Skip to main content

Advertisement

Overexpression of SUMO-1 in hepatocellular carcinoma: a latent target for diagnosis and therapy of hepatoma

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the expression of SUMO-1 in human hepatocellular carcinoma (HCC) cell lines and clinical HCC samples.

Methods

RT–PCR and Western blot were used to detect the expressions of SUMO-1 in HCC cell lines, clinical HCC samples,and the non-neoplastic liver tissues adjacent to HCC. After transfection of SUMO-1 siRNA into HCC cell line SMMC-7721, the expression levels of Bcl-2, c-Myc and α-tubulin were examined, and MTT assay and cell cycle analysis were carried out as well.

Results

Overexpressions of SUMO-1 were detected in HCC cell lines and clinical HCC samples, while the expression level of SUMO-1 in the non-neoplastic liver tissues was significantly lower (P < 0.001). Transfection of SUMO-1 siRNA resulted in 73.43% of maximal silencing efficiency of SUMO-1 in 48 h. The expressions of Bcl-2 and c-Myc were down-regulated coincidentally. SUMO-1 siRNA notably inhibited SMMC-7721 cells proliferation in vitro and increased the ratios of G2 phase and S phase in the cells.

Conclusions

Owing to overexpression of SUMO-1 in HCC and its important role in the development of HCC, SUMO-1 could be a latent target in diagnosis and therapy of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amati B, Brooks MW, Levy N et al (1993) Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72(2):233–245

    Article  CAS  PubMed  Google Scholar 

  • Bantounas I, Phylactou LA, Uney JB (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 33(3):545–557

    Article  CAS  PubMed  Google Scholar 

  • Brunelle JK, Santore MT, Budinger GR et al (2004) c-Myc sensitization to oxygen deprivation-induced cell death is dependent on Bax/Bak, but is independent of p53 and hypoxia-inducible factor-1. J Biol Chem 279(6):4305–4312

    Article  CAS  PubMed  Google Scholar 

  • Buschmann T, Fuchs SY, Lee CG et al (2000) SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101(7):753–762

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Bennett RL, May WS (2008) c-Myc and caspase-2 are involved in activating Bax during cytotoxic drug-induced apoptosis. J Biol Chem 283(21):14490–14496

    Article  CAS  PubMed  Google Scholar 

  • Carter S, Bischof O, Dejean A et al (2007) C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 9(4):428–435

    Article  CAS  PubMed  Google Scholar 

  • Deyrieux AF, Rosas-Acosta G, Ozbun MA et al (2007) Sumoylation dynamics during keratinocyte differentiation. J Cell Sci 120(Pt 1):125–136

    CAS  PubMed  Google Scholar 

  • Di Bacco A, Ouyang J, Lee HY et al (2006) The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol 26(12):4489–4498

    Article  CAS  PubMed  Google Scholar 

  • Duan H, Heckman CA, Boxer LM (2005) Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t (14; 18) lymphomas. Mol Cell Biol 25(5):1608–1619

    Article  CAS  PubMed  Google Scholar 

  • Itahana Y, Yeh ET, Zhang Y (2006) Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol Cell Biol 26(12):4675–4689

    Article  CAS  PubMed  Google Scholar 

  • Iyer NG, Chin SF, Ozdag H et al (2004) p300 regulates p53-dependent apoptosis after DNA damage in colorectal cancer cells by modulation of PUMA/p21 levels. Proc Natl Acad Sci USA 101(19):7386–7391

    Article  CAS  PubMed  Google Scholar 

  • Jones MC, Fusi L, Higham JH et al (2006) Regulation of the SUMO pathway sensitizes differentiating human endometrial stromal cells to progesterone. Proc Natl Acad Sci USA 103(44):16272–16277

    Article  CAS  PubMed  Google Scholar 

  • Kang JS, Saunier EF, Akhurst RJ et al (2008) The type I TGF-beta receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 10(6):654–664

    Article  CAS  PubMed  Google Scholar 

  • Karamouzis MV, Konstantinopoulos PA, Badra FA et al (2008) SUMO and estrogen receptors in breast cancer. Breast Cancer Res Treat 107(2):195–210

