Abstract
A genetic basis of congenital isolated hypogonadotropic hypogonadism (CHH) can be defined in almost 50% of cases, albeit not necessarily the complete genetic basis. Next-generation sequencing (NGS) techniques have led to the discovery of a great number of loci, each of which has illuminated our understanding of human gonadotropin-releasing hormone (GnRH) neurons, either in respect of their embryonic development or their neuroendocrine regulation as the “pilot light” of human reproduction. However, because each new gene linked to CHH only seems to underpin another small percentage of total patient cases, we are still far from achieving a comprehensive understanding of the genetic basis of CHH. Patients have generally not benefited from advances in genetics in respect of novel therapies. In most cases, even genetic counselling is limited by issues of apparent variability in expressivity and penetrance that are likely underpinned by oligogenicity in respect of known and unknown genes. Robust genotype–phenotype relationships can generally only be established for individuals who are homozygous, hemizygous or compound heterozygotes for the same gene of variant alleles that are predicted to be deleterious. While certain genes are purely associated with normosmic CHH (nCHH) some purely with the anosmic form (Kallmann syndrome—KS), other genes can be associated with both nCHH and KS—sometimes even within the same kindred. Even though the anticipated genetic overlap between CHH and constitutional delay in growth and puberty (CDGP) has not materialised, previously unanticipated genetic relationships have emerged, comprising conditions of combined (or multiple) pituitary hormone deficiency (CPHD), hypothalamic amenorrhea (HA) and CHARGE syndrome. In this review, we report the current evidence in relation to phenotype and genetic peculiarities regarding 60 genes whose loss-of-function variants can disrupt the central regulation of reproduction at many levels: impairing GnRH neurons migration, differentiation or activation; disrupting neuroendocrine control of GnRH secretion; preventing GnRH neuron migration or function and/or gonadotropin secretion and action.
Similar content being viewed by others
References
Abreu AP, Trarbach EB, de Castro M et al (2008) Loss-of-function mutations in the genes encoding prokineticin-2 or prokineticin receptor-2 cause autosomal recessive Kallmann syndrome. J Clin Endocrinol Metab 93:4113–4118. https://doi.org/10.1210/jc.2008-0958
Abreu AP, Noel SD, Xu S et al (2012) Evidence of the importance of the first intracellular loop of prokineticin receptor 2 in receptor function. Mol Endocrinol 26:1417–1427. https://doi.org/10.1210/me.2012-1102
Alatzoglou KS, Kelberman D, Cowell CT et al (2011) Increased transactivation associated with SOX3 polyalanine tract deletion in a patient with hypopituitarism. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2010-1239
Avilion AA, Nicolis SK, Pevny LH et al (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140. https://doi.org/10.1101/gad.224503
Ayari B, Soussi-Yanicostas N (2007) FGFR1 and anosmin-1 underlying genetically distinct forms of Kallmann syndrome are co-expressed and interact in olfactory bulbs. Dev Genes Evol 217:169–175. https://doi.org/10.1007/s00427-006-0125-0
Bach I, Rhodes SJ, Pearse RV et al (1995) P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.92.7.2720
Balasubramanian R, Choi JH, Francescatto L et al (2014) Functionally compromised CHD7 alleles in patients with isolated GnRH deficiency. Proc Natl Acad Sci USA 111:17953–17958. https://doi.org/10.1073/pnas.1417438111
Balasubramanian R, Chew S, MacKinnon SE et al (2015) Expanding the phenotypic spectrum and variability of endocrine abnormalities associated with TUBB3 E410K syndrome. J Clin Endocrinol Metab 100:E473–E477. https://doi.org/10.1210/jc.2014-4107
Bamshad M, Lin RC, Law DJ et al (1997) Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat Genet 16:311–315. https://doi.org/10.1038/ng0797-311
Basaran Y, Bolu E, Unal HU et al (2013) Multiplex ligation dependent probe amplification analysis of KAL1, GNRH1, GNRHR, PROK2 and PROKR2 in male patients with idiopathic hypogonadotropic hypogonadism. Endokrynol Pol 64:285–292. https://doi.org/10.5603/EP.2013.0007
Basciani S, Watanabe M, Mariani S et al (2012) Hypogonadism in a patient with two novel mutations of the luteinizing hormone β-subunit gene expressed in a compound heterozygous form. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2012-1986
Bencharit S, Bin CC, Siddiqui A et al (2007) Structural insights into fibronectin type III domain-mediated signaling. J Mol Biol 367:303–309. https://doi.org/10.1016/j.jmb.2006.10.017
Beranova M, Oliveira LM, Bédécarrats GY et al (2001) Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing hormone receptor mutations in idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 86:1580–1588. https://doi.org/10.1210/jcem.86.4.7395
Bernard G, Chouery E, Putorti ML et al (2011) Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hypomyelinating leukodystrophy. Am J Hum Genet 89:415–423. https://doi.org/10.1016/j.ajhg.2011.07.014
Bhagavath B, Podolsky RH, Ozata M et al (2006) Clinical and molecular characterization of a large sample of patients with hypogonadotropic hypogonadism. Fertil Steril 85:706–713. https://doi.org/10.1016/j.fertnstert.2005.08.044
Bhangoo APS, Hunter CS, Savage JJ et al (2006) A novel LHX3 mutation presenting as combined pituitary hormonal deficiency. J Clin Endocrinol Metab 91(3):747–753. https://doi.org/10.1210/jc.2005-2360
Bianco SDC, Kaiser UB (2009) The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat Rev Endocrinol 5:569–576. https://doi.org/10.1038/nrendo.2009.177
Blewitt ME, Gendrel A-V, Pang Z et al (2008) SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat Genet 40:663–669. https://doi.org/10.1038/ng.142
Boehm U, Bouloux P-M, Dattani MT et al (2015) European Consensus Statement on congenital hypogonadotropic hypogonadism—pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 11:547–564. https://doi.org/10.1038/nrendo.2015.112
Bonfig W, Krude H, Schmidt H (2011) A novel mutation of LHX3 is associated with combined pituitary hormone deficiency including ACTH deficiency, sensorineural hearing loss, and short neck—a case report and review of the literature. Eur J Pediatr. https://doi.org/10.1007/s00431-011-1393-x
Bonomi M, Libri DV, Guizzardi F et al (2012) New understandings of the genetic basis of isolated idiopathic central hypogonadism. Asian J Androl 14:49–56. https://doi.org/10.1038/aja.2011.68
Bonomi M, Vezzoli V, Krausz C et al (2018) Characteristics of a nationwide cohort of patients presenting with isolated hypogonadotropic hypogonadism (IHH). Eur J Endocrinol 178:23–32. https://doi.org/10.1530/EJE-17-0065
Böttcher RT, Pollet N, Delius H, Niehrs C (2004) The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling. Nat Cell Biol. https://doi.org/10.1038/ncb1082
Bouilly J, Messina A, Papadakis G et al (2018) DCC/NTN1 complex mutations in patients with congenital hypogonadotropic hypogonadism impair GnRH neuron development. Hum Mol Genet 27:359–372. https://doi.org/10.1093/hmg/ddx408
Bouligand J, Ghervan C, Tello JA et al (2009) Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation. N Engl J Med 360:2742–2748. https://doi.org/10.1056/NEJMoa0900136
