Skip to main content

Evaluating genetic causes of azoospermia: What can we learn from a complex cellular structure and single-cell transcriptomics of the human testis?

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Azoospermia is a condition defined as the absence of spermatozoa in the ejaculate, but the testicular phenotype of men with azoospermia may be very variable, ranging from full spermatogenesis, through arrested maturation of germ cells at different stages, to completely degenerated tissue with ghost tubules. Hence, information regarding the cell-type-specific expression patterns is needed to prioritise potential pathogenic variants that contribute to the pathogenesis of azoospermia. Thanks to technological advances within next-generation sequencing, it is now possible to obtain detailed cell-type-specific expression patterns in the testis by single-cell RNA sequencing. However, to interpret single-cell RNA sequencing data properly, substantial knowledge of the highly sophisticated data processing and visualisation methods is needed. Here we review the complex cellular structure of the human testis in different types of azoospermia and outline how known genetic alterations affect the pathology of the testis. We combined the currently available single-cell RNA sequencing datasets originating from the human testis into one dataset covering 62,751 testicular cells, each with a median of 2637 transcripts quantified. We show what effects the most common data-processing steps have, and how different visualisation methods can be used. Furthermore, we calculated expression patterns in pseudotime, and show how splicing rates can be used to determine the velocity of differentiation during spermatogenesis. With the combined dataset we show expression patterns and network analysis of genes known to be involved in the pathogenesis of azoospermia. Finally, we provide the combined dataset as an interactive online resource where expression of genes and different visualisation methods can be explored (https://testis.cells.ucsc.edu/).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Copyright Springer International Publishing AG 2017

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ART:

Assisted reproductive techniques

AZF:

Azoospermia-factor

CAVD:

Congenital absence of the vas deferens

DEG:

Differentially expressed gene

GEMINI:

GEnetics of Male INfertility Initiative

GWAS:

Genome-wide association studies

ICSI:

Intracytoplasmic sperm injection

IMiGC:

International Male infertility Genomics Consortium

INSL3:

Insulin-like 3

KS:

Klinefelter syndrome

MNN:

Mutual nearest neighbour

NOA:

Non-obstructive azoospermia

OA:

Obstructive azoospermia

PCA:

Principal component analysis

SCO:

Sertoli-cell-only

SCOS:

Sertoli-cell-only syndrome

scRNAseq:

Single-cell RNA sequencing

SOM:

Self-organizing maps

SPA:

Spermatocytic arrest

TESE:

Testicular sperm extraction

tSNE:

T-distributed stochastic nearest neighbour

UMAP:

Uniform manifold approximation

UMI:

Unique molecular identifier

WES:

Whole-exome sequencing

WGS:

Whole-genome sequencing

WHO:

World Health Organisation

References

  • Agarwal A, Mulgund A, Hamada A, Chyatte MR (2015) A unique view on male infertility around the globe. Reprod Biol Endocrinol 13:37

    PubMed  PubMed Central  Google Scholar 

  • Aibar S, González-Blas CB, Moerman T et al (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almstrup K, Nielsen JE, Hansen MA et al (2004) Analysis of cell-type-specific gene expression during mouse spermatogenesis. Biol Reprod 70:1751–1761

    CAS  PubMed  Google Scholar 

  • Amir E-AD, Davis KL, Tadmor MD et al (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31:545–552

    CAS  PubMed Central  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arzalluz-Luque Á, Conesa A (2018) Single-cell RNAseq for the study of isoforms-how is that possible? Genome Biol 19:110

    PubMed  PubMed Central  Google Scholar 

  • Ayhan Ö, Balkan M, Guven A et al (2014) Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia. J Med Genet 51:239–244

    CAS  PubMed  Google Scholar 

  • Bacher R, Chu L-F, Leng N et al (2017) SCnorm: robust normalization of single-cell RNA-seq data. Nat Methods 14:584–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barkas N, Petukhov V, Nikolaeva D et al (2019) Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat Methods 16:695–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barratt CLR, Björndahl L, De Jonge CJ et al (2017) The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidance—challenges and future research opportunities. Hum Reprod Update 23:660–680

    PubMed  PubMed Central  Google Scholar 

  • Blagosklonova O, Fellmann F, Clavequin MC et al (2000) AZFa deletions in Sertoli cell-only syndrome: a retrospective study. Mol Hum Reprod 6:795–799

