Skip to main content

Advertisement

T cells expressing a HER2-specific chimeric antigen receptor as treatment for breast cancer

  • Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Human endothelial growth factor receptor-2 (HER2) is a leucine kinase receptor that is closely related to cell growth and differentiation. It is very weakly expressed in a few epithelial cells in normal tissue. Abnormal expression of HER2 usually leads to sustained activation of downstream signaling pathways, enabling epithelial cell growth, proliferation, and differentiation; this disturbs normal physiological processes and causes tumor formation. Overexpression of HER2 is related to the occurrence and development of breast cancer. HER2 has become a well-established immunotherapy target for breast cancer. We chose to construct a second-generation CAR targeting HER 2 to test whether it kills breast cancer.

Methods

We constructed a second-generation CAR molecule targeting HER2, and we generated cells expressing this second-generation CAR through lentivirus infection of T lymphocytes. LDH assay and flow cytometry were perform to detect the effect of cells and animal models.

Results

The result indicated that the CARHER2 T cells could selectively kill cells with high Her2 expression. The PBMC-activated/CARHer2 cells had stronger in vivo tumor suppressive activity than PBMC-activated cells, and administration of PBMC-activated/CARHer2 cells significantly improved the survival of tumor-bearing mice, and induced the production of more Th1 cytokines in tumor-bearing NSG mice.

Conclusions

We prove that the generated T cells carrying the second-generation CARHer2 molecule could effectively guide immune effector cells to identify and kill HER2-positive tumor cells and inhibit tumors in model mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, Aprile G, Kulikov E, Hill J, Lehle M, Rüschoff J, Kang YK, ToGA Trial Investigators (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697. https://doi.org/10.1016/S0140-6736(10)61121-X. (Epub 2010 Aug 19; Erratum in: Lancet. 2010 Oct 16;376(9749):1302. PMID: 20728210)

    Article  CAS  PubMed  Google Scholar 

  • Bellon JR, Guo H, Barry WT, Dang CT, Yardley DA, Moy B, Marcom PK, Albain KS, Rugo HS, Ellis M, Wolff AC, Carey LA, Overmoyer BA, Partridge AH, Hudis CA, Krop I, Burstein HJ, Winer EP, Tolaney SM (2019) Local-regional recurrence in women with small node-negative, HER2-positive breast cancer: results from a prospective multi-institutional study (the APT trial). Breast Cancer Res Treat 176(2):303–310. https://doi.org/10.1007/s10549-019-05238-4. (Epub 2019 Apr 19; PMID: 31004299)

    Article  PubMed  Google Scholar 

  • Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, Naranjo A, Starr R, Wagner J, Wright C, Zhai Y, Bading JR, Ressler JA, Portnow J, D’Apuzzo M, Forman SJ, Jensen MC (2015) Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T Cells in patients with recurrent glioblastoma. Clin Cancer Res 21(18):4062–4072. https://doi.org/10.1158/1078-0432.CCR-15-0428. (Epub 2015 Jun 9; PMID: 26059190; PMCID: PMC4632968)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campana D, Schwarz H, Imai C (2014) 4-1BB chimeric antigen receptors. Cancer J 20:134–140

    Article  CAS  PubMed  Google Scholar 

  • Colombo MP, Trinchieri G (2002) Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13(2):155–168. https://doi.org/10.1016/s1359-6101(01)00032-6. (PMID: 11900991)

    Article  CAS  PubMed  Google Scholar 

  • Cox G, Vyberg M, Melgaard B, Askaa J, Oster A, O’Byrne KJ (2001) Herceptest: HER2 expression and gene amplification in non-small cell lung cancer. Int J Cancer 92(4):480–483. https://doi.org/10.1002/ijc.1214. (PMID: 11304680)

    Article  CAS  PubMed  Google Scholar 

  • Eshhar Z, Gross G (1990) Chimeric T cell receptor which incorporates the anti-tumour specificity of a monoclonal antibody with the cytolytic activity of T cells: a model system for immunotherapeutical approach. Br J Cancer Suppl 10:27–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eshhar Z, Bach N, Fitzer-Attas CJ, Gross G, Lustgarten J, Waks T, Schindler DG (1996) The T-body approach: potential for cancer immunotherapy. Springer Semin Immunopathol 18(2):199–209. https://doi.org/10.1007/BF00820666. (PMID: 8908700)

    Article  CAS  PubMed  Google Scholar 

  • Gross G, Waks T, Eshhar Z (1989) Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86(24):10024–10028. https://doi.org/10.1073/pnas.86.24.10024. (PMID:2513569; PMCID:PMC298636)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21(4):589–601. https://doi.org/10.1016/j.immuni.2004.09.002. (PMID: 15485635)