Breuskin I, Bodson M, Thelen N et al (2009) Sox10 promotes the survival of cochlear progenitors during the establishment of the organ of Corti. Dev Biol. https://doi.org/10.1016/j.ydbio.2009.09.007
Brioude F, Bouligand J, Trabado S et al (2010) Non-syndromic congenital hypogonadotropic hypogonadism: clinical presentation and genotype-phenotype relationships. Eur J Endocrinol 162:835–851. https://doi.org/10.1530/EJE-10-0083
Bülow HE, Berry KL, Topper LH et al (2002) Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc Natl Acad Sci USA 99:6346–6351. https://doi.org/10.1073/pnas.092128099
Cangiano B, Duminuco P, Vezzoli V et al (2019) Evidence for a common genetic origin of classic and milder adult-onset forms of isolated hypogonadotropic hypogonadism. J Clin Med. https://doi.org/10.3390/jcm8010126
Cariboni A, Pimpinelli F, Colamarino S et al (2004) The product of X-linked Kallmann’s syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons. Hum Mol Genet 13:2781–2791. https://doi.org/10.1093/hmg/ddh309
Cariboni A, Davidson K, Rakic S et al (2011) Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism. Hum Mol Genet 20:336–344. https://doi.org/10.1093/hmg/ddq468
Cariboni A, André V, Chauvet S et al (2015) Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome. J Clin Invest 125:2413–2428. https://doi.org/10.1172/JCI78448
Caronia LM, Martin C, Welt CK et al (2011) A genetic basis for functional hypothalamic amenorrhea. N Engl J Med 364:215–225. https://doi.org/10.1056/NEJMoa0911064
Casoni F, Malone SA, Belle M et al (2016) Development of the neurons controlling fertility in humans: new insights from 3D imaging and transparent fetal brains. Development 143:3969–3981. https://doi.org/10.1242/dev.139444
Cassatella D, Howard SR, Acierno JS et al (2018) Congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty have distinct genetic architectures. Eur J Endocrinol 178:377–388. https://doi.org/10.1530/EJE-17-0568
Cattanach BM, Iddon CA, Charlton HM et al (1977) Gonadotrophin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature 269:338–340. https://doi.org/10.1038/269338a0
Cavalcante JC, Bittencourt JC, Elias CF (2014) Distribution of the neuronal inputs to the ventral premammillary nucleus of male and female rats. Brain Res 1582:77–90. https://doi.org/10.1016/j.brainres.2014.07.034
Cerrato F, Shagoury J, Kralickova M et al (2006) Coding sequence analysis of GNRHR and GPR54 in patients with congenital and adult-onset forms of hypogonadotropic hypogonadism. Eur J Endocrinol 155(Suppl):S3–S10. https://doi.org/10.1530/eje.1.02235
Ceylan AC, Gursoy H, Yildirim N et al (2017) Clinical heterogeneity associated with TUBB3 gene mutation in a Turkish family with congenital fibrosis of the extraocular muscles. Ophthalmic Genet 38:288–290. https://doi.org/10.1080/13816810.2016.1193881
Chan Y-M, de Guillebon A, Lang-Muritano M et al (2009) GNRH1 mutations in patients with idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 106:11703–11708. https://doi.org/10.1073/pnas.0903449106
Charles MA, Saunders TL, Wood WM et al (2006) Pituitary-specific Gata2 knockout: effects on gonadotrope and thyrotrope function. Mol Endocrinol. https://doi.org/10.1210/me.2005-0378
Chew S, Balasubramanian R, Chan W-M et al (2013) A novel syndrome caused by the E410K amino acid substitution in the neuronal β-tubulin isotype 3. Brain 136:522–535. https://doi.org/10.1093/brain/aws345
Chung WCJ, Tsai P-S (2010) Role of fibroblast growth factor signaling in gonadotropin-releasing hormone neuronal system development. Kallmann syndrome and hypogonadotropic hypogonadism. KARGER, Basel, pp 37–50
Chung WCJ, Matthews TA, Tata BK, Tsai PS (2010) Compound deficiencies in multiple fibroblast growth factor signalling components differentially impact the murine gonadotrophin-releasing hormone system. J Neuroendocrinol. https://doi.org/10.1111/j.1365-2826.2010.02024.x
Cimino I, Casoni F, Liu X et al (2016) Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat Commun 7:10055. https://doi.org/10.1038/ncomms10055
Cioppi F, Riera-Escamilla A, Manilall A et al (2019) Genetics of ncHH: from a peculiar inheritance of a novel GNRHR mutation to a comprehensive review of the literature. Andrology 7:88–101. https://doi.org/10.1111/andr.12563
Clément K, Vaisse C, Lahlou N et al (1998) A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. https://doi.org/10.1038/32911
Cole LW, Sidis Y, Zhang C et al (2008) Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum. J Clin Endocrinol Metab 93:3551–3559. https://doi.org/10.1210/jc.2007-2654
Costa EMF, Bedecarrats GY, Mendonca BB et al (2001) Two novel mutations in the gonadotropin-releasing hormone receptor gene in Brazilian patients with hypogonadotropic hypogonadism and normal olfaction1. J Clin Endocrinol Metab 86:2680–2686. https://doi.org/10.1210/jcem.86.6.7551
Costa-Barbosa FA, Balasubramanian R, Keefe KW et al (2013) Prioritizing genetic testing in patients with Kallmann syndrome using clinical phenotypes. J Clin Endocrinol Metab 98:E943–E953. https://doi.org/10.1210/jc.2012-4116
Cox KH, Oliveira LMB, Plummer L et al (2018) Modeling mutant/wild-type interactions to ascertain pathogenicity of PROKR2 missense variants in patients with isolated GnRH deficiency. Hum Mol Genet 27:338–350. https://doi.org/10.1093/hmg/ddx404
Cravo RM, Frazao R, Perello M et al (2013) Leptin signaling in Kiss1 neurons arises after pubertal development. PLoS ONE 8:e58698. https://doi.org/10.1371/journal.pone.0058698
Dai W, Wu J, Zhao Y et al (2019) Functional analysis of SOX10 mutations identified in Chinese patients with Kallmann syndrome. Gene 702:99–106. https://doi.org/10.1016/j.gene.2019.03.039
Daoud H, Tétreault M, Gibson W et al (2013) Mutations in POLR3A and POLR3B are a major cause of hypomyelinating leukodystrophies with or without dental abnormalities and/or hypogonadotropic hypogonadism. J Med Genet 50:194–197. https://doi.org/10.1136/jmedgenet-2012-101357
Dasen JS, Rosenfeld MG (2001) Signaling and transcriptional mechanisms in pituitary development. Annu Rev Neurosci 24:327–355. https://doi.org/10.1146/annurev.neuro.24.1.327
Dattani MT, Robinson IC (2000) The molecular basis for developmental disorders of the pituitary gland in man. Clin Genet 57(5):337–346. https://doi.org/10.1034/j.1399-0004.2000.570503.x
Dattani MT, Martinez-Barbera JP, Thomas PQ et al (1998) Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet. https://doi.org/10.1038/477
Diaczok D, Divall S, Matsuo I et al (2011) Deletion of Otx2 in GnRH neurons results in a mouse model of hypogonadotropic hypogonadism. Mol Endocrinol. https://doi.org/10.1210/me.2010-0271
Dodé C, Hardelin J-P (2009) Kallmann syndrome. Eur J Hum Genet 17:139–146. https://doi.org/10.1038/ejhg.2008.206
Dodé C, Levilliers J, Dupont JM et al (2003) Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. https://doi.org/10.1038/ng1122
Dodé C, Teixeira L, Levilliers J et al (2006) Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2:e175. https://doi.org/10.1371/journal.pgen.0020175
Duan J, Chen R-R, Li L et al (2014) Reversal of idiopathic hypogonadotropic hypogonadism: a cohort study in Chinese patients. Asian J Androl. https://doi.org/10.4103/1008-682X.145072
