien PJ, Herschlag D, Hengge AC (2007) J Am Chem Soc 129:9789–9798
Lesburg CA, Zhai G, Cane DE, Christianson DW (1997) Science 277:1820–1824
Essen LO, Perisic O, Katan M, Wu Y, Roberts MF, Williams RL (1997) Biochemistry 36:1704–1718
Tainer JA, Getzoff ED, Richardson JS, Richardson DC (1983) Nature 306:284–287
Hart JP, Balbirnie MM, Ogihara NL, Nersissian AM, Weiss MS, Valentine JS, Eisenberg D (1999) Biochemistry 38:2167–2178
Scrutton NS, Basran J, Wilson EK, Chohan KK, Jang MH, Sutcliffe MJ, Hille R (1999) Biochem Soc Trans 27:196–201
Roach PL, Clifton IJ, Hensgens CM, Shibata N, Schofield CJ, Hajdu J, Baldwin JE (1997) Nature 387:827–830
Fitzpatrick PF (1999) Annu Rev Biochem 68:355–381
Goldblatt C, Lenton TM, Watson AJ (2006) Nature 443:683–686
Luthi D, Gunzel D, McGuigan JA (1999) Exp Physiol 84:231–252
Maguire ME, Cowan JA (2002) Biometals 15:203–210
Linse S, Forsén S (1995) Adv Second Messenger Phosphoprotein Res 30:89–151
Carafoli E (2002) Proc Natl Acad Sci USA 99:1115–1122
Jaiswal JK (2001) J Biosci 26:357–363
Dreyer MK, Schulz GE (1996) J Mol Biol 259:458–466
Vallee BL, Auld DS (1990) Proc Natl Acad Sci USA 87:220–224
Hao B, Gong W, Rajagopalan PT, Zhou Y, Pei D, Chan MK (1999) Biochemistry 38:4712–4719
Christianson DW, Lipscomb WN (1989) Acc Chem Res 22:62–69
Matthews BW (1988) Acc Chem Res 21:333–340
Bertini I, Calderone V, Fragai M, Luchinat C, Maletta M, Yeo KJ (2006) Angew Chem Int Ed 45:7952–7955
Aubert SD, Li Y, Raushel FM (2004) Biochemistry 43:5707–5715
Chen G, Edwards T, D’souza VM, Holz RC (1997) Biochemistry 36:4278–4286
Martin SF, Hergenrother PJ (1999) Biochemistry 38:4403–4408
Klabunde T, Strater N, Frohlich R, Witzel H, Krebs B (1996) J Mol Biol 259:737–748
Benini S, Rypniewski WR, Wilson KS, Mangani S, Ciurli S (2004) J Am Chem Soc 126:3714–3715
Silverman DN, Lindskog S (1988) Acc Chem Res 21:30–36
Whittaker MM, Barynin VV, Antonyuk SV, Whittaker JW (1999) Biochemistry 38:9126–9136
Pittman JK (2005) New Phytol 167:733–742
Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314
Nam W (2007) Acc Chem Res 40:522–531
Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939–986
Kopp DA, Lippard SJ (2002) Curr Opin Chem Biol 6:568–576
Kovaleva EG, Neibergall MB, Chakrabarty S, Lipscomb JD (2007) Acc Chem Res 40:475–483
Lindqvist Y, Huang W, Schneider G, Shanklin J (1996) EMBO J 15:4081–4092
Mowat CG, Wehenkel A, Green AJ, Walkinshaw MD, Reid GA, Chapman SK (2004) Biochemistry 43:9519–9526
Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) Science 272:1136–1144
Zhou T, Mo Y, Liu A, Zhou Z, Tsai KR (2004) Inorg Chem 43:923–930
Gray HB, Winkler JR (2003) Q Rev Biophys 36:341–372
Banci L, Bertini I, Gori Savellini G, Luchinat C (1996) Inorg Chem 35:4248–4253
Dey A, Jenney FE Jr, Adams MW, Babini E, Takahashi Y, Fukuyama K, Hodgson KO, Hedman B, Solomon EI (2007) Science 318:1464–1468
Nagashima S, Nakasako M, Dohmae N, Tsujimura M, Takio K, Odaka M, Yohda M, Kamiya N, Endo I (1998) Nat Struct Biol 5:347–351
Saito MA, Sigman DM, Morel FMM (2003) Inorg Chim Acta 356:308–318
Banerjee R, Ragsdale SW (2003) Annu Rev Biochem 72:209–247
McCarthy AA, Baker HM, Shewry SC, Patchett ML, Baker EN (2001) Structure 9:637–646
Mendel RR, Bittner F (2006) Biochim Biophys Acta 1763:621–635
Hoke KR, Cobb N, Armstrong FA, Hille R (2004) Biochemistry 43:1667–1674
Ermler U (2005) Dalton Trans 3451–3458
Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516
Shannon RD (1976) Acta Crystallogr Sect A 32:751–767
Acknowledgments
This work was supported by Ministero Italiano dell’Università e della Ricerca (MIUR) through the FIRB project RBLA032ZM7, by the European Union through EU-NMR contract 026145 and by Ente Cassa di Risparmio di Firenze. G.L.H. is funded by Wellcome Trust grant 062347. We acknowledge support from the EMBL.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Andreini, C., Bertini, I., Cavallaro, G. et al. Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13, 1205–1218 (2008). https://doi.org/10.1007/s00775-008-0404-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00775-008-0404-5