    Article  CAS  PubMed  Google Scholar 

  • Kim KI, Baek SH (2009) Small ubiquitin-like modifiers in cellular malignancy and metastasis. Int Rev Cell Mol Biol 273:265–311

    Article  CAS  PubMed  Google Scholar 

  • Kim KI, Baek SH, Jeon YJ et al (2000) A new SUMO-1-specific protease, SUSP1 that is highly expressed in reproductive organs. J Biol Chem 275(19):14102–14106

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Lee SW, Lee EJ et al (2006) SUMO-specific protease SUSP4 positively regulates p53 by promoting Mdm2 self-ubiquitination. Nat Cell Biol 8(12):1424–1431

    Article  CAS  PubMed  Google Scholar 

  • Martin S, Nishimune A, Mellor JR et al (2007) SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447(7142):321–325

    Article  CAS  PubMed  Google Scholar 

  • Okuno S, Shimizu S, Ito T et al (1998) Bcl-2 prevents caspase-independent cell death. J Biol Chem 273(51):34272–34277

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim K, Lee EJ et al (2007) Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis. Proc Natl Acad Sci USA 104(43):17028–17033

    Article  CAS  PubMed  Google Scholar 

  • Pataer A, Fanale MA, Roth JA et al (2006) Induction of apoptosis in human lung cancer cells following treatment with amifostine and an adenoviral vector containing wild-type p53. Cancer Gene Ther 13(8):806–814

    Article  CAS  PubMed  Google Scholar 

  • Pfander B, Moldovan GL, Sacher M et al (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436(7049):428–433

    CAS  PubMed  Google Scholar 

  • Reynolds JE, Eastman A (1996) Intracellular calcium stores are not required for Bcl-2-mediated protection from apoptosis. J Biol Chem 271(44):27739–27743

    Article  CAS  PubMed  Google Scholar 

  • Rosas-Acosta G, Russell WK, Deyrieux A et al (2005) A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol Cell Proteomics 4(1):56–72

    CAS  PubMed  Google Scholar 

  • Saitoh H, Sparrow DB, Shiomi T et al (1998) Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr Biol 8(2):121–124

    Article  CAS  PubMed  Google Scholar 

  • Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373(6509):78–81

    Article  CAS  PubMed  Google Scholar 

  • Song MS, Song SJ, Kim SY et al (2008) The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J 27(13):1863–1874

    Article  CAS  PubMed  Google Scholar 

  • Sutter AP, Maaser K, Grabowski P et al (2004) Peripheral benzodiazepine receptor ligands induce apoptosis and cell cycle arrest in human hepatocellular carcinoma cells and enhance chemosensitivity to paclitaxel, docetaxel, doxorubicin and the Bcl-2 inhibitor HA14–1. J Hepatol 41(5):799–807

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Mannava S, Grachtchouk V et al (2008) c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene 27(13):1905–1915

    Article  CAS  PubMed  Google Scholar 

  • Weidtkamp-Peters S, Lenser T, Negorev D et al (2008) Dynamics of component exchange at PML nuclear bodies. J Cell Sci 121:2731–2743

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Zhu S, Ding Y et al (2009) MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clin Cancer Res 15(5):1550–1557

    Article  CAS  PubMed  Google Scholar 

  • Xhemalce B, Riising EM, Baumann P et al (2007) Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc Natl Acad Sci USA 104(3):893–898

    Article  CAS  PubMed  Google Scholar 

  • Xu GW, Sun ZT, Forrester K et al (1996) Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology 24(5):1264–1268

    Article  CAS  PubMed  Google Scholar 

  • Yurchenko V, Xue Z, Sadofsky MJ (2006) SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol Cell Biol 26(5):1786–1794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jiang-jing Xu and Dong Yin for their technical assistance. This work has been funded by grants from National nature science grant of China (No. 303200067, for J. Zhang) and from Department of Education of Jiangxi province, China (No. GJJ09107, for W. Guo).

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-xiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Wh., Yuan, Lh., Xiao, Zh. et al. Overexpression of SUMO-1 in hepatocellular carcinoma: a latent target for diagnosis and therapy of hepatoma. J Cancer Res Clin Oncol 137, 533–541 (2011). https://doi.org/10.1007/s00432-010-0920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0920-x

Keywords