Duke VM, Winyard PJD, Thorogood P et al (1995) KAL, a gene mutated in Kallmann’s syndrome, is expressed in the first trimester of human development. Mol Cell Endocrinol 110:73–79. https://doi.org/10.1016/0303-7207(95)03518-C
Dwyer AA, Hayes FJ, Plummer L et al (2010) The long-term clinical follow-up and natural history of men with adult-onset idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 95:4235–4243. https://doi.org/10.1210/jc.2010-0245
Dwyer AA, Chavan NR, Lewkowitz-Shpuntoff H et al (2019a) Functional hypogonadotropic hypogonadism in men: underlying neuroendocrine mechanisms and natural history. J Clin Endocrinol Metab 104:3403–3414. https://doi.org/10.1210/jc.2018-02697
Dwyer AA, Smith N, Quinton R (2019b) Psychological aspects of congenital hypogonadotropic hypogonadism. Front Endocrinol (Lausanne) 10:353. https://doi.org/10.3389/fendo.2019.00353
Dzemaili S, Tiemensma J, Quinton R et al (2017) Beyond hormone replacement: quality of life in women with congenital hypogonadotropic hypogonadism. Endocr Connect 6:404–412. https://doi.org/10.1530/EC-17-0095
Falardeau J, Chung WCJ, Beenken A et al (2008) Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest 118:2822–2831. https://doi.org/10.1172/JCI34538
Fang Q, Benedetti AFF, Ma Q et al (2016a) HESX1 mutations in patients with congenital hypopituitarism: variable phenotypes with the same genotype. Clin Endocrinol (Oxf). https://doi.org/10.1111/cen.13067
Fang Q, George AS, Brinkmeier ML et al (2016) Genetics of combined pituitary hormone deficiency: roadmap into the genome era. Endocr Rev 37(6):636–675. https://doi.org/10.1210/er.2016-1101
Fantes J, Ragge NK, Lynch S-A et al (2003) Mutations in SOX2 cause anophthalmia. Nat Genet 33:461–463. https://doi.org/10.1038/ng1120
Farooqi IS (2002) Leptin and the onset of puberty: insights from rodent and human genetics. Semin Reprod Med. https://doi.org/10.1055/s-2002-32505
Farooqi IS, Jebb SA, Langmack G et al (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med. https://doi.org/10.1056/NEJM199909163411204
Farooqi IS, Volders K, Stanhope R et al (2007a) Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J Clin Endocrinol Metab 92(9):3369–3373. https://doi.org/10.1210/jc.2007-0687
Farooqi IS, Wangensteen T, Collins S et al (2007b) Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. https://doi.org/10.1056/NEJMoa063988
Franco B, Guioli S, Pragliola A et al (1991) A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353:529–536. https://doi.org/10.1038/353529a0
Francou B, Bouligand J, Voican A et al (2011) Normosmic congenital hypogonadotropic hypogonadism due to TAC3/TACR3 mutations: characterization of neuroendocrine phenotypes and novel mutations. PLoS ONE 6:e25614. https://doi.org/10.1371/journal.pone.0025614
Francou B, Paul C, Amazit L et al (2016) Prevalence of KISS1 Receptor mutations in a series of 603 patients with normosmic congenital hypogonadotrophic hypogonadism and characterization of novel mutations: a single-centre study. Hum Reprod 31:1363–1374. https://doi.org/10.1093/humrep/dew073
Fromantin M, Gineste J, Didier A, Rouvier J (1973) Impuberism and hypogonadism at induction into military service. Statistical study. Probl Actuels Endocrinol Nutr 16:179–199
Funes S, Hedrick JA, Vassileva G et al (2003) The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochem Biophys Res Commun 312:1357–1363. https://doi.org/10.1016/j.bbrc.2003.11.066
Galazzi E, Duminuco P, Moro M et al (2018) Hypogonadotropic hypogonadism and pituitary hypoplasia as recurrent features in Ulnar-Mammary syndrome. Endocr Connect 7:1432–1441. https://doi.org/10.1530/EC-18-0486
Gianetti E, Tusset C, Noel SD et al (2010) TAC3/TACR3 mutations reveal preferential activation of gonadotropin-releasing hormone release by neurokinin B in neonatal life followed by reversal in adulthood. J Clin Endocrinol Metab 95:2857–2867. https://doi.org/10.1210/jc.2009-2320
Gonçalves CI, Aragüés JM, Bastos M et al (2017) GNRHR biallelic and digenic mutations in patients with normosmic congenital hypogonadotropic hypogonadism. Endocr Connect 6:360–366. https://doi.org/10.1530/EC-17-0104
Gonçalves CI, Patriarca FM, Aragüés JM et al (2019) High frequency of CHD7 mutations in congenital hypogonadotropic hypogonadism. Sci Rep 9:1597. https://doi.org/10.1038/s41598-018-38178-y
Gonzalez-Martinez D (2004) Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism. J Neurosci 24:10384–10392. https://doi.org/10.1523/JNEUROSCI.3400-04.2004
Goodman RL, Lehman MN, Smith JT et al (2007) Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148:5752–5760. https://doi.org/10.1210/en.2007-0961
Gorbenko Del Blanco D, Romero CJ, Diaczok D et al (2012) A novel OTX2 mutation in a patient with combined pituitary hormone deficiency, pituitary malformation, and an underdeveloped left optic nerve. Eur J Endocrinol. https://doi.org/10.1530/EJE-12-0333
Gottsch ML, Cunningham MJ, Smith JT et al (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145:4073–4077. https://doi.org/10.1210/en.2004-0431
Habiby RL, Boepple P, Nachtigall L et al (1996) Adrenal hypoplasia congenita with hypogonadotropic hypogonadism: evidence that DAX-1 mutations lead to combined hypothalamic and pituitary defects in gonadotropin production. J Clin Invest 98:1055–1062. https://doi.org/10.1172/JCI118866
Haines DE, Mihailoff GA, Parent AD, Perkins E (2018) The hypothalamus. Fundam Neurosci Basic Clin Appl 442–456:e1. https://doi.org/10.1016/B978-0-323-39632-5.00030-X
Hanafusa H, Torii S, Yasunaga T, Nishida E (2002) Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4:850–858. https://doi.org/10.1038/ncb867
Hanchate NK, Giacobini P, Lhuillier P et al (2012) SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with kallmann syndrome. PLoS Genet 8:e1002896. https://doi.org/10.1371/journal.pgen.1002896
Hausott B, Vallant N, Schlick B et al (2012) Sprouty2 and -4 regulate axon outgrowth by hippocampal neurons. Hippocampus. https://doi.org/10.1002/hipo.20910
Henderson RH, Williamson KA, Kennedy JS et al (2009) A rare de novo nonsense mutation in OTX2 causes early onset retinal dystrophy and pituitary dysfunction. Mol Vis 15:2442–2447
Hirata T, Nakazawa M, Yoshihara S et al (2006) Zinc-finger gene Fez in the olfactory sensory neurons regulates development of the olfactory bulb non-cell-autonomously. Development 133:1433–1443. https://doi.org/10.1242/dev.02329
Hoffmann HM, Pandolfi EC, Larder R, Mellon PL (2019) Haploinsufficiency of homeodomain proteins Six3, Vax1, and Otx2 causes subfertility in mice via distinct mechanisms. Neuroendocrinology. https://doi.org/10.1159/000494086
Howard SR, Guasti L, Ruiz-Babot G et al (2016) IGSF 10 mutations dysregulate gonadotropin-releasing hormone neuronal migration resulting in delayed puberty. EMBO Mol Med 8:626–642. https://doi.org/10.15252/emmm.201606250
Howard SR, Oleari R, Poliandri A et al (2018) HS6ST1 insufficiency causes self-limited delayed puberty in contrast with other GnRH deficiency genes. J Clin Endocrinol Metab 103:3420–3429. https://doi.org/10.1210/jc.2018-00646
Huang H, Yang T, Shao Q et al (2018) Human TUBB3 mutations disrupt netrin attractive signaling. Neuroscience 374:155–171. https://doi.org/10.1016/j.neuroscience.2018.01.046
Hudson R, Laska M, Berger T et al (1994) Olfactory function in patients with hypogonadotropic hypogonadism: an all-or-none phenomenon? Chem Senses 19:57–69. https://doi.org/10.1093/chemse/19.1.57
