Abstract
Three major eukaryotic DNA polymerases, Polymerases α, δ, and ε (Pols α, δ, and ε), perform the fundamental process of DNA synthesis at the replication fork both accurately and efficiently. In trying to understand the necessity and flexibility of the polymerase usage, we recently reported that budding yeast cells lacking Pol ε exonuclease and polymerase domains (pol2-16) survive, but have severe growth defects, checkpoint activation, increased level of dNTP pools as well as significant increase in the mutation rates. Herein, we suggest new opportunities to distinguish the roles of Pol ε from those of two other eukaryotic B-family DNA polymerases, Pols δ and ζ.
Similar content being viewed by others
References
Aria V, Yeeles JTP (2018) Mechanism of bidirectional leading-strand synthesis establishment at eukaryotic DNA replication origins. Mol Cell. https://doi.org/10.1016/j.molcel.2018.10.019
Barbari SR, Shcherbakova PV (2017) Replicative DNA polymerase defects in human cancers: consequences, mechanisms, and implications for therapy. DNA Repair 56:16–25. https://doi.org/10.1016/j.dnarep.2017.06.003
Bębenek A, Ziuzia-Graczyk I (2018) Fidelity of DNA replication—a matter of proofreading. Curr Genet 64:985–996. https://doi.org/10.1007/s00294-018-0820-1
Bellelli R, Borel V, Logan C et al (2018) Pol ε instability drives replication stress, abnormal development, and tumorigenesis. Mol Cell 70:707–721.e7. https://doi.org/10.1016/j.molcel.2018.04.008
Burgers PMJ, Kunkel TA (2017) Eukaryotic DNA replication fork. Annu Rev Biochem 86:417–438. https://doi.org/10.1146/annurev-biochem-061516-044709
Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095
Clausen AR, Lujan SA, Burkholder AB et al (2015) Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol 22:185–191. https://doi.org/10.1038/nsmb.2957
Flood CL, Rodriguez GP, Bao G et al (2015) Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans. PLoS Genet 11:e1005049. https://doi.org/10.1371/journal.pgen.1005049
Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811. https://doi.org/10.1093/nar/gku1075
Garbacz MA, Lujan SA, Burkholder AB et al (2018) Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae. Nat Commun 9:858. https://doi.org/10.1038/s41467-018-03270-4
Garbacz MA, Cox PB, Sharma S et al (2019) The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase ϵ strongly reduces DNA replication fidelity. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz048
Guenther M, Veninga V, Kumbrink J et al (2018) POLE gene hotspot mutations in advanced pancreatic cancer. J Cancer Res Clin Oncol 144:2161–2166. https://doi.org/10.1007/s00432-018-2746-x
Kandoth C, Schultz N, Cherniack AD et al (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73. https://doi.org/10.1038/nature12113
Lessel D, Hisama FM, Szakszon K et al (2015) POLD1 germline mutations in patients initially diagnosed with werner syndrome. Hum Mutat 36:1070–1079. https://doi.org/10.1002/humu.22833
Li HD, Cuevas I, Zhang M et al (2018) Polymerase-mediated ultramutagenesis in mice produces diverse cancers with high mutational load. J Clin Invest 128:4179–4191. https://doi.org/10.1172/JCI122095
Loeb LA, Springgate CF, Battula N (1974) Errors in DNA replication as a basis of malignant changes. Cancer Res 34:2311–2321
Logan CV, Murray JE, Parry DA et al (2018) DNA polymerase epsilon deficiency causes IMAGe syndrome with variable immunodeficiency. Am J Hum Genet 103:1038–1044. https://doi.org/10.1016/j.ajhg.2018.10.024
Lujan SA, Williams JS, Kunkel TA (2016) DNA polymerases divide the labor of genome replication. Trends Cell Biol 26:640–654. https://doi.org/10.1016/j.tcb.2016.04.012
Lydeard JR, Jain S, Yamaguchi M, Haber JE (2007) Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820–823. https://doi.org/10.1038/nature06047
Makarova AV, Burgers PM (2015) Eukaryotic DNA polymerase zeta. DNA Repair 29:47–55. https://doi.org/10.1016/j.dnarep.2015.02.012
Makarova AV, Nick McElhinny SA, Watts BE et al (2014) Ribonucleotide incorporation by yeast DNA polymerase ζ. DNA Repair 18:63–67. https://doi.org/10.1016/j.dnarep.2014.02.017