    CAS  PubMed  Google Scholar 

  • Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 2008:P10008

    Google Scholar 

  • Boehm U, Bouloux P-M, Dattani MT et al (2015) Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 11:547–564

    PubMed  Google Scholar 

  • Boucekkine C, Toublanc JE, Abbas N et al (1994) Clinical and anatomical spectrum in XX sex reversed patients. Relationship to the presence of Y specific DNA-sequences. Clin Endocrinol 40:733–742

    CAS  Google Scholar 

  • Boulet SL, Mehta A, Kissin DM et al (2015) Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA 313:255–259

    PubMed  Google Scholar 

  • Chalmel F, Lardenois A, Evrard B et al (2014) High-resolution profiling of novel transcribed regions during rat spermatogenesis. Biol Reprod 91:5

    PubMed  Google Scholar 

  • Coifman RR, Lafon S, Lee AB et al (2005) Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci USA 102:7426–7431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cole MB, Risso D, Wagner A et al (2019) Performance assessment and selection of normalization procedures for single-cell RNA-Seq. Cell Syst 8:315–328.e8

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Cruz I, Rodríguez-Casuriaga R, Santiñaque FF et al (2016) Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage. BMC Genomics 17:294

    PubMed  PubMed Central  Google Scholar 

  • Dam AHDM, Koscinski I, Kremer JAM et al (2007) Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet 81:813–820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dangle P, Touzon MS, Reyes-Múgica M et al (2017) Female-to-male sex reversal associated with unique Xp21.2 deletion disrupting genomic regulatory architecture of the dosage-sensitive sex reversal region. J Med Genet 54:705–709

    CAS  PubMed  Google Scholar 

  • de Souza DAS, Faucz FR, Pereira-Ferrari L, Sotomaior VS, Raskin S (2018) Congenital bilateral absence of the vas deferens as an atypical form of cystic fibrosis: reproductive implications and genetic counseling. Andrology 6(1):127–135

    PubMed  Google Scholar 

  • Ding J, Adiconis X, Simmons SK et al (2019) Systematic comparative analysis of single cell RNA-sequencing methods. bioRxiv 632216

  • Donker RB, Vloeberghs V, Groen H et al (2017) Chromosomal abnormalities in 1663 infertile men with azoospermia: the clinical consequences. Hum Reprod 32:2574–2580

    CAS  PubMed  Google Scholar 

  • Eraslan G, Simon LM, Mircea M et al (2019) Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun 10:390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finak G, McDavid A, Yajima M et al (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16:278

    PubMed  PubMed Central  Google Scholar 

  • Gershoni M, Hauser R, Yogev L et al (2017) A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet Med 19:998–1006. https://doi.org/10.1038/gim.2016.225

    Article  CAS  PubMed  Google Scholar 

  • Gershoni M, Hauser R, Barda S et al (2019) A new MEIOB mutation is a recurrent cause for azoospermia and testicular meiotic arrest. Hum Reprod 34:666–671

    CAS  PubMed  Google Scholar 

  • Greenbaum MP, Yan W, Wu M-H et al (2006) TEX14 is essential for intercellular bridges and fertility in male mice. Proc Natl Acad Sci USA 103:4982–4987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo R, Yu Z, Guan J et al (2004) Stage-specific and tissue-specific expression characteristics of differentially expressed genes during mouse spermatogenesis. Mol Reprod Dev 67:264–272

    CAS  PubMed  Google Scholar 

  • Guo J, Grow EJ, Yi C et al (2017) Chromatin and single-cell RNA-seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development. Cell Stem Cell 21:533–546.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, Guo Y, Takei Y, Yun J, Cai L, Kim R, Carrell DT, Goriely A, Hotaling JM, Cairns BR (2018) The adult human testis transcriptional cell atlas. Cell Res 28(12):1141–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hafemeister C, Satija R (2019) Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20:296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haghverdi L, Buettner F, Theis FJ (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31:2989–2998

    CAS  PubMed  Google Scholar 

  • Haghverdi L, Büttner M, Wolf FA et al (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods 13:845–848