Hutchins BI, Kotan LD, Taylor-Burds C et al (2016) CCDC141 mutation identified in anosmic hypogonadotropic hypogonadism (Kallmann Syndrome) alters GnRH neuronal migration. Endocrinology 157:1956–1966. https://doi.org/10.1210/en.2015-1846
Iacovazzo D, Carlsen E, Lugli F et al (2016) Factors predicting pasireotide responsiveness in somatotroph pituitary adenomas resistant to first-generation somatostatin analogues: an immunohistochemical study. Eur J Endocrinol 174:241–250. https://doi.org/10.1530/EJE-15-0832
Izumi Y, Suzuki E, Kanzaki S et al (2014) Genome-wide copy number analysis and systematic mutation screening in 58 patients with hypogonadotropic hypogonadism. Fertil Steril. https://doi.org/10.1016/j.fertnstert.2014.06.017
Jackson RS, Creemers JWM, Ohagi S et al (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. https://doi.org/10.1038/ng0797-303
Jarzabek K, Wolczynski S, Lesniewicz R et al (2012) Evidence that FGFR1 loss-of-function mutations may cause variable skeletal malformations in patients with Kallmann syndrome. Adv Med Sci. https://doi.org/10.2478/v10039-012-0036-4
Jayakody SA, Andoniadou CL, Gaston-Massuet C et al (2012) SOX2 regulates the hypothalamic-pituitary axis at multiple levels. J Clin Invest 122:3635–3646. https://doi.org/10.1172/JCI64311
Jongmans MCJ, Admiraal RJ, Van Der Donk KP et al (2006) CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet. https://doi.org/10.1136/jmg.2005.036061
Jongmans MCJ, van Ravenswaaij-Arts CMA, Pitteloud N et al (2009) CHD7 mutations in patients initially diagnosed with Kallmann syndrome—the clinical overlap with CHARGE syndrome. Clin Genet. https://doi.org/10.1111/j.1399-0004.2008.01107.x
Känsäkoski J, Fagerholm R, Laitinen EM et al (2014) Mutation screening of SEMA3A and SEMA7A in patients with congenital hypogonadotropic hypogonadism. Pediatr Res 75:641–644. https://doi.org/10.1038/pr.2014.23
Kawamata N, Sakajiri S, Sugimoto K-J et al (2002) A novel chromosomal translocation t(1;14)(q25;q32) in pre-B acute lymphoblastic leukemia involves the LIM homeodomain protein gene, Lhx4. Oncogene 21:4983–4991. https://doi.org/10.1038/sj.onc.1205628
Kelberman D, Rizzoti K, Avilion A et al (2006) Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans.e. J Clin Invest 116:2442–2455. https://doi.org/10.1172/JCI28658
Kelberman D, Turton JPG, Woods KS et al (2009) Molecular analysis of novel PROP1 mutations associated with combined pituitary hormone deficiency (CPHD). Clin Endocrinol (Oxf). https://doi.org/10.1111/j.1365-2265.2008.03326.x
Kevelam SHG, Van Harssel JJT, Van Der Zwaag B et al (2012) A patient with a mild holoprosencephaly spectrum phenotype and heterotaxy and a 1.3 Mb deletion encompassing GLI2. Am J Med Genet Part A. https://doi.org/10.1002/ajmg.a.34350
Kim H-G, Layman LC (2011) The role of CHD7 and the newly identified WDR11 gene in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol 346:74–83. https://doi.org/10.1016/j.mce.2011.07.013
Kim HG, Kurth I, Lan F et al (2008a) Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet. https://doi.org/10.1016/j.ajhg.2008.09.005
Kim S-H, Hu Y, Cadman S, Bouloux P (2008b) Diversity in fibroblast growth factor receptor 1 regulation: learning from the investigation of Kallmann syndrome. J Neuroendocrinol 20:141–163. https://doi.org/10.1111/j.1365-2826.2007.01627.x
Kim H-G, Ahn J-W, Kurth I et al (2010) WDR11, a WD protein that interacts with transcription factor EMX1, is mutated in idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet 87:465–479. https://doi.org/10.1016/j.ajhg.2010.08.018
Kotan LD, Hutchins BI, Ozkan Y et al (2014) Mutations in FEZF1 cause Kallmann syndrome. Am J Hum Genet 95:326–331. https://doi.org/10.1016/j.ajhg.2014.08.006
Kramer PR, Wray S (2000) Novel gene expressed in nasal region influences outgrowth of olfactory axons and migration of luteinizing hormone-releasing hormone (LHRH) neurons. Genes Dev 14:1824–1834
Kramer PR, Wray S (2001) Nasal embryonic LHRH factor (NELF) expression within the CNS and PNS of the rodent. Brain Res Gene Expr Patterns 1:23–26
Kuang X-L, Zhao X-M, Xu H-F et al (2010) Spatio-temporal expression of a novel neuron-derived neurotrophic factor (NDNF) in mouse brains during development. BMC Neurosci 11:137. https://doi.org/10.1186/1471-2202-11-137
Kurokawa D, Kiyonari H, Nakayama R et al (2004) Regulation of Otx2 expression and its functions in mouse forebrain and midbrain. Development. https://doi.org/10.1242/dev.01220
Kyriakakis N, Shonibare T, Kyaw-Tun J et al (2017) Late-onset X-linked adrenal hypoplasia (DAX-1, NR0B1): two new adult-onset cases from a single center. Pituitary. https://doi.org/10.1007/s11102-017-0822-x
Laitinen E-M, Vaaralahti K, Tommiska J et al (2011) Incidence, phenotypic features and molecular genetics of Kallmann syndrome in Finland. Orphanet J Rare Dis 6:41. https://doi.org/10.1186/1750-1172-6-41
Lakhina V, Marcaccio CL, Shao X et al (2012) Netrin/DCC signaling guides olfactory sensory axons to their correct location in the olfactory bulb. J Neurosci 32:4440–4456. https://doi.org/10.1523/JNEUROSCI.4442-11.2012
Lalani SR, Safiullah AM, Molinari LM et al (2004) SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet 41:e94. https://doi.org/10.1136/jmg.2003.017640
Layman LC, Lee EJ, Peak DB et al (1997) Delayed puberty and hypogonadism caused by mutations in the follicle-stimulating hormone β-subunit gene. N Engl J Med. https://doi.org/10.1056/NEJM199708283370905
Layman LC, Cohen DP, Jin M et al (1998) Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. Nat Genet 18:14–15. https://doi.org/10.1038/ng0198-14
Layman LC, Porto ALA, Xie J et al (2002) FSHβ gene mutations in a female with partial breast development and a male sibling with normal puberty and azoospermia. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.87.8.3702
Lee GH, Proenca R, Montez JM et al (1996) Abnormal splicing of the leptin receptor in diabetic mice. Nature. https://doi.org/10.1038/379632a0
Legouis R, Hardelin JP, Levilliers J et al (1991) The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 67:423–435. https://doi.org/10.1016/0092-8674(91)90193-3
Leroy C, Fouveaut C, Leclercq S et al (2008) Biallelic mutations in the prokineticin-2 gene in two sporadic cases of Kallmann syndrome. Eur J Hum Genet 16:865–868. https://doi.org/10.1038/ejhg.2008.15
Lewkowitz-Shpuntoff HM, Hughes VA, Plummer L et al (2012) Olfactory phenotypic spectrum in idiopathic hypogonadotropic hypogonadism: pathophysiological and genetic implications. J Clin Endocrinol Metab 97:E136–E144. https://doi.org/10.1210/jc.2011-2041
Li C, Scott DA, Hatch E et al (2007) Dusp6 (Mkp3) is a negative feedback regulator of FgF-stimulated ERK signaling during mouse development. Development. https://doi.org/10.1242/dev.02701
Libri DV, Kleinau G, Vezzoli V et al (2014) Germline prokineticin receptor 2 (PROKR2) variants associated with central hypogonadism cause differental modulation of distinct intracellular pathways. J Clin Endocrinol Metab 99:E458–E463. https://doi.org/10.1210/jc.2013-2431
Liu G, Beggs H, Jürgensen C et al (2004) Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction. Nat Neurosci 7:1222–1232. https://doi.org/10.1038/nn1331
Lo A, Zheng W, Gong Y et al (2011) GATA transcription factors regulate LHβ gene expression. J Mol Endocrinol 47:45–58. https://doi.org/10.1530/JME-10-0137