    Article  CAS  PubMed  Google Scholar 

  • Hurvitz SA, Martin M, Symmans WF, Jung KH, Huang CS, Thompson AM, Harbeck N, Valero V, Stroyakovskiy D, Wildiers H, Campone M, Boileau JF, Beckmann MW, Afenjar K, Fresco R, Helms HJ, Xu J, Lin YG, Sparano J, Slamon D (2018) Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol 19(1):115–126. https://doi.org/10.1016/S1470-2045(17)30716-7. (Epub 2017 Nov 23; PMID: 29175149)

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G, Watanabe T, Akashi K, Shultz LD, Harada M (2005) Development of functional human blood and immune systems in NOD/SCID/IL2 receptor gamma chain(null) mice. Blood 106(5):1565–1573. https://doi.org/10.1182/blood-2005-02-0516. (Epub 2005 May 26; PMID: 15920010; PMCID: PMC1895228)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson LA, Scholler J, Ohkuri T, Kosaka A, Patel PR, McGettigan SE, Nace AK, Dentchev T, Thekkat P, Loew A, Boesteanu AC, Cogdill AP, Chen T, Fraietta JA, Kloss CC, Posey AD Jr, Engels B, Singh R, Ezell T, Idamakanti N, Ramones MH, Li N, Zhou L, Plesa G, Seykora JT, Okada H, June CH, Brogdon JL, Maus MV (2015) Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 7(275):275ra22. https://doi.org/10.1126/scitranslmed.aaa4963. (PMID: 25696001; PMCID: PMC4467166)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • June CH, Sadelain M (2018) Chimeric antigen receptor therapy. N Engl J Med 379(1):64–73. https://doi.org/10.1056/NEJMra1706169. (PMID:29972754; PMCID:PMC7433347)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakarla S, Chow KK, Mata M, Shaffer DR, Song XT, Wu MF, Liu H, Wang LL, Rowley DR, Pfizenmaier K, Gottschalk S (2013) Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther 21(8):1611–1620. https://doi.org/10.1038/mt.2013.110. (Epub 2013 Jun 4; PMID: 23732988; PMCID: PMC3734659)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, Liu A, Sankey EW, Tam A, Xu H, Mathios D, Jackson CM, Harris-Bookman S, Garzon-Muvdi T, Sheu M, Martin AM, Tyler BM, Tran PT, Ye X, Olivi A, Taube JM, Burger PC, Drake CG, Brem H, Pardoll DM, Lim M (2017) Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin Cancer Res 23(1):124–136. https://doi.org/10.1158/1078-0432.CCR-15-1535. (Epub 2016 Jun 29; PMID: 27358487; PMCID: PMC5735836)

    Article  CAS  PubMed  Google Scholar 

  • Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, Smith DD, Forman SJ, Jensen MC, Cooper LJ (2006) CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res 66(22):10995–11004. https://doi.org/10.1158/0008-5472.CAN-06-0160. (PMID: 17108138)

    Article  CAS  PubMed  Google Scholar 

  • Lee RE, Lotze MT, Skibber JM, Tucker E, Bonow RO, Ognibene FP, Carrasquillo JA, Shelhamer JH, Parrillo JE, Rosenberg SA (1989) Cardiorespiratory effects of immunotherapy with interleukin-2. J Clin Oncol 7(1):7–20. https://doi.org/10.1200/JCO.1989.7.1.7. (PMID: 2783338)

    Article  CAS  PubMed  Google Scholar 

  • Lieschke GJ, Rao PK, Gately MK, Mulligan RC (1997) Bioactive murine and human interleukin-12 fusion proteins which retain antitumor activity in vivo. Nat Biotechnol 15(1):35–40. https://doi.org/10.1038/nbt0197-35. (PMID: 9035103)

    Article  CAS  PubMed  Google Scholar 

  • Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL (2015) 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 21(6):581–590. https://doi.org/10.1038/nm.3838. (Epub 2015 May 4. PMID: 25939063; PMCID: PMC4458184)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loo D, Alderson RF, Chen FZ, Huang L, Zhang W, Gorlatov S, Burke S, Ciccarone V, Li H, Yang Y, Son T, Chen Y, Easton AN, Li JC, Rillema JR, Licea M, Fieger C, Liang TW, Mather JP, Koenig S, Stewart SJ, Johnson S, Bonvini E, Moore PA (2012) Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity. Clin Cancer Res 18(14):3834–3845. https://doi.org/10.1158/1078-0432.CCR-12-0715. (Epub 2012 May 21; PMID: 22615450)

