Skip to main content
Log in

The role of JAR1 in Jasmonoyl-l-isoleucine production during Arabidopsis wound response

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The Arabidopsis thaliana (L.) Heynh. JASMONATE RESISTANT 1( JAR1) locus is essential for pathogen defense, but its role in wound response has not been investigated. JAR1 encodes an enzyme that conjugates jasmonic acid (JA) to isoleucine, which was recently shown to function directly in CORONATINE INSENSITIVE 1 (COI1)-mediated signal transduction. Leaf wounding rapidly increased the level of JA–Ile by about 60-fold to a peak of 279 pmole/g FW at 40 min after wounding. Conjugates with Leu, Val and Phe remained near basal level or were not detected. Kinetic analysis showed that JAR1 had a K m of 0.03 mM for Ile, which was 60–80-fold lower than for Leu, Val and Phe. JA–Ile accumulated mostly near the wound site with a minor increase in unwounded portions of wounded leaves. JAR1 transcript also increased dramatically in wounded tissue, reaching a maximum after about 1 h. In the jar1-1 mutant JA–Ile was only about 10% of the WT level at 40 min after leaf wounding, and reached a maximum of 47 pmole/g FW at 2 h. However, the reduced accumulation of JA–Ile had little or no effect on several jasmonate-dependent wound-induced genes. Wound induction of the VSP2 transcript was only slightly delayed while transcripts for LOX2, PDF1.2, WRKY33, TAT3 and CORI3 were unaffected. These results suggest that the rapid increase in JA–Ile mediated by the JAR1 enzyme plays only a minor role in transcriptional modulation of genes induced by mechanical wounding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

JA:

Jasmonic acid

MeJA:

Methyljasmonate

OPDA:

12-Oxo-phytodienoic acid

PCR:

Polymerase chain reaction

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bell E, Creelman RA, Mullet JE (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92:8675–8679

    Article  PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A (2004) Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact 17:763–770

    Article  PubMed  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X (2000) Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12:2175–2190

    Article  PubMed  CAS  Google Scholar 

  • Cohen JD, Bandurski RS (1982) Chemistry and physiology of the bound auxins. Ann Rev Plant Physiol 33:403–430

    Article  CAS  Google Scholar 

  • Cohen JD, Baldi BG, Slovin JP (1986) 13C6-[benzene ring]-indole-3-acetic acid. A new internal standard for quantitative mass spectral analysis of indole-3-acetic acid. Plant Physiol 80:14–19

    PubMed  CAS  Google Scholar 

  • Conconi A, Miquel M, Browse JA, Ryan CA (1996) Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol 111:797–803

    PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Ann Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  Google Scholar 

  • Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate gene expression. Proc Natl Acad Sci USA 89:4938–4941

    Article  PubMed  CAS  Google Scholar 

  • Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B (1999) IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell 11:365–376

    Article  PubMed  CAS  Google Scholar 

  • Delessert C, Wilson IW, Van Der Straeten D, Dennis ES, Dolferus R (2004) Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant Mol Biol 55:165–181

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG (2005) Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol 58:497–513

    Article  PubMed  CAS  Google Scholar 

  • Epstein E, Cohen JD (1981) Microscale preparation of pentafluorbenzyl esters. Electron-capture gas chromatographic detection of indole-3-acetic acid from plants. J Chromatogr 209:413–420

    Article  CAS  Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and are resistant to a bacterial pathogen. Plant Cell 6:751–759

    Article  PubMed  CAS  Google Scholar 

  • Giovanelli J, Mudd SH, Datko AH (1988) In vivo regulation of threonine and isoleucine biosynthesis in Lemna paucicostata Hegelm. 6746. Plant Physiol 86:369–377

    Article  PubMed  CAS  Google Scholar 

  • Guranowski A, Miersch O, Staswick PE, Suza W, Wasternack C (2007) Substrate specificity and products of side-reactions catalyzed by jasmonate:amino acid synthetase (JAR1). FEBS Lett 581:815–820

    Article  PubMed  CAS  Google Scholar 

  • Howe GA (2005) Jasmonates as signals in the wound response. J Plant Growth Regul 23:167–169

    Google Scholar 

  • Howe GA, Lightner J, Browse J, Ryan CA (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8:2067–2077

    Article  PubMed  CAS  Google Scholar 

  • Hsieh H, Okamoto H, Wang M, Ang L, Matsui M, Goodman H, Deng XW (2000) FIN219, an auxin-regulated gene, defines a link between phytochrome A and downstream regulator COPI1 in light control of Arabidopsis development. Gen Dev 14:1958–1970

    CAS  Google Scholar 

  • Jones PR, Manabe T, Awazuhara M, Saito K (2003) A new member of plant CS-lyases. A cystine lyase from Arabidopsis thaliana. J Biol Chem 278:10291–10296