Lofrano-Porto A, Barra GB, Giacomini LA et al (2007) Luteinizing hormone beta mutation and hypogonadism in men and women. N Engl J Med. https://doi.org/10.1056/NEJMoa071999
Machinis K, Pantel J, Netchine I et al (2001) Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4. Am J Hum Genet 69:961–968. https://doi.org/10.1086/323764
Maione L, Brailly-Tabard S, Nevoux J et al (2016) Reversal of congenital hypogonadotropic hypogonadism in a man with Kallmann syndrome due to SOX10 mutation. Clin Endocrinol (Oxf) 85:988–989. https://doi.org/10.1111/cen.13231
Maione L, Dwyer AA, Francou B et al (2018) Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. Eur J Endocrinol 178(3):R55–R80 https://doi.org/10.1530/EJE-17-0749
Malone SA, Papadakis GE, Messina A et al (2019) Defective AMH signaling disrupts GnRH neuron development and function and contributes to hypogonadotropic hypogonadism. Elife. https://doi.org/10.7554/eLife.47198
Mantovani G, De Menis E, Borretta G et al (2006) DAX1 and X-linked adrenal hypoplasia congenita: clinical and molecular analysis in five patients. Eur J Endocrinol. https://doi.org/10.1530/eje.1.02132
Marcos S, Monnier C, Rovira X et al (2017) Defective signaling through plexin-A1 compromises the development of the peripheral olfactory system and neuroendocrine reproductive axis in mice. Hum Mol Genet 26:2006–2017. https://doi.org/10.1093/hmg/ddx080
Margolin DH, Kousi M, Chan Y-M et al (2013) Ataxia, dementia, and hypogonadotropism caused by disordered ubiquitination. N Engl J Med 368:1992–2003. https://doi.org/10.1056/NEJMoa1215993
Marsh APL, Heron D, Edwards TJ et al (2017) Mutations in DCC cause isolated agenesis of the corpus callosum with incomplete penetrance. Nat Genet 49:511–514. https://doi.org/10.1038/ng.3794
Matsumoto S-I, Yamazaki C, Masumoto K-H et al (2006) Abnormal development of the olfactory bulb and reproductive system in mice lacking prokineticin receptor PKR2. Proc Natl Acad Sci USA 103:4140–4145. https://doi.org/10.1073/pnas.0508881103
McCabe MJ, Gaston-Massuet C, Tziaferi V et al (2011a) Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2011-0454
McCabe MJ, Gaston-Massuet C, Gregory LC et al (2013) Variations in PROKR2, but not PROK2, are associated with hypopituitarism and septo-optic dysplasia. J Clin Endocrinol Metab 98:E547–E557. https://doi.org/10.1210/jc.2012-3067
McCabe MJ, Hu Y, Gregory LC et al (2015) Novel application of luciferase assay for the in vitro functional assessment of KAL1 variants in three females with septo-optic dysplasia (SOD). Mol Cell Endocrinol 417:63–72. https://doi.org/10.1016/j.mce.2015.09.010
McCormack SE, Li D, Kim YJ et al (2017) Digenic inheritance of PROKR2 and WDR11 mutations in pituitary stalk interruption syndrome. J Clin Endocrinol Metab 102:2501–2507. https://doi.org/10.1210/jc.2017-00332
McNay DEG, Turton JP, Kelberman D et al (2007) HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2006-1609
Men M, Wu J, Zhao Y et al (2019) Genotypic and phenotypic spectra of FGFR1, FGF8, and FGF17 mutations in a Chinese cohort with idiopathic hypogonadotropic hypogonadism. Fertil Steril. https://doi.org/10.1016/j.fertnstert.2019.08.069
Mengen E, Tunc S, Kotan LD et al (2016) Complete idiopathic hypogonadotropic hypogonadism due to homozygous GNRH1 mutations in the mutational hot spots in the region encoding the decapeptide. Horm Res Paediatr 85:107–111. https://doi.org/10.1159/000441977
Messina A, Giacobini P (2013) Semaphorin signaling in the development and function of the gonadotropin hormone-releasing hormone system. Front Endocrinol (Lausanne) 4:133. https://doi.org/10.3389/fendo.2013.00133
Messina A, Ferraris N, Wray S et al (2011) Dysregulation of Semaphorin7A/β1-integrin signaling leads to defective GnRH-1 cell migration, abnormal gonadal development and altered fertility. Hum Mol Genet 20:4759–4774. https://doi.org/10.1093/hmg/ddr403
Messina A, Pulli K, Santini S et al (2020) Neuron-derived neurotrophic factor is mutated in congenital hypogonadotropic hypogonadism. Am J Hum Genet 106:58–70. https://doi.org/10.1016/j.ajhg.2019.12.003
Ming AYK, Yoo E, Vorontsov EN et al (2012) Dynamics and distribution of Klothoβ (KLB) and fibroblast growth factor receptor-1 (FGFR1) in living cells reveal the fibroblast growth factor-21 (FGF21)-induced receptor complex. J Biol Chem. https://doi.org/10.1074/jbc.M111.325670
Miraoui H, Dwyer AA, Sykiotis GP et al (2013) Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am J Hum Genet 92:725–743. https://doi.org/10.1016/j.ajhg.2013.04.008
Miura K, Acierno JS, Seminara SB (2004) Characterization of the human nasal embryonic LHRH factor gene, NELF, and a mutation screening among 65 patients with idiopathic hypogonadotropic hypogonadism (IHH). J Hum Genet 49:265–268. https://doi.org/10.1007/s10038-004-0137-4
Monnier C, Dodé C, Fabre L et al (2009) PROKR2 missense mutations associated with Kallmann syndrome impair receptor signalling activity. Hum Mol Genet 18:75–81. https://doi.org/10.1093/hmg/ddn318
Muscatelli F, Strom TM, Walker AP et al (1994) Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature. https://doi.org/10.1038/372672a0
Nachtigall LB, Boepple PA, Pralong FP, Crowley WF (1997) Adult-onset idiopathic hypogonadotropic hypogonadism—a treatable form of male infertility. N Engl J Med 336:410–415. https://doi.org/10.1056/NEJM199702063360604
Nakamura Y, Matsumoto H, Zaha K et al (2018) TUBB3 E410K syndrome with osteoporosis and cough syncope in a patient previously diagnosed with atypical Moebius syndrome. Brain Dev 40:233–237. https://doi.org/10.1016/j.braindev.2017.12.006
Navarro VM (2013) Interactions between kisspeptins and neurokinin B. Adv Exp Med Biol 784:325–347. https://doi.org/10.1007/978-1-4614-6199-9_15
Navarro VM, Gottsch ML, Chavkin C et al (2009) Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci 29:11859–11866. https://doi.org/10.1523/JNEUROSCI.1569-09.2009
Newbern K, Natrajan N, Kim H-G et al (2013) Identification of HESX1 mutations in Kallmann syndrome. Fertil Steril 99:1831–1837. https://doi.org/10.1016/j.fertnstert.2013.01.149
Ng KL (2005) Dependence of olfactory bulb neurogenesis on Prokineticin 2 signaling. Science 308:1923–1927. https://doi.org/10.1126/science.1112103
Nickell MD, Breheny P, Stromberg AJ, McClintock TS (2012) Genomics of mature and immature olfactory sensory neurons. J Comp Neurol 520:2608–2629. https://doi.org/10.1002/cne.23052
Nunziata A, Borck G, Funcke J-B et al (2017) Estimated prevalence of potentially damaging variants in the leptin gene. Mol Cell Pediatr. https://doi.org/10.1186/s40348-017-0074-x
Oleari R, Caramello A, Campinoti S et al (2019a) PLXNA1 and PLXNA3 cooperate to pattern the nasal axons that guide gonadotropin-releasing hormone neurons. Development. https://doi.org/10.1242/dev.176461
Oleari R, Lettieri A, Paganoni A et al (2019b) Semaphorin signaling in GnRH neurons: from development to disease. Neuroendocrinology 109:193–199. https://doi.org/10.1159/000495916
Oliveira LM, Seminara SB, Beranova M et al (2001) The importance of autosomal genes in Kallmann syndrome: genotype-phenotype correlations and neuroendocrine characteristics. J Clin Endocrinol Metab 86:1532–1538. https://doi.org/10.1210/jcem.86.4.7420
Olsen SK, Li JYH, Bromleigh C et al (2006) Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev. https://doi.org/10.1101/gad.1365406
