Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency syndrome characterized by a greatly increased susceptibility to severe fungal and bacterial infections. CGD results from a failure of the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzyme in the patient’s phagocytes to produce superoxide. It is caused by mutations in any of four genes that encode the components of the NADPH oxidase. Investigation of CGD patients has identified the different subunits and the genes encoding them. Study of rare CGD variants has highlighted sequences involved in the structural stability of affected components or has provided valuable insights into their function in the oxidase activation mechanism. Functional and molecular CGD diagnosis tests are discussed in this review. Long-term antibiotic prophylaxis has been essential in fighting infections associated with CGD, but approaches based on hematopoietic stem cell transplantation and gene therapy offer great hope for the near future.
Similar content being viewed by others
Abbreviations
- CGD:
-
chronic granulomatous disease
- AR CGD:
-
autosomal recessive chronic granulomatous disease
- X CGD:
-
X-linked chronic granulomatous disease
- NADPH:
-
reduced nicotinamide adenine dinucleotide phosphate
- FAD:
-
flavin adenine dinucleotide
- INT:
-
iodonitrotetrazolium
- ROS:
-
reactive oxygen species
- PHOX:
-
phagocytic oxidase
- TPR:
-
tetratricopeptide repeat
- BMT:
-
bone marrow transplantation
References
Baldridge CW, Gerard RW (1933) The extra respiration of phagocytosis. Am J Physiol 103:235–236
Sbarra AJ, Karnovsky ML (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234:1355–1362 Medline
Selvaraj RJ, Sbarra AJ (1966) Relationship of glycolytic and oxidative metabolism to particle entry and destruction in phagocytosing cells. Nature 211:1272–1276 Medline DOI 10.1038/2111272a0
Janeway CA, Craig J, Davidson M, Downey W, Gitlin D, Sullivan JC (1954) Hypergammaglobulinemia associated with severe, recurrent and chronic non-specific infection. Am J Dis Child 88:388–392
Landing BH, Shirley HS (1957) A syndrome of recurrent infection and infiltration of viscera by pigmented lipid histiocytes. Pediatrics 20:431–438 Medline
Bridges RA, Berendes H, Good RA (1959) A fatal granulomatous disease of childhood: the clinical, pathological and laboratory features of a new syndrome. Am J Dis Child 97:387–408
Quie PG, White JG, Holmes B, Good RA (1967) In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest 46:668–679 Medline
Holmes B, Quie PG, Windhorst DB, Good RA (1966) Fatal granulomatous disease of childhood an inborn abnormality of phagocytic function. Lancet 1:1225–1228 Medline DOI 10.1016/S0140-6736(66)90238-8
Baehner RL, Nathan DG (1967) Leukocyte oxidase: defective activity in chronic granulomatous disease. Science 155:835–836 Medline DOI 10.1126/science.155.3764.835
Segal AW, Peters TJ (1976) Characterisation of the enzyme defect in chronic granulomatous disease. Lancet 1:1363–1365 Medline DOI 10.1016/S0140-6736(76)93021-X
Rossi F, Zatti M (1964) Changes in the metabolic pattern of polymorphonuclear leucocytes during phagocytosis. Br J Exp Patho 45:548–559 Medline
Shinagawa Y, Tanaka C, Teraoka A, Shinagawa Y (1966) A new cytochrome in neurophilic granules of rabbit leucocyte. J Biochem 59:622–624 Medline
Takikawa K, Ohta H (1966) On the nature of neutrophilic granules. Nippon Ketsueki Gakkai Zasshi. 29:571–577 Medline
Segal AW, Jones OT (1978) Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 276:515–517 Medline DOI 10.1038/276515a0
Teahan C, Rowe P, Parker P, Totty N, Segal AW (1987) The X-linked chronic granulomatous disease gene codes for the beta-chain of cytochrome b-245. Nature 327:720–721 Medline DOI 10.1038/327720a0
Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1987) Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 80:732–742 Medline DOI 10.1172/JCI113128
Segal AW, Cross AR, Garcia RC, Borregaard N, Valerius NH, Soothill JF, Jones OT (1983) Absence of cytochrome b245 in chronic granulomatous disease. A multicenter European evaluation of its incidence and relevance. N Engl J Med 308:245–251 Medline
Bromberg Y, Pick E (1984) Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages. Cell Immunol 88:213–221 Medline DOI 10.1016/0008-8749(84)90066-2
Segal AW, Heyworth PG, Cockcroft S, Barrowman MM (1985) Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44,000 protein. Nature 316:547–549 Medline DOI 10.1038/316547a0
Umei T, Takeshige K, Minakami S (1987) NADPH-binding component of the superoxide-generating oxidase in unstimulated neutrophils and the neutrophils from the patients with chronic granulomatous disease. Biochem J 243:467–472 Medline
Curnutte JT, Kuver R, Scott PJ (1987) Activation of neutrophil NADPH oxidase in a cell-free system. Partial purification of components and characterization of the activation process. J Biol Chem 262:5563–5569 Medline
Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353:668–670 Medline DOI 10.1038/353668a0
Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254:1512–1515 DOI 10.1126/science.1660188
Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck RJ, Oyer R, Johnson GL, Roos D (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A 97:4654–4659 Medline DOI 10.1073/pnas.080074897
Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P, Levine JE, Petryniak B, Derrow CW, Harris C, Jia B, Zheng Y, Ambruso DR, Lowe JB, Atkinson SJ, Dinauer MC, Boxer L (2000) Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96:1646–1654
Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459 Medline DOI 10.1007/s00018-002-8520-9
Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189 Medline DOI 10.1038/nri1312
Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313 Medline DOI 10.1152/physrev.00044.2005
Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine 79:170–300 Medline DOI 10.1097/00005792-200005000-00004
Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE, Baehner RL, Cole FS, Curnutte JT, Orkin SH (1986) Cloning the gene for an inherited human disorder—chronic granulomatous disease—on the basis of its chromosomal location. Nature 322:32–38 Medline DOI 10.1038/322032a0
Baehner RL, Kunkel LM, Monaco AP, Haines JL, Conneally PM, Palmer C, Heerema N, Orkin SH (1986) DNA linkage analysis of X chromosome-linked chronic granulomatous disease. Proc Natl Acad Sci U S A 83:3398–3401 Medline DOI 10.1073/pnas.83.10.3398
Nunoi H, Rotrosen D, Gallin JI, Malech HL (1988) Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242:1298–1301 Medline DOI 10.1126/science.2848319
Volpp BD, Nauseef WM, Clark RA (1988) Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242:1295–1297 Medline DOI 10.1126/science.2848318
Volpp BD, Nauseef WM, Donelson JE, Moser DR, Clark RA (1989) Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci U S A 86:7195–7199 Medline DOI 10.1073/pnas.86.18.7195
Leto TL, Lomax KJ, Volpp BD, Nunoi H, Sechler JM, Nauseef WM, Clark RA, Gallin JI, Malech HL (1990) Cloning of a 67-kD neutrophil oxidase factor with similarity to a non-catalytic region of p60c-src. Science 248:727–730 Medline DOI 10.1126/science.1692159
Franke U, Hsieh CL, Foellmer BE, Lomax KJ, Malech HL, Leto TL (1990) Genes for two autosomal recessive forms of chronic granulomatous disease assigned to 1q25 (NCF2) and 7q11.23 (NCF1). Am J Hum Genet 47:483–492 Medline
Dinauer MC, Pierce EA, Bruns GA, Curnutte JT, Orkin SH (1990) Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest 86:1729–1737 Medline DOI 10.1172/JCI114898
Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, Malech HL, Holland SM, Ochs H, Quie P, Buckley RH, Foster CB, Chanock SJ, Dickler H (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79:155–169 Medline DOI 10.1097/00005792-200005000-00003
Roos D, de Boer M, Kuribayashi F, Meischl C, Weening RS, Segal AW, Ahlin A, Nemet K, Hossle JP, Bernatowska-Matuszkiewicz E, Middleton-Price H (1996) Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood 87:1663–1681 Medline
Rae J, Newburger PE, Dinauer MC, Noack D, Hopkins PJ, Kuruto R, Curnutte JT (1998) X-linked chronic granulomatous disease: mutations in the CYBB gene encoding the gp91-phox component of respiratory-burst oxidase. Am J Hum Genet 62:1320–1331 Medline DOI 10.1086/301874
Ishibashi F, Nunoi H, Endo F, Matsuda I, Kanegasaki S (2000) Statistical and mutational analysis of chronic granulomatous disease in Japan with special reference to gp91-phox and p22-phox deficiency. Hum Genet 106:473–481 Medline DOI 10.1007/s004390000288
Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN (2003) Human gene mutation database (HGMD): 2003 update. Hum Mutat 21:577–581 Medline DOI 10.1002/humu.10212
Piirilä H, Väliaho J, Vihinen M (2006) Immunodeficiency mutation databases (IDbases). Hum Mutat 27:1200–1208 Medline DOI 10.1002/humu.20405
Cooper DN, Krawczak M (1991) Mechanisms of insertional mutagenesis in human genes causing genetic disease. Hum Genet 87:409–415 Medline
Heyworth PG, Curnutte JT, Rae J, Noack D, Roos D, van Koppen E, Cross AR (2001) Hematologically important mutations: X-linked chronic granulomatous disease (second update). Blood Cells Mol Dis 27:16–26 Medline DOI 10.1006/bcmd.2000.0347
Krawczak M, Cooper DN (1991) Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Hum Genet 86:425–441 Medline DOI 10.1007/BF00194629
Krawczak M, Thomas NS, Hundrieser B, Mort M, Wittig M, Hampe J, Cooper DN (2007) Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 28:150–158 Medline DOI 10.1002/humu.20400
Cooper DN, Krawczak M (1990) The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum Genet 85:55–74 Medline DOI 10.1007/BF00276326
Stasia MJ, Bordigoni P, Floret D, Brion JP, Bost-Bru C, Michel G, Gatel P, Durant-Vital D, Voelckel MA, Li XJ, Guillot M, Maquet E, Martel C, Morel F (2005) Characterization of six novel mutations in the CYBB gene leading to different sub-types of X-linked chronic granulomatous disease. Hum Genet 116:72–82 Medline DOI 10.1007/s00439-004-1208-5
Valentine CR (1998) The association of nonsense codons with exon skipping. Mutation Research 411:87–117 Medline DOI 10.1016/S1383-5742(98)00010-6
Stasia MJ, Brion JP, Boutonnat J, Morel F (2003) Severe clinical forms of cytochrome b-negative chronic granulomatous disease (X91-) in 3 brothers with a point mutation in the promoter region of CYBB. J Infect Dis 188:1593–1604 Medline DOI 10.1086/379035
Newburger PE, Skalnik DG, Hopkins PJ, Eklund EA, Curnutte JT (1994) Mutation in the promoter region of the gene for gp91-phox in X-linked chronic granulomatous disease with decreased expression of cytochrome b558. J Clin Invest 94:1205–1211 Medline DOI 10.1172/JCI117437
Woodman RC, Newburger PE, Anklesaria P, Erickson RW, Rae J, Cohen MS, Curnutte JT (1995) A new X-linked variant of chronic granulomatous disease characterized by the existence of a normal clone of respiratory burst-competent phagocytic cells. Blood 85:231−241 Medline
Suzuki S, Kumatori A, Haagen IA et al (1998) PU.1 as an essential activator for the expression of gp91phox gene in human peripheral neutrophils, monocytes, and B lymphocytes. Proc Natl Acad Sci U S A 95:6085–6090 Medline DOI 10.1073/pnas.95.11.6085
Weening RS, de Boer M, Kuijpers TW, Neefjes VME, Hack WWM, Roos D (2000) Point mutations in the promoter region of the CYBB gene leading to mild chronic granulomatous disease. Clin Exp Immunol 122:410–417 Medline DOI 10.1046/j.1365-2249.2000.01405.x