    CAS  PubMed  Google Scholar 

  • Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018) Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol 36:421–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harbuz R, Zouari R, Pierre V et al (2011) A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am J Hum Genet 88:351–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen I-C, Gildersleeve H, Lehle JD, Mayo M, Westernströer B, Law NC, Oatley MJ, Velte EK, Niedenberger BA, Fritze D, Silber S, Geyer CB, Oatley JM, McCarrey JR (2018) The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep 25(6):1650–1667.e8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoei-Hansen CE, Holm M, Rajpert-De Meyts E, Skakkebaek NE (2003) Histological evidence of testicular dysgenesis in contralateral biopsies from 218 patients with testicular germ cell cancer. J Pathol 200:370–374

    PubMed  Google Scholar 

  • Hore V, Viñuela A, Buil A et al (2016) Tensor decomposition for multiple-tissue gene expression experiments. Nat Genet 48:1094–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ilicic T, Kim JK, Kolodziejczyk AA et al (2016) Classification of low quality cells from single-cell RNA-seq data. Genome Biol 17:29

    PubMed  PubMed Central  Google Scholar 

  • Islam S, Zeisel A, Joost S et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166

    CAS  PubMed  Google Scholar 

  • Jan SZ, Vormer TL, Jongejan A et al (2017) Unraveling transcriptome dynamics in human spermatogenesis. Development 144:3659–3673

    PubMed  PubMed Central  Google Scholar 

  • Jarow JP, Espeland MA, Lipshultz LI (1989) Evaluation of the azoospermic patient. J Urol 142:62–65

    CAS  PubMed  Google Scholar 

  • Jégou B, Sankararaman S, Rolland AD et al (2017) Meiotic genes are enriched in regions of reduced archaic ancestry. Mol Biol Evol 34:1974–1980

    PubMed  PubMed Central  Google Scholar 

  • Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127

    PubMed  Google Scholar 

  • Kasak L, Laan M (2020) Monogenic causes of non-obstructive azoospermia: challenges, established knowledge, limitations and perspectives. Hum Genet. https://doi.org/10.1007/s00439-020-02112-y

    Article  PubMed  Google Scholar 

  • Kasak L, Punab M, Nagirnaja L et al (2018) Bi-allelic recessive loss-of-function variants in FANCM cause non-obstructive azoospermia. Am J Hum Genet 103:200–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kharchenko PV, Silberstein L, Scadden DT (2014) Bayesian approach to single-cell differential expression analysis. Nat Methods 11:740–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiselev VY, Kirschner K, Schaub MT et al (2017) SC3: consensus clustering of single-cell RNA-seq data. Nat Methods 14:483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Google Scholar 

  • Korthauer KD, Chu L-F, Newton MA et al (2016) A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol 17:222

    PubMed  PubMed Central  Google Scholar 

  • Krausz C, Casamonti E (2017) Spermatogenic failure and the Y chromosome. Hum Genet 136:637–655

    CAS  PubMed  Google Scholar 

  • Krausz C, Riera-Escamilla A (2018) Genetics of male infertility. Nat Rev Urol 15:369–384

    CAS  PubMed  Google Scholar 

  • Krausz C, Meyts ER-D, Frydelund-Larsen L et al (2001) Double-blind Y chromosome microdeletion analysis in men with known sperm parameters and reproductive hormone profiles: microdeletions are specific for spermatogenic failure1. J Clin Endocrinol Metab 86:2638–2642

    CAS  PubMed  Google Scholar 

  • Krausz C, Hoefsloot L, Simoni M et al (2014) EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology 2:5–19

    CAS  PubMed  Google Scholar 

  • Krausz C, Riera-Escamilla A, Chianese C et al (2019) From exome analysis in idiopathic azoospermia to the identification of a high-risk subgroup for occult Fanconi anemia. Genet Med 21:189–194

    CAS  PubMed  Google Scholar 

  • Krishnaswamy S, Spitzer MH, Mingueneau M, et al (2014) Systems biology. Conditional density-based analysis of T cell signaling in single-cell data. Science 346:1250689

  • Kumar PA, Pitteloud N, Andrews PAM et al (2006) Testis morphology in patients with idiopathic hypogonadotropic hypogonadism. Hum Reprod 21:1033–1040

    PubMed  Google Scholar 

  • Kumar RM, Cahan P, Shalek AK et al (2014) Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516:56–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • La Manno G, Soldatov R, Zeisel A et al (2018) RNA velocity of single cells. Nature 560:494–498

    PubMed  PubMed Central  Google Scholar 

  • Lachmann A, Giorgi FM, Lopez G, Califano A (2016) ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics 32:2233–2235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137