Olson LE, Tollkuhn J, Scafoglio C et al (2006) Homeodomain-mediated β-catenin-dependent switching events dictate cell-lineage determination. Cell. https://doi.org/10.1016/j.cell.2006.02.046
Palmert MR, Boepple PA (2001) Commentary: variation in the timing of puberty: clinical spectrum and genetic investigation. J Clin Endocrinol Metab 86:2364–2368
Pask AJ, Kanasaki H, Kaiser UB et al (2005) A novel mouse model of hypogonadotrophic hypogonadism: N-ethyl-N-nitrosourea-induced gonadotropin-releasing hormone receptor gene mutation. Mol Endocrinol 19:972–981. https://doi.org/10.1210/me.2004-0192
Pasterkamp RJ, De Winter F, Holtmaat AJ, Verhaagen J (1998) Evidence for a role of the chemorepellent semaphorin III and its receptor neuropilin-1 in the regeneration of primary olfactory axons. J Neurosci 18:9962–9976
Pfaeffle RW, Savage JJ, Hunter CS et al (2007) Four novel mutations of the LHX3 gene cause combined pituitary hormone deficiencies with or without limited neck rotation. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2006-2177
Pfaeffle RW, Hunter CS, Savage JJ et al (2008) Three novel missense mutations within the LHX4 gene are associated with variable pituitary hormone deficiencies. J Clin Endocrinol Metab 93:1062–1071. https://doi.org/10.1210/jc.2007-1525
Pingault V, Ente D, Le Moal FD et al (2010) Review and update of mutations causing Waardenburg syndrome. Hum Mutat 31(4):391–406. https://doi.org/10.1002/humu.21211
Pingault V, Bodereau V, Baral V et al (2013) Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness. Am J Hum Genet 92:707–724. https://doi.org/10.1016/j.ajhg.2013.03.024
Pitteloud N, Boepple PA, DeCruz S et al (2001) The fertile eunuch variant of idiopathic hypogonadotropic hypogonadism: spontaneous reversal associated with a homozygous mutation in the gonadotropin-releasing hormone receptor1. J Clin Endocrinol Metab 86:2470–2475. https://doi.org/10.1210/jcem.86.6.7542
Pitteloud N, Hayes FJ, Boepple PA et al (2002) The role of prior pubertal development, biochemical markers of testicular maturation, and genetics in elucidating the phenotypic heterogeneity of idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 87:152–160. https://doi.org/10.1210/jcem.87.1.8131
Pitteloud N, Acierno JS, Meysing A et al (2006) Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0600962103
Pitteloud N, Quinton R, Pearce S et al (2007a) Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J Clin Invest 117:457–463. https://doi.org/10.1172/JCI29884
Pitteloud N, Zhang C, Pignatelli D et al (2007b) Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 104:17447–17452. https://doi.org/10.1073/pnas.0707173104
Pitteloud N, Durrani S, Raivio T, Sykiotis GP (2010) Complex genetics in idiopathic hypogonadotropic hypogonadism. Kallmann syndrome and hypogonadotropic hypogonadism. KARGER, Basel, pp 142–153
Pozza SBD, Hiedl S, Roeb J et al (2012) A recessive mutation resulting in a disabling amino acid substitution (T194R) in the LHX3 homeodomain causes combined pituitary hormone deficiency. Horm Res Paediatr 77(1):41–51. https://doi.org/10.1159/000335929
Prosser HM, Bradley A, Caldwell MA (2007) Olfactory bulb hypoplasia in Prokr2 null mice stems from defective neuronal progenitor migration and differentiation. Eur J Neurosci 26:3339–3344.https://doi.org/10.1111/j.1460-9568.2007.05958.x
Quennell JH, Mulligan AC, Tups A et al (2009) Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology. https://doi.org/10.1210/en.2008-1693
Quinton R, Cheow HK, Tymms DJ et al (1999) Kallmann’s syndrome: is it always for life? Clin Endocrinol (Oxf) 50:481–485. https://doi.org/10.1046/j.1365-2265.1999.00708.x
Quinton R, Duke VM, Robertson A et al (2001) Idiopathic gonadotrophin deficiency: genetic questions addressed through phenotypic characterization. Clin Endocrinol (Oxf) 55:163–174. https://doi.org/10.1046/j.1365-2265.2001.01277.x
Raivio T, Falardeau J, Dwyer A et al (2007) Reversal of idiopathic hypogonadotropic hypogonadism. N Engl J Med 357:863–873. https://doi.org/10.1056/NEJMoa066494
Raivio T, Avbelj M, McCabe MJ et al (2012) Genetic overlap in kallmann syndrome, combined pituitary hormone deficiency, and septo-optic dysplasia. J Clin Endocrinol Metab 97:E694–E699. https://doi.org/10.1210/jc.2011-2938
Ribeiro RS, Vieira TC, Abucham J (2007) Reversible Kallmann syndrome: report of the first case with a KAL1 mutation and literature review. Eur J Endocrinol 156:285–290. https://doi.org/10.1530/eje.1.02342
Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30
Robinson M, Parsons Perez MC, Tébar L et al (2004) FLRT3 is expressed in sensory neurons after peripheral nerve injury and regulates neurite outgrowth. Mol Cell Neurosci. https://doi.org/10.1016/j.mcn.2004.06.008
Romero CJ, Pine-Twaddell E, Radovick S (2011) Novel mutations associated with combined pituitary hormone deficiency. J Mol Endocrinol 46(3):R93–R102. https://doi.org/10.1530/JME-10-0133
Root AW (2010) Reversible isolated hypogonadotropic hypogonadism due to mutations in the neurokinin B regulation of gonadotropin-releasing hormone release. J Clin Endocrinol Metab 95:2625–2629. https://doi.org/10.1210/jc.2010-0733
Ross RA, Leon S, Madara JC et al (2018) PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse. Elife. https://doi.org/10.7554/eLife.35960
de Roux N (2006) GnRH receptor and GPR54 inactivation in isolated gonadotropic deficiency. Best Pract Res Clin Endocrinol Metab 20:515–528. https://doi.org/10.1016/j.beem.2006.10.005
de Roux N, Young J, Misrahi M et al (1997) A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N Engl J Med 337:1597–1603. https://doi.org/10.1056/NEJM199711273372205
de Roux N, Young J, Brailly-Tabard S et al (1999) The same molecular defects of the gonadotropin-releasing hormone receptor determine a variable degree of hypogonadism in affected kindred1. J Clin Endocrinol Metab 84:567–572. https://doi.org/10.1210/jcem.84.2.5449
de Roux N, Genin E, Carel J-C et al (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci 100:10972–10976. https://doi.org/10.1073/pnas.1834399100
de Tassigny XA, Fagg LA, Dixon JPC et al (2007) Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci 104:10714–10719. https://doi.org/10.1073/pnas.0704114104
Rugarli EI, Ghezzi C, Valsecchi V, Ballabio A (1996) The Kallmann syndrome gene product expressed in COS cells is cleaved on the cell surface to yield a diffusible component. Hum Mol Genet 5:1109–1115. https://doi.org/10.1093/hmg/5.8.1109
Salenave S, Chanson P, Bry H et al (2008) Kallmann’s syndrome: a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J Clin Endocrinol Metab 93:758–763. https://doi.org/10.1210/jc.2007-1168
Santhakumar A, Balasubramanian R, Miller M, Quinton R (2014) Reversal of isolated hypogonadotropic hypogonadism: long-term integrity of hypothalamo-pituitary-testicular axis in two men is dependent on intermittent androgen exposure. Clin Endocrinol (Oxf) 81:473–476
Sarfati J, Dodé C, Young J (2010) Kallmann syndrome caused by mutations in the PROK2 and PROKR2 genes: pathophysiology and genotype-phenotype correlations. Front Horm Res 39:121–132. https://doi.org/10.1159/000312698
Sasaki G, Ogata T, Ishii T et al (2002) Novel mutation of TBX3 in a Japanese family with ulnar-mammary syndrome: implication for impaired sex development. Am J Med Genet 110:365–369. https://doi.org/10.1002/ajmg.10447