Kuribayashi F, Kumatori A, Suzuki S, Nakamura M, Matsumoto T, Tsuji Y (1995) Human peripheral eosinophils have a specific mechanism to express gp91-phox, the large subunit of cytochrome b558. Biochem Biophys Res Commun 209:146–152 Medline DOI 10.1006/bbrc.1995.1482
Yang D, Susuki S, Jun Hao L et al (2000) Eosinophil-specific regulation of gp91phox gene expression by transcription factors GATA-1 and GATA-2. J Biol Chem 275:9425–9492 Medline DOI 10.1074/jbc.275.13.9425
Roos D (1996) X-CGDbase: a database of X-CGD-causing mutations. Immunol Today 17:517–521 Medline DOI 10.1016/0167-5699(96)30060-1
Roos D (1994) The genetic basis of chronic granulomatous disease. Immunol Rev 138:121–157 Medline DOI 10.1111/j.1600-065X.1994.tb00850.x
Porter CD, Kuribayashi F, Parkar MH, Roos D, Kinnon C (1996) Detection of gp91-phox precursor protein in B-cell lines from patients with X-linked chronic granulomatous disease as an indicator for mutations impairing cytochrome b558 biosynthesis. Biochem J 315:571–575 Medline
Tsuda M, Kaneda M, Sakiyama T, Inana I, Owada M, Kiryu C, Shiraishi T, Kakinuma K (1998) A novel mutation at a probable heme-binding ligand in neutrophil cytochrome b558 in atypical X-linked chronic granulomatous disease. Hum Genet 103:377–381 Medline DOI 10.1007/s004390050836
Fujii H, Finnegan MG, Miki T, Crouse BR, Kakinuma K, Johnson MK (1995) Spectroscopic identification of the axial ligation of cytochrome b558 in the NADPH oxidase of porcine neutrophils. FEBS Lett 377:345–348 Medline DOI 10.1016/0014-5793(95)01372-5
Bolscher BG, de Boer M, de Klein A, Weening RS, Roos D (1991) Point mutations in the beta-subunit of cytochrome b558 leading to X-linked chronic granulomatous disease. Blood 77:2482–2487 Medline
DeLeo FR, Burritt JB, Yu L, Jesaitis AJ, Dinauer MC, Nauseef WM (2000) Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem 275:13986–13993 Medline DOI 10.1074/jbc.275.18.13986
Bu-Ghanim HN, Segal AW, Keep NH, Casimir CM (1995) Molecular analysis in three cases of X91− variant chronic granulomatous disease. Blood 86:3575–3582 Medline
Curnutte JT (1995) Disorders of phagocyte function. In: Hoffman R, Benz EJ Jr, Shattil SJ, Furie B, Cohen HJ, Silberstein LE (eds) Hematology: basic principles and practice. Churchill Livingstone, New York, p 792
Roos D, de Boer M, Borregard N, Bjerrum OW, Valerius NH, Seger RA, Mühlebach T, Belohradsky BH, Weening RS (1992) Chronic granulomatous disease with partial deficiency of cytochrome b558 and incomplete respiratory burst: variants of the X-linked, cytochrome b558-negative form of the disease. J Leukoc Biol 51:164–171 Medline
Roesler J, Heyden S, Burdelski M, Schafer H, Kreth HW, Lehmann R, Paul D, Marzahn J, Gahr M, Rosen-Wolff A (1999) Uncommon missense and splice mutations and resulting biochemical phenotypes in German patients with X-linked chronic granulomatous disease. Exp Hematol 27:505–511 Medline DOI 10.1016/S0301-472X(98)00024-1
Li XJ, Grunwald D, Mathieu J, Morel F, Stasia MJ (2005) Crucial role of two potential cytosolic regions of NOX2,191TSSTKTIRRS200 and 484DESQANHFAVHHDEEKD500, on NADPH oxidase activation. J Biol Chem 280:14962–14973 Medline DOI 10.1074/jbc.M500226200
Yoshida LS, Saruta F, Yoshikawa K, Tatsuzawa O, Tsunawaki S (1998) Mutation at histidine 338 of gp91(phox) depletes FAD and affects expression of cytochrome b558 of the human NADPH oxidase. J Biol Chem 273:27879–27886 Medline DOI 10.1074/jbc.273.43.27879
Ariga T, Sakiyama Y, Matsumoto S (1994) Two novel point mutations in the cytochrome b 558 heavy chain gene, detected in two Japanese patients with X-linked chronic granulomatous disease. Hum Genet 94:441 Medline DOI 10.1007/BF00201609