    Article  CAS  PubMed  Google Scholar 

  • Moon EK, Wang LC, Dolfi DV, Wilson CB, Ranganathan R, Sun J, Kapoor V, Scholler J, Puré E, Milone MC, June CH, Riley JL, Wherry EJ, Albelda SM (2014) Multifactorial T-cell hypofunction that is reversible can limit the efficacy of chimeric antigen receptor-transduced human T cells in solid tumors. Clin Cancer Res 20(16):4262–4273. https://doi.org/10.1158/1078-0432.CCR-13-2627. (Epub 2014 Jun 11; PMID: 24919573; PMCID: PMC4134701)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulé JJ, Shu S, Schwarz SL, Rosenberg SA (1984) Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 225(4669):1487–1489. https://doi.org/10.1126/science.6332379. (PMID: 6332379)

    Article  PubMed  Google Scholar 

  • Salman H, Pinz KG, Wada M, Shuai X, Yan LE, Petrov JC, Ma Y (2019) Preclinical targeting of human acute myeloid leukemia using CD4-specific chimeric antigen receptor (CAR) T cells and NK cells. J Cancer 10(18):4408–4419. https://doi.org/10.7150/jca.28952. (PMID:31413761; PMCID:PMC6691696)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, Kamble RT, Bollard CM, Gee AP, Mei Z, Liu H, Grilley B, Rooney CM, Heslop HE, Brenner MK, Dotti G (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Investig 121(5):1822–1826. https://doi.org/10.1172/JCI46110. (Epub 2011 Apr 11; PMID: 21540550; PMCID: PMC3083795)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert ML, Hoffmann JM, Dreger P, Müller-Tidow C, Schmitt M (2018) Chimeric antigen receptor transduced T cells: Tuning up for the next generation. Int J Cancer 142(9):1738–1747. https://doi.org/10.1002/ijc.31147. (Epub 2017 Nov 27; PMID: 29119551)

    Article  CAS  PubMed  Google Scholar 

  • Shu M, Yan H, Xu C, Wu Y, Chi Z, Nian W, He Z, Xiao J, Wei H, Zhou Q, Zhou JX (2020) A novel anti-HER2 antibody GB235 reverses Trastuzumab resistance in HER2-expressing tumor cells in vitro and in vivo. Sci Rep 10(1):2986. https://doi.org/10.1038/s41598-020-59818-2. (PMID:32076029; PMCID:PMC7031383)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182. https://doi.org/10.1126/science.3798106. (PMID: 3798106)

    Article  CAS  PubMed  Google Scholar 

  • Takegawa N, Nonagase Y, Yonesaka K, Sakai K, Maenishi O, Ogitani Y, Tamura T, Nishio K, Nakagawa K, Tsurutani J (2017) DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int J Cancer 141(8):1682–1689. https://doi.org/10.1002/ijc.30870. (Epub 2017 Jul 12, PMID: 28677116)

    Article  CAS  PubMed  Google Scholar 

  • Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, Lindgren CG, Lin Y, Pagel JM, Budde LE, Raubitschek A, Forman SJ, Greenberg PD, Riddell SR, Press OW (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4–1BB domains: pilot clinical trial results. Blood 119(17):3940–3950. https://doi.org/10.1182/blood-2011-10-387969. (Epub 2012 Feb 3, PMID: 22308288; PMCID: PMC3350361)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verri E, Guglielmini P, Puntoni M, Perdelli L, Papadia A, Lorenzi P, Rubagotti A, Ragni N, Boccardo F (2005) HER2/neu oncoprotein overexpression in epithelial ovarian cancer: evaluation of its prevalence and prognostic significance. Clin Study Oncol 68(2–3):154–161. https://doi.org/10.1159/000086958. (Epub 2005 Jul 11, PMID: 16020953)

    Article  CAS  Google Scholar 

  • Zhang XL, Yang YS, Xu DP, Qu JH, Guo MZ, Gong Y, Huang J (2009) Comparative study on overexpression of HER2/neu and HER3 in gastric cancer. World J Surg 33(10):2112–2118. https://doi.org/10.1007/s00268-009-0142-z. (PMID: 19636613)

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

XX and HZ wrote the main manuscript text and GL prepared Figs. 1, 2, 3, 4 and 5. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sheng Xiong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Li, X., Liu, G. et al. T cells expressing a HER2-specific chimeric antigen receptor as treatment for breast cancer. J Cancer Res Clin Oncol 149, 11561–11570 (2023). https://doi.org/10.1007/s00432-023-04996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-023-04996-5

Keywords