Sato N, Katsumata N, Kagami M et al (2004) Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients. J Clin Endocrinol Metab 89:1079–1088. https://doi.org/10.1210/jc.2003-030476
Sbai O, Monnier C, Dodé C et al (2014) Biased signaling through G-protein-coupled PROKR2 receptors harboring missense mutations. FASEB J 28:3734–3744. https://doi.org/10.1096/fj.13-243402
Schang AL, Granger A, Quérat B et al (2013) GATA2-induced silencing and LIM-homeodomain protein-induced activation are mediated by a Bi-functional response element in the rat GnRH receptor gene. Mol Endocrinol. https://doi.org/10.1210/me.2012-1182
Schilter KF, Schneider A, Bardakjian T et al (2011) OTX2 microphthalmia syndrome: four novel mutations and delineation of a phenotype. Clin Genet. https://doi.org/10.1111/j.1399-0004.2010.01450.x
Schwanzel-Fukuda M, Bick D, Pfaff DW (1989) Luteinizing hormone-releasing hormone (LHRH)-expressing cells do not migrate normally in an inherited hypogonadal (Kallmann) syndrome. Mol Brain Res 6:311–326. https://doi.org/10.1016/0169-328X(89)90076-4
Schwarting GA, Raitcheva D, Bless EP et al (2004) Netrin 1-mediated chemoattraction regulates the migratory pathway of LHRH neurons. Eur J Neurosci 19:11–20. https://doi.org/10.1111/j.1460-9568.2004.03094.x
Seeburg PH, Adelman JP (1984) Characterization of cDNA for precursor of human luteinizing hormone releasing hormone. Nature 311:666–668. https://doi.org/10.1038/311666a0
Seifi M, Walter MA (2018) Axenfeld-Rieger syndrome. Clin Genet 93:1123–1130. https://doi.org/10.1111/cge.13148
Seminara SB, Acierno JS, Abdulwahid NA et al (2002) Hypogonadotropic hypogonadism and cerebellar ataxia: detailed phenotypic characterization of a large, extended kindred. J Clin Endocrinol Metab 87:1607–1612. https://doi.org/10.1210/jcem.87.4.8384
Seminara SB, Messager S, Chatzidaki EE et al (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627. https://doi.org/10.1056/NEJMoa035322
Semple RK, Achermann JC, Ellery J et al (2005) Two novel missense mutations in G protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism. J Clin Endocrinol Metab 90:1849–1855. https://doi.org/10.1210/jc.2004-1418
Shaw ND, Brand H, Kupchinsky ZA et al (2017) SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome. Nat Genet 49:238–248. https://doi.org/10.1038/ng.3743
Sheng HZ, Moriyama K, Yamashita T et al (1997) Multistep control of pituitary organogenesis. Science 278:1809–1812. https://doi.org/10.1126/science.278.5344.1809
Shi C-H, Schisler JC, Rubel CE et al (2014) Ataxia and hypogonadism caused by the loss of ubiquitin ligase activity of the U box protein CHIP. Hum Mol Genet 23:1013–1024. https://doi.org/10.1093/hmg/ddt497
Sidhoum VF, Chan Y-M, Lippincott MF et al (2014) Reversal and relapse of hypogonadotropic hypogonadism: resilience and fragility of the reproductive neuroendocrine system. J Clin Endocrinol Metab 99:861–870. https://doi.org/10.1210/jc.2013-2809
Simonis N, Migeotte I, Lambert N et al (2013) FGFR1 mutations cause hartsfield syndrome, the unique association of holoprosencephaly and ectrodactyly. J Med Genet. https://doi.org/10.1136/jmedgenet-2013-101603
Sinisi AA, Asci R, Bellastella G et al (2008) Homozygous mutation in the prokineticin-receptor2 gene (Val274Asp) presenting as reversible Kallmann syndrome and persistent oligozoospermia: case report. Hum Reprod 23:2380–2384. https://doi.org/10.1093/humrep/den247
Sisodiya SM, Ragge NK, Cavalleri GL et al (2006) Role of SOX2 mutations in human hippocampal malformations and epilepsy. Epilepsia 47:534–542. https://doi.org/10.1111/j.1528-1167.2006.00464.x
Smith JT, Acohido BV, Clifton DK, Steiner RA (2006) KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 18:298–303. https://doi.org/10.1111/j.1365-2826.2006.01417.x
Soussi-Yanicostas N, Hardelin JP, Arroyo-Jimenez MM et al (1996) Initial characterization of anosmin-1, a putative extracellular matrix protein synthesized by definite neuronal cell populations in the central nervous system. J Cell Sci 109(Pt 7):1749–1757
Soussi-Yanicostas N, de Castro F, Julliard AK et al (2002) Anosmin-1, defective in the X-linked form of Kallmann syndrome, promotes axonal branch formation from olfactory bulb output neurons. Cell 109:217–228. https://doi.org/10.1016/s0092-8674(02)00713-4
Spilker C, Grochowska KM, Kreutz MR (2016) What do we learn from the murine Jacob/Nsmf gene knockout for human disease? Rare Dis (Austin, Tex) 4:e1241361. https://doi.org/10.1080/21675511.2016.1241361
Srour M, Riviere JB, Pham JMT et al (2010) Mutations in DCC cause congenital mirror movements. Science 328:592–592. https://doi.org/10.1126/science.1186463
Stamou MI, Georgopoulos NA (2018) Kallmann syndrome: phenotype and genotype of hypogonadotropic hypogonadism. Metabolism 86:124–134. https://doi.org/10.1016/j.metabol.2017.10.012
Stamou MI, Varnavas P, Plummer L et al (2019) Next-generation sequencing refines the genetic architecture of Greek GnRH-deficient patients. Endocr Connect 8:468–480. https://doi.org/10.1530/EC-19-0010
Steevens AR, Sookiasian DL, Glatzer JC, Kiernan AE (2017) SOX2 is required for inner ear neurogenesis. Sci Rep 7:4086. https://doi.org/10.1038/s41598-017-04315-2
Stenson PD, Mort M, Ball EV et al (2014) The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet 133:1–9
Suh H, Gage PJ, Drouin J, Camper SA (2002) Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development 129(2):329–337
Swee DS, Quinton R (2019a) Congenital hypogonadotrophic hypogonadism: minipuberty and the case for neonatal diagnosis. Front Endocrinol (Lausanne) 10:97. https://doi.org/10.3389/fendo.2019.00097
Swee DS, Quinton R (2019b) Managing congenital hypogonadotrophic hypogonadism: a contemporary approach directed at optimizing fertility and long-term outcomes in males. Ther Adv Endocrinol Metab. https://doi.org/10.1177/2042018819826889
Sykiotis GP, Plummer L, Hughes VA et al (2010) Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proc Natl Acad Sci 107:15140–15144. https://doi.org/10.1073/pnas.1009622107
Synofzik M, Gonzalez MA, Lourenco CM et al (2014) PNPLA6 mutations cause Boucher-Neuhauser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain 137:69–77. https://doi.org/10.1093/brain/awt326
Tajima T, Ishizu K, Nakamura A (2013) Molecular and clinical findings in patients with LHX4 and OTX2 mutations. Clin Pediatr Endocrinol 22(2):15–23. https://doi.org/10.1292/cpe.22.15
Takagi M, Narumi S, Hamada R et al (2014) A novel KAL1 mutation is associated with combined pituitary hormone deficiency. Hum Genome Var 1:14011. https://doi.org/10.1038/hgv.2014.11
Taniguchi K, Ayada T, Ichiyama K et al (2007) Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2006.11.107
Tata B, Huijbregts L, Jacquier S et al (2014) Haploinsufficiency of Dmxl2, encoding a synaptic protein, causes infertility associated with a loss of GnRH neurons in mouse. PLoS Biol 12:e1001952. https://doi.org/10.1371/journal.pbio.1001952
Teles MG, Bianco SDC, Brito VN et al (2008) A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med 358:709–715. https://doi.org/10.1056/NEJMoa073443
Tenenbaum-Rakover Y, Commenges-Ducos M, Iovane A et al (2007) Neuroendocrine phenotype analysis in five patients with isolated hypogonadotropic hypogonadism due to a L102P inactivating mutation of GPR54. J Clin Endocrinol Metab 92:1137–1144. https://doi.org/10.1210/jc.2006-2147