    Google Scholar 

  • Lo Giacco D, Chianese C et al (2014) Clinical relevance of Y-linked CNV screening in male infertility: new insights based on the 8-year experience of a diagnostic genetic laboratory. Eur J Hum Genet 22:754–761

    PubMed  Google Scholar 

  • Lopes AM, Aston KI, Thompson E et al (2013) Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. PLoS Genet 9:e1003349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol 15:e8746

    PubMed  PubMed Central  Google Scholar 

  • Luetjens CM, Gromoll J, Engelhardt M et al (2002) Manifestation of Y-chromosomal deletions in the human testis: a morphometrical and immunohistochemical evaluation. Hum Reprod 17:2258–2266

    CAS  PubMed  Google Scholar 

  • Lun ATL, Bach K, Marioni JC (2016) Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol 17:75

    PubMed  Google Scholar 

  • Mayère C, Neirijnck Y, Sararols P et al (2019) Single-cell transcriptomics reveals temporal dynamics of critical regulators of germ cell fate during mouse sex determination. bioRxiv 747279

  • McCarthy DJ, Campbell KR, Lun ATL, Wills QF (2017) Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33:1179–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGinnis CS, Patterson DM, Winkler J et al (2019) MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices. Nat Methods 16:619–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • McInnes L, Healy J, Saul N, Großberger L (2018) UMAP: uniform manifold approximation and projection. JOSS 3:861

    Google Scholar 

  • McLachlan RI, Rajpert-De Meyts E, Hoei-Hansen CE et al (2007) Histological evaluation of the human testis–approaches to optimizing the clinical value of the assessment: mini review. Hum Reprod 22:2–16

    CAS  PubMed  Google Scholar 

  • Melsted P, Booeshaghi AS, Gao F et al (2019) Modular and efficient pre-processing of single-cell RNA-seq. https://doi.org/10.1101/673285

  • Mereu E, Lafzi A, Moutinho C et al (2019) Benchmarking single-cell RNA sequencing protocols for cell atlas projects. bioRxiv 630087

  • Miao Z, Deng K, Wang X, Zhang X (2018) DEsingle for detecting three types of differential expression in single-cell RNA-seq data. Bioinformatics 34:3223–3224

    CAS  PubMed  Google Scholar 

  • Miyamoto T, Hasuike S, Yogev L et al (2003) Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 362:1714–1719

    CAS  PubMed  Google Scholar 

  • Modgil V, Rai S, Ralph DJ, Muneer A (2016) An update on the diagnosis and management of ejaculatory duct obstruction. Nat Rev Urol 13:13–20

    PubMed  Google Scholar 

  • Morales CR, Lefrancois S, Chennathukuzhi V et al (2002) A TB-RBP and Ter ATPase complex accompanies specific mRNAs from nuclei through the nuclear pores and into intercellular bridges in mouse male germ cells. Dev Biol 246:480–494

    CAS  PubMed  Google Scholar 

  • Mou L, Wang Y, Li H et al (2013) A dominant-negative mutation of HSF2 associated with idiopathic azoospermia. Hum Genet 132:159–165

    CAS  PubMed  Google Scholar 

  • Muciaccia B, Boitani C, Berloco BP et al (2013) Novel stage classification of human spermatogenesis based on acrosome development. Biol Reprod 89:60

    PubMed  Google Scholar 

  • Nitzan M, Karaiskos N, Friedman N, Rajewsky N (2018) Charting a tissue from single-cell transcriptomes. bioRxiv 456350

  • Olesen IA, Andersson A-M, Aksglaede L et al (2017) Clinical, genetic, biochemical, and testicular biopsy findings among 1,213 men evaluated for infertility. Fertil Steril 107:74–82.e7

    PubMed  Google Scholar 

  • Ottesen AM, Garn ID, Aksglaede L et al (2007) A simple screening method for detection of Klinefelter syndrome and other X-chromosome aneuploidies based on copy number of the androgen receptor gene. Mol Hum Reprod 13:745–750

    CAS  PubMed  Google Scholar 

  • Ozturk S, Uysal F (2018) Potential roles of the poly(A)-binding proteins in translational regulation during spermatogenesis. J Reprod Dev advpub. https://doi.org/10.1262/jrd.2018-026