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuate impairs jasmonic acid–isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320

    Article  PubMed  CAS  Google Scholar 

  • LeClere S, Tellez R, Rampey RA, Matsuda SPT, Bartel B (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem 277:20446–20452

    Article  PubMed  CAS  Google Scholar 

  • Lee GI, Howe GA (2003) The tomato mutant spr1 is defective in systemin perception and the production of a systemic wound signal for defense gene expression. Plant J 33:567–576

    Article  PubMed  CAS  Google Scholar 

  • Li L, Li C, Lee GI, Howe GA (2002) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99:6416–6421

    Article  PubMed  CAS  Google Scholar 

  • Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, Howe GA (2005) Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17:971–986

    Article  PubMed  CAS  Google Scholar 

  • Lopukhina A, Dettenberg M, Weiler EW, Holländer-Czytko H (2001) Cloning and characterization of a coronatine-regulated tyrosine aminotransferase from Arabidopsis. Plant Physiol 126:1678–1687

    Article  PubMed  CAS  Google Scholar 

  • Mourad G, King J (1995) l-O-methylthreonine-resistant mutant of Arabidopsis defective in isoleucine feedback regulation. Plant Physiol 107:43–52

    PubMed  CAS  Google Scholar 

  • Noctor G, Novitskaya L, Lea PJ, Foyer CH (2002) Coordination of leaf minor amino acid contents in crop species: significance and interpretation. J Expt Bot 53:939–945

    Article  CAS  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H, Kangasjärvi J (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862

    Article  PubMed  CAS  Google Scholar 

  • Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPHJ, De Samblanx GW, Buchala A, Métraux J, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    Article  PubMed  CAS  Google Scholar 

  • Penninckx IAMA, Thomma BPHJ, Buchala A, Métraux J, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    Article  PubMed  CAS  Google Scholar 

  • Rampey RA, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B (2004) A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol 135:978–988

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Lee H, Creelman RA, Mullet JE, Davis KR (2000) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12:1633–1646

    Article  PubMed  CAS  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Murphy JF, Mysore KS, Kloepper JW (2004) Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392

    Article  PubMed  CAS  Google Scholar 

  • Sembdner G, Parthier B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Ann Rev Plant Physiol Plant Mol Biol 44:569–589

    Article  CAS  Google Scholar 

  • Smith DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabisopsis. Plant Cell 2:755–767

    Article  Google Scholar 

  • Staswick P (2008) JAZing up jasmonate signaling. Trends Plant Sci (in press)

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89:6837–6840

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Yuen GY, Lehman CC (1998) Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J 15:747–754

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  PubMed  CAS  Google Scholar 

  • Stintzi A, Weber H, Reymond P, Browse J, Farmer EE (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc Natl Acad Sci USA 98:12837–12842

    Article  PubMed  CAS  Google Scholar 

  • Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya K, Shibata D, Kobayashi Y, Ohta H (2005) 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139:1268–1283

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki M, Nakajima N, Kubo A, Aono M, Matsuyama T, Saji H (2003) Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Mol Biol 53:443–456

    Article  PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Tiryaki I, Staswick PE (2002) An Arabidopsis thaliana mutant defective in jasmonate response is allelic to the auxin signaling mutant axr1. Plant Physiol 130:887–894

    Article  PubMed  CAS  Google Scholar 

  • Titarenko E, Rojo E, León J, Sánchez-Serrano JJ (1997) Jasmonic acid-dependent and -independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol 115:817–826

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Ann Rev Plant Physiol Plant Mol Biol 36:453–483

    Article  Google Scholar 

  • Wang L, Halitschke R, Kang JH, Berg A, Harnisch F, Baldwin IT (2007) Independently silencing two JAR family members impairs levels of trypsin proteinase inhibitors but not nicotine. Planta 226:159–167

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (Lond) 100:681–697

    Article  CAS  Google Scholar 

  • Weber H, Vick BA, Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal on the jasmonate family. Proc Natl Acad Sci 94:10473–10478

    Article  PubMed  CAS  Google Scholar 

  • Xie D, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. G. Mourad for providing the omr1 seed and the Arabidopsis Biological Resource Center for providing cDNA clones U24425and U25568, and T-DNA insertion line Salk_034543. This research is a contribution of the University of Nebraska Agricultural Research Division, supported in part by funds from the Hatch Act. Additional support was provided by the National Science Foundation (Award MCB-0130868).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Staswick.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (DOC 32 kb)

ESM2 (DOC 749 kb)

ESM3 (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suza, W.P., Staswick, P.E. The role of JAR1 in Jasmonoyl-l-isoleucine production during Arabidopsis wound response. Planta 227, 1221–1232 (2008). https://doi.org/10.1007/s00425-008-0694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0694-4

Keywords

Navigation