Tétreault M, Choquet K, Orcesi S et al (2011) Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy. Am J Hum Genet 89:652–655. https://doi.org/10.1016/j.ajhg.2011.10.006
Tiong J, Locastro T, Wray S (2007) Gonadotropin-releasing hormone-1 (GnRH-1) is involved in tooth maturation and biomineralization. Dev Dyn 236:2980–2992. https://doi.org/10.1002/dvdy.21332
Tommiska J, Känsäkoski J, Christiansen P et al (2014) Genetics of congenital hypogonadotropic hypogonadism in Denmark. Eur J Med Genet 57:345–348. https://doi.org/10.1016/j.ejmg.2014.04.002
Topaloglu AK, Reimann F, Guclu M et al (2009) TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet 41:354–358. https://doi.org/10.1038/ng.306
Topaloglu AK, Tello JA, Kotan LD et al (2012) Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 366:629–635. https://doi.org/10.1056/NEJMoa1111184
Topaloglu AK, Lomniczi A, Kretzschmar D et al (2014) Loss-of-function mutations in PNPLA6 encoding neuropathy target esterase underlie pubertal failure and neurological deficits in Gordon Holmes syndrome. J Clin Endocrinol Metab 99:E2067–E2075. https://doi.org/10.1210/jc.2014-1836
Tornberg J, Sykiotis GP, Keefe K et al (2011) Heparan sulfate 6-O-sulfotransferase 1, a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism. Proc Natl Acad Sci USA 108:11524–11529. https://doi.org/10.1073/pnas.1102284108
Trarbach EB, Silveira LG, Latronico AC (2007) Genetic insights into human isolated gonadotropin deficiency. Pituitary 10:381–391. https://doi.org/10.1007/s11102-007-0061-7
Tsuchida T, Ensini M, Morton SB et al (1994) Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell. https://doi.org/10.1016/0092-8674(94)90027-2
Turan I, Hutchins BI, Hacihamdioglu B et al (2017) CCDC141 mutations in idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 102:1816–1825. https://doi.org/10.1210/jc.2016-3391
Turton JPG, Mehta A, Raza J et al (2005) Mutations within the transcription factor PROP1 are rare in a cohort of patients with sporadic combined pituitary hormone deficiency (CPHD). Clin Endocrinol (Oxf). https://doi.org/10.1111/j.1365-2265.2005.02291.x
Vaaralahti K, Tommiska J, Tillmann V et al (2014) De novo SOX10 nonsense mutation in a patient with Kallmann syndrome and hearing loss. Pediatr Res 76:115–116. https://doi.org/10.1038/pr.2014.60
Valdes-Socin H, Salvi R, Thiry A et al (2009) Testicular effects of isolated luteinizing hormone deficiency and reversal by long-term human chorionic gonadotropin treatment. J Clin Endocrinol Metab. https://doi.org/10.1210/jc.2008-1584
Vezzoli V, Duminuco P, Bassi I et al (2016) The complex genetic basis of congenital hypogonadotropic hypogonadism. Minerva Endocrinol 41:223–239
Villanueva C, Jacobson-Dickman E, Xu C et al (2015) Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations. Genet Med. https://doi.org/10.1038/gim.2014.166
Wakabayashi Y, Nakada T, Murata K et al (2010) Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J Neurosci 30:3124–3132. https://doi.org/10.1523/JNEUROSCI.5848-09.2010
Wang Y, Gong C, Qin M et al (2017) Clinical and genetic features of 64 young male paediatric patients with congenital hypogonadotropic hypogonadism. Clin Endocrinol (Oxf) 87:757–766. https://doi.org/10.1111/cen.13451
Wang F, Zhao S, Xie Y et al (2018) De novo SOX10 nonsense mutation in a patient with Kallmann syndrome, deafness, iris hypopigmentation, and hyperthyroidism. Ann Clin Lab Sci 48:248–252
Watanabe Y, Inoue K, Okuyama-Yamamoto A et al (2009) Fezf1 is required for penetration of the basal lamina by olfactory axons to promote olfactory development. J Comp Neurol 515:565–584. https://doi.org/10.1002/cne.22074
Weiss J, Adams E, Whitcomb RW et al (1991) Normal sequence of the gonadotropin-releasing hormone gene in patients with idiopathic hypogonadotropic hypogonadism. Biol Reprod 45:743–747. https://doi.org/10.1095/biolreprod45.5.743
Welt CK, Chan JL, Bullen J et al (2004) Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 351:987–997. https://doi.org/10.1056/NEJMoa040388
Whitman MC, Andrews C, Chan W-M et al (2016) Two unique TUBB3 mutations cause both CFEOM3 and malformations of cortical development. Am J Med Genet A 170A:297–305. https://doi.org/10.1002/ajmg.a.37362
Williamson KA, Hever AM, Rainger J et al (2006) Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Hum Mol Genet 15:1413–1422. https://doi.org/10.1093/hmg/ddl064
Wray S (2010) From nose to brain: development of gonadotrophin-releasing hormone -1 neurones. J Neuroendocrinol 22(7):743–753. https://doi.org/10.1111/j.1365-2826.2010.02034.x
Wu S, Wilson MD, Busby ER et al (2010) Disruption of the single copy gonadotropin-releasing hormone receptor in mice by gene trap: severe reduction of reproductive organs and functions in developing and adult mice. Endocrinology 151:1142–1152. https://doi.org/10.1210/en.2009-0598
Wyatt A, Bakrania P, Bunyan DJ et al (2008) Novel heterozygous OTX2 mutations and whole gene deletions in anophthalmia, microphthalmia and coloboma. Hum Mutat. https://doi.org/10.1002/humu.20869
Xu N, Bhagavath B, Kim H-G et al (2010) NELF is a nuclear protein involved in hypothalamic GnRH neuronal migration. Mol Cell Endocrinol 319:47–55. https://doi.org/10.1016/j.mce.2009.11.016
Xu N, Kim H-G, Bhagavath B et al (2011) Nasal embryonic LHRH factor (NELF) mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil Steril 95(1613–20):e1–7. https://doi.org/10.1016/j.fertnstert.2011.01.010
Xu C, Messina A, Somm E et al (2017) KLB, encoding β-Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Mol Med 9:1379–1397. https://doi.org/10.15252/emmm.201607376
Young J, Bouligand J, Francou B et al (2010) TAC3 and TACR3 defects cause hypothalamic congenital hypogonadotropic hypogonadism in humans. J Clin Endocrinol Metab 95:2287–2295. https://doi.org/10.1210/jc.2009-2600
Young J, Metay C, Bouligand J et al (2012) SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development. Hum Reprod 27:1460–1465. https://doi.org/10.1093/humrep/des022
Young J, Xu C, Papadakis GE et al (2019) Clinical management of congenital hypogonadotropic hypogonadism. Endocr Rev 40:669–710. https://doi.org/10.1210/er.2018-00116
Zhang S, Cui W (2014) Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells 6:305–311. https://doi.org/10.4252/wjsc.v6.i3.305
Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature. https://doi.org/10.1038/372425a0
Zhu J, Choa RE-Y, Guo MH et al (2015) A shared genetic basis for self-limited delayed puberty and idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 100:E646–E654. https://doi.org/10.1210/jc.2015-1080
Acknowledgements
Researches from Prof. M. Bonomi were partially supported by funds from IRCCS Istituto Auxologico Italiano (Ricerca Corrente funds: O5C202_2012); from Dept of Clinical Sciences and Community Health (Piano di Sostegno alla Ricerca—Linea 2: RV_RIC_AT18MBONO).
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Biagio Cangiano: ResID: K-1236-2018 and Marco Bonomi: ResID: T-6487-2019.
Rights and permissions
About this article
Cite this article
Cangiano, B., Swee, D.S., Quinton, R. et al. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet 140, 77–111 (2021). https://doi.org/10.1007/s00439-020-02147-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00439-020-02147-1