  • Pagin A, Bergougnoux A, Girodon E, Reboul M-P, Willoquaux C, Kesteloot M, Raynal C, Bienvenu T, Humbert M, Lalau G, Bieth E (2019) Novel ADGRG2 truncating variants in patients with X-linked congenital absence of vas deferens. Andrology. https://doi.org/10.1111/andr.12744

    Article  PubMed  Google Scholar 

  • Polański K, Park JE, Young MD, Miao Z, Meyer KB, Teichmann SA (2019) BBKNN: fast batch alignment of single cell transcriptomes. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz625

    Article  PubMed  Google Scholar 

  • Peng T, Zhu Q, Yin P, Tan K (2019) SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data. Genome Biol 20:88

    PubMed  PubMed Central  Google Scholar 

  • Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9(1):171–181

    CAS  PubMed  Google Scholar 

  • Punab M, Poolamets O, Paju P et al (2017) Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum Reprod 32:18–31

    CAS  PubMed  Google Scholar 

  • Qiu X, Hill A, Packer J et al (2017a) Single-cell mRNA quantification and differential analysis with Census. Nat Methods 14:309–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu X, Mao Q, Tang Y et al (2017b) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14:979–982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riera-Escamilla A, Enguita-Marruedo A, Moreno-Mendoza D et al (2019) Sequencing of a “mouse azoospermia” gene panel in azoospermic men: identification of RNF212 and STAG3 mutations as novel genetic causes of meiotic arrest. Hum Reprod 34:978–988

    CAS  PubMed  Google Scholar 

  • Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    CAS  PubMed  Google Scholar 

  • Rolland AD, Evrard B, Darde TA et al (2019) RNA profiling of human testicular cells identifies syntenic lncRNAs associated with spermatogenesis. Hum Reprod 34:1278–1290

    CAS  PubMed  Google Scholar 

  • Röpke A, Tewes A-C, Gromoll J et al (2013) Comprehensive sequence analysis of the NR5A1 gene encoding steroidogenic factor 1 in a large group of infertile males. Eur J Hum Genet 21:1012–1015

    PubMed  PubMed Central  Google Scholar 

  • Schiebinger G, Shu J, Tabaka M et al (2019) Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176:928–943.e22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Setty M, Kiseliovas V, Levine J et al (2019) Characterization of cell fate probabilities in single-cell data with Palantir. Nat Biotechnol 37:451–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simoni M, Tüttelmann F, Gromoll J, Nieschlag E (2008) Clinical consequences of microdeletions of the Y chromosome: the extended Münster experience. Reprod Biomed Online 16:289–303

    CAS  PubMed  Google Scholar 

  • Skakkebæk NE (1969) Two types of tubules containing only sertoli cells in adults with Klinefelter’s syndrome. Nature 223:643–645

    PubMed  Google Scholar 

  • Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM et al (2016) Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev 96:55–97

    CAS  PubMed  Google Scholar 

  • Sohni A, Tan K, Song H-W, Burow D, de Rooij DG, Laurent L, Hsieh T-C, Rabah R, Hammoud SS, Vicini E, Wilkinson MF (2019) The neonatal and adult human testis defined at the single-cell level. Cell Rep 26(6):1501–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stamou MI, Georgopoulos NA (2018) Kallmann syndrome: phenotype and genotype of hypogonadotropic hypogonadism. Metabolism 86:124–134

    CAS  PubMed  Google Scholar 

  • Stouffs K, Vloeberghs V, Gheldof A et al (2017) Are AZFb deletions always incompatible with sperm production? Andrology 5:691–694

    CAS  PubMed  Google Scholar 

  • Street K, Risso D, Fletcher RB et al (2018) Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19:477

    PubMed  PubMed Central  Google Scholar 

  • Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382

    CAS  PubMed  Google Scholar 

  • Tournaye H, Krausz C, Oates RD (2017) Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol 5:544–553

    PubMed  Google Scholar 

  • Traag VA, Waltman L, van Eck NJ (2019) From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep 9:5233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Cacchiarelli D, Grimsby J et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tritschler S, Büttner M, Fischer DS et al (2019) Concepts and limitations for learning developmental trajectories from single cell genomics. Development. https://doi.org/10.1242/dev.170506

    Article  PubMed  Google Scholar 

  • Tüttelmann F, Werny F, Cooper TG et al (2011) Clinical experience with azoospermia: aetiology and chances for spermatozoa detection upon biopsy. Int J Androl 34:291–298