Miyabe I, Mizuno K, Keszthelyi A et al (2015) Polymerase δ replicates both strands after homologous recombination-dependent fork restart. Nat Struct Mol Biol 22:932–938. https://doi.org/10.1038/nsmb.3100
Nicolas E, Golemis EA, Arora S (2016) POLD1: central mediator of DNA replication and repair, and implication in cancer and other pathologies. Gene 590:128–141. https://doi.org/10.1016/j.gene.2016.06.031
Pachlopnik Schmid J, Lemoine R, Nehme N et al (2012) Polymerase ε1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short stature (“FILS syndrome”). J Exp Med 209:2323–2330. https://doi.org/10.1084/jem.20121303
Palles C, Cazier JB, Howarth KM et al (2013) Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 45:136–144. https://doi.org/10.1038/ng.2503
Parkash V, Kulkarni Y, Ter Beek J et al (2019) Structural consequence of the most frequently recurring cancer-associated substitution in DNA polymerase epsilon. Nat Commun 10:373. https://doi.org/10.1038/s41467-018-08114-9
Pavlov YI, Frahm C, Nick McElhinny SA et al (2006) Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 16:202–207. https://doi.org/10.1016/j.cub.2005.12.002
Pelosini C, Martinelli S, Ceccarini G et al (2014) Identification of a novel mutation in the polymerase delta 1 (POLD1) gene in a lipodystrophic patient affected by mandibular hypoplasia, deafness, progeroid features (MDPL) syndrome. Metabolism 63:1385–1389. https://doi.org/10.1016/j.metabol.2014.07.010
Perrino FW, Loeb LA (1990) Hydrolysis of 3′-terminal mispairs in vitro by the 3′–5′ exonuclease of DNA polymerase delta permits subsequent extension by DNA polymerase alpha. Biochemistry 29:5226–5231. https://doi.org/10.1021/bi00474a002
Reinier F, Zoledziewska M, Hanna D et al (2015) Mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome in the context of inherited lipodystrophies. Metabolism 64:1530–1540. https://doi.org/10.1016/j.metabol.2015.07.022
St Charles JA, Liberti SE, Williams JS et al (2015) Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA Repair 31:41–51. https://doi.org/10.1016/j.dnarep.2015.04.006
Starokadomskyy P, Gemelli T, Rios JJ et al (2016) DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol 17:495–504. https://doi.org/10.1038/ni.3409
Szwajczak E, Fijalkowska IJ, Suski C (2018) The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity. Curr Genet 64:575–580. https://doi.org/10.1007/s00294-017-0789-1
Van Esch H, Colnaghi R, Freson K et al (2019) Defective DNA polymerase α-primase leads to X-linked intellectual disability associated with severe growth retardation, microcephaly, and hypogonadism. Am J Hum Genet 104:957–967. https://doi.org/10.1016/j.ajhg.2019.03.006
Vande Perre P, Siegfried A, Corsini C et al (2019) Germline mutation p. N363K in POLE is associated with an increased risk of colorectal cancer and giant cell glioblastoma. Fam Cancer 18:173–178. https://doi.org/10.1007/s10689-018-0102-6
Weedon MN, Ellard S, Prindle MJ et al (2013) An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet 45:947–950. https://doi.org/10.1038/ng.2670
Xing X, Kane DP, Bulock CR et al (2019) A recurrent cancer-associated substitution in DNA polymerase epsilon produces a hyperactive enzyme. Nat Commun 10:374. https://doi.org/10.1038/s41467-018-08145-2
Yeeles JTP, Janska A, Early A, Diffley JFX (2017) How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol Cell 65:105–116. https://doi.org/10.1016/j.molcel.2016.11.017
Acknowledgements
We thank Mercy Arana and Jessica Williams for critical reading of and thoughtful comments on the manuscript.
Funding
Division of Intramural Research of the NIH, NIEHS [Z01 ES065070 to T.A.K.].
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M. Kupiec.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Garbacz, M.A., Lujan, S.A. & Kunkel, T.A. Opportunities for new studies of nuclear DNA replication enzymology in budding yeast. Curr Genet 66, 299–302 (2020). https://doi.org/10.1007/s00294-019-01023-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00294-019-01023-4