Skip to main content

Advertisement

Log in

CSF markers of neurodegeneration in Parkinson’s disease

  • Movement Disorders - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a chronic, progressive, neurodegenerative disease with a multifactorial etiology. Protein accumulation is speculated by some to play a prominent role in the pathogenesis of PD. The severity of neurodegeneration should correlate with cerebrospinal fluid (CSF) levels of these neurodegenerative markers (NDMs). The aims of the study were to assess the CSF levels of tau protein, beta-amyloid (1–42), cystatin C, and clusterin in patients suffering from PD and in a control group, to compare the CSF levels between the two groups and to correlate them to PD duration. NDMs in the CSF were assessed in 32 patients suffering from PD and in a control group (CG) of 30 patients. The following statistically significant differences in the CSF were found: higher tau protein (p = 0.045) and clusterin levels (p = 0.004) in PD patients versus CG; higher tau protein levels (p = 0.033), tau protein/beta-amyloid (1–42) ratio (p = 0.011), and clusterin (p = 0.044) in patients suffering from PD for <2 years versus patients suffering PD for more than 2 years. No differences between beta-amyloid (1–42) and cystatin C CSF levels were found in the CG and PD patients groups. Significantly higher tau protein and clusterin CSF levels in the group of PD patients with disease duration of <2 years probably reflect the fact that most neurodegenerative changes in PD patients occur in the initial stage of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD et al (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196–1203

    Article  CAS  PubMed  Google Scholar 

  • Arima K, Hirai S, Sunohara N, Aoto K, Izumiyama Y, Ueda K et al (1999) Cellular colocalization of phosphorylated tau- and NACP/alpha-synuclein-epitopes in Lewy bodies in sporadic Parkinson’s disease and in dementia with Lewy bodies. Brain Res 843:53–61

    Article  CAS  PubMed  Google Scholar 

  • Bibl M, Mollenhauer B, Esselmann H, Lewczuk P, Klafki HW, Sparbier K, Smirnov A, Cepek L, Trenkwalder C, Rüther E, Kornhuber J, Otto M, Wiltfang J (2006) CSF amyloid-beta-peptides in Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease dementia. Brain 129(Pt 5):1177–1187 c

    Article  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Cookson MR, van der Brug M (2008) Cell systems and the toxic mechanism(s) of alpha-synuclein. Exp Neurol 209:5–11

    Article  CAS  PubMed  Google Scholar 

  • Esposito A, Dohm CP, Kermer P, Bähr M, Wouters FS (2007) alpha-Synuclein and its disease related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton. Neurobiol Dis 26:521–531

    Article  CAS  PubMed  Google Scholar 

  • Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM et al (2007) Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64:343–349

    Article  PubMed  Google Scholar 

  • Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed  Google Scholar 

  • Jenner P, Olanow CW (2006) The pathogenesis of cell death in Parkinson’s disease. Neurology 66:S24–S36

    PubMed  Google Scholar 

  • Mareš J, Stejskal D, Vavrouškova J, Urbánek K, Herzig R, Hluštík P (2003) Use of cystatin C determination in clinical diagnostics. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 147:177–180

    PubMed  Google Scholar 

  • Marras C, Lang A (2008) Invited article: changing concepts in Parkinson disease: moving beyond the decade of the brain. Neurology 70(21):1996–2003

    Article  PubMed  Google Scholar 

  • McNaught KS, Olanow CW (2006) Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol Aging 27:530–545

    Article  CAS  PubMed  Google Scholar 

  • Molina JA, Benito-Leon J, Jimenez-Jimenez FJ et al (1997) Tau protein concentrations in cerebrospinal fluid of non-demented Parkinson’s disease patients. Neurosci Lett 238:139–141

    Article  CAS  PubMed  Google Scholar 

  • Mollenhauer B, Trenkwalder C, von Ahsen N, Bibl M, Steinacker P, Brechlin P et al (2006) Beta-amyloid 1–42 and tau-protein in cerebrospinal fluid of patients with Parkinson’s disease dementia. Dement Geriatr Cogn Disord 22(3):200–208

    Article  CAS  PubMed  Google Scholar 

  • Pucci S, Mazzarelli P, Missiroli F, Regine F, Ricci F (2008) Neuroprotection: VEGF, IL-6, and clusterin: the dark side of the moon. Prog Brain Res 173:555–573

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Doh-ura K, Wakisaka Y, Iwaki T (2002) Clusterin/apolipoprotein J is associated with cortical Lewy bodies: immunohistochemical study in cases with alpha-synucleinopathies. Acta Neuropathol 104(3):225–230

    CAS  PubMed  Google Scholar 

  • Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109

    Article  CAS  PubMed  Google Scholar 

  • Stejskal D, Vavroušková J, Mareš J, Urbánek K (2005) Application of new laboratory marker assays in neurological diagnosis—a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 149(2):265–266

    CAS  PubMed  Google Scholar 

  • Vranová H, Kaňovský P, Mareš J et al (2008) Laboratory markers of neurodegeneration in cerebrospinal fluid and degree of motor involvement in Parkinson’s disease: a correlation study. Cesk Slov Neurol N 71/104(3):324–328

    Google Scholar 

  • Vranová H, Nevrlý M, Mareš J, Nestrašil I, Stejskal D, Kaňovský P (2009) Neurodegenerative markers in cerebrospinal fluid in Parkinson’s disease. Neurology 72(11 Suppl.3):66

    Google Scholar 

  • Weintraub D, Comella CL, Horn S (2008) Parkinson’s disease—part 1: pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care 14(2 Suppl):S40–S48

    PubMed  Google Scholar 

  • Yacoubian TA, Standaert DG (2009) Targets for Neuroprotection in Parkinson’s Disease. Biochim Biophys Acta 1792(7):676–687

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Přikrylová Vranová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Přikrylová Vranová, H., Mareš, J., Nevrlý, M. et al. CSF markers of neurodegeneration in Parkinson’s disease. J Neural Transm 117, 1177–1181 (2010). https://doi.org/10.1007/s00702-010-0462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-010-0462-z

Keywords

Navigation