    PubMed  Google Scholar 

  • Tüttelmann F, Ruckert C, Röpke A (2018) Disorders of spermatogenesis: perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med Genet 30:12–20

    PubMed  PubMed Central  Google Scholar 

  • van der Bijl N, Röpke A et al (2019) Mutations in the stromal antigen 3 (STAG3) gene cause male infertility due to meiotic arrest. Hum Reprod 34:2112–2119

    PubMed  Google Scholar 

  • Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9:2579–2605

    Google Scholar 

  • van Dijk D, Sharma R, Nainys J et al (2018) Recovering gene interactions from single-cell data using data diffusion. Cell 174:716–729.e27

    PubMed  PubMed Central  Google Scholar 

  • Ventelä S, Toppari J, Parvinen M (2003) Intercellular organelle traffic through cytoplasmic bridges in early spermatids of the rat: mechanisms of haploid gene product sharing. Mol Biol Cell 14:2768–2780

    PubMed  PubMed Central  Google Scholar 

  • Vieth B, Parekh S, Ziegenhain C et al (2019) A systematic evaluation of single cell RNA-seq analysis pipelines. Nat Commun 10:4667. https://doi.org/10.1038/s41467-019-12266-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vockel M, Riera-Escamilla A, Tüttelmann F, Krausz C (2019) The X chromosome and male infertility. Hum Genet (2019). https://doi.org/10.1007/s00439-019-02101-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner DE, Weinreb C, Collins ZM et al (2018) Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360:981–987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner F, Barkley D, Yanai I (2019) Accurate denoising of single-cell RNA-Seq data using unbiased principal component analysis. bioRxiv 655365

  • Wang M, Fischer J, Song YS (2017) Three-way clustering of multi-tissue multi-individual gene expression data using constrained tensor decomposition. Genomics 375

  • Wang M, Liu X, Chang G et al (2018) Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell 23:599–614.e4

    CAS  PubMed  Google Scholar 

  • Wang T, Li B, Nelson CE, Nabavi S (2019) Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data. BMC Bioinform 20:40

    Google Scholar 

  • Wolock SL, Lopez R, Klein AM (2019) Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8:281–291.e9

    CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2010) WHO laboratory manual for the examination and processing of human semen. World Health Organization, Geneva

    Google Scholar 

  • Yatsenko AN, Georgiadis AP, Röpke A et al (2015) X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med 372:2097–2107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young MD, Behjati S (2018) SoupX removes ambient RNA contamination from droplet based single cell RNA sequencing data. bioRxiv 303727

  • Zhu Z, Li C, Yang S et al (2016) Dynamics of the transcriptome during human spermatogenesis: predicting the potential key genes regulating male gametes generation. Sci Rep 6:19069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegenhain C, Vieth B, Parekh S et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643.e4

    CAS  PubMed  Google Scholar 

  • Zhang Q, Ji S-Y, Busayavalasa K, Shao J, Yu C (2019) Meiosis I progression in spermatogenesis requires a type of testis-specific 20S core proteasome. Nat Commun 10(1):3387. https://doi.org/10.1038/s41467-019-11346-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8(1):14049. https://doi.org/10.1038/ncomms14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the editor, Prof. Csilla Krausz and the anonymous referees for their constructive comments and suggestions.

Funding

The Danish Council for Independent Research | Natural Sciences (Grant Number 6108-00385A), and the Novo Nordisk Foundation (Grant Number NNF17OC0031004) to MHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Almstrup.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 196 kb)

Supplementary file2 (XLSX 11 kb)

Supplementary file3 (XLSX 1202 kb)

Supplementary Figure 1:

Mean normalized unspliced and spliced counts in 20 bins along pseudotime for four selected genes, with error bars representing confidence intervals. Except for ZMYND15, all genes show unspliced transcripts preceding spliced transcripts, as expected. It is worthwhile to note that ZMYND15 shows the smallest maximum and mean counts for unspliced transcripts, thus subjected to more sampling error (see Supplementary Table 3) (PDF 625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soraggi, S., Riera, M., Rajpert-De Meyts, E. et al. Evaluating genetic causes of azoospermia: What can we learn from a complex cellular structure and single-cell transcriptomics of the human testis?. Hum Genet 140, 183–201 (2021). https://doi.org/10.1007/s00439-020-02116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-020-02116-8