Zhen L, Yu L, Dinauer MC (1998) Probing the role of the carboxyl terminus of the gp91phox subunit of neutrophil flavocytochrome b558 using site-directed mutagenesis. J Biol Chem 273:6575–6658 Medline DOI 10.1074/jbc.273.11.6575
Stasia MJ (2007) The X+ chronic granulomatous disease as a fabulous model to study the NADPH oxidase complex activation. Med Sci (Paris) 23:526–532
Cross AR, Heyworth PG, Rae J, Curnutte JT (1995) A variant X-linked chronic granulomatous disease patient (X91+) with partially functional cytochrome b. J Biol Chem 270:8194–8200 Medline DOI 10.1074/jbc.270.14.8194
Ariga T, Sakiyama Y, Tomizawa K, Imajoh-Ohmi S, Kanegasaki S, Matsumoto S (1993) A newly recognized point mutation in the cytochrome b558 heavy chain gene replacing alanine57 by glutamic acid, in a patient with cytochrome b positive X-linked chronic granulomatous disease. Eur J Pediatr 152:469–472 Medline DOI 10.1007/BF01955051
Ariga T, Furuta H, Cho K, Sakiyama Y (1998) Genetic analysis of 13 families with X-linked chronic granulomatous disease reveals a low proportion of sporadic patients and a high proportion of sporadic carriers. Pediatr Res 44:85–92 Medline DOI 10.1203/00006450-199807000-00014
Stasia MJ, Lardy B, Maturana A, Rousseau P, Martel C, Bordigoni P, Demaurex N, Morel F (2002) Molecular and functional characterization of a new X-linked chronic granulomatous disease variant (X91+) case with a double missense mutation in the cytosolic gp91phox C-terminal tail. Biochim Biophys Acta 1586:316–330 Medline
Zhen L, King AA, Xiao Y, Chanock SJ, Orkin SH, Dinauer MC (1993) Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc Natl Acad Sci U S A 90:9832–9836 Medline DOI 10.1073/pnas.90.21.9832
Tucker KA, Lilly MB, Heck L Jr, Rado TA (1987) Characterization of a new human diploid myeloid leukemia cell line (PLB-985) with granulocytic and monocytic differentiating capacity. Blood 70:372–378 Medline
Bionda C, Li XJ, van Bruggen R, Eppink M, Roos D, Morel F, Stasia MJ (2004) Functional analysis of two-amino acid substitutions in gp91 phox in a patient with X-linked flavocytochrome b558-positive chronic granulomatous disease by means of transgenic PLB-985 cells. Hum Genet 115:418–427 Medline DOI 10.1007/s00439-004-1173-z
Dusi S, Nadalini KA, Donini M, Zentilin L, Wientjes FB, Roos D, Giacca M, Rossi F (1998) Nicotinamide–adenine dinucleotide phosphate oxidase assembly and activation in EBV-transformed B lymphoblastoid cell lines of normal and chronic granulomatous disease patients. J Immunol 161:4968–4974 Medline
Leusen JH, Meischl C, Eppink MH, Hilarius PM, de Boer M, Weening RS, Ahlin A, Sanders L, Goldblatt D, Skopczynska H, Bernatowska E, Palmblad J, Verhoeven AJ, van Berkel WJ, Roos D (2000) Four novel mutations in the gene encoding gp91-phox of human NADPH oxidase: consequences for oxidase assembly. Blood 95:666–673 Medline
Dinauer MC, Curnutte JT, Rosen H, Orkin SH (1989) A missense mutation in the neutrophil cytochrome b heavy chain in cytochrome-positive X-linked chronic granulomatous disease. J Clin Invest 84:2012–2016 Medline DOI 10.1172/JCI114393
Segal AW, West I, Wientjes F, Nugent JH, Chavan AJ, Haley B, Garcia RC, Rosen H, Scrace G (1992) Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 284:781–788 Medline
Taylor WR, Jones DT, Segal AW (1993) A structural model for the nucleotide binding domains of the flavocytochrome b-245 beta-chain. Protein Sci 2:1675–1685 Medline
Li XJ, Fieschi F, Paclet MH, Grunwald D, Campion Y, Gaudin P, Morel F, Stasia MJ (2007) Leu505 of NOX2 is crucial in the NADPH-binding process during NADPH oxidase activation in phagocytes. J Leukoc Biol 81:238–249 Medline DOI 10.1189/jlb.0905541
Azuma H, Oomi H, Sasaki K, Kawabata I, Sakaino T, Koyano S, Suzutani T, Nunoi H, Okuno A (1995) A new mutation in exon 12 of the gp91-phox gene leading to cytochrome b-positive X-linked chronic granulomatous disease. Blood 85:3274–3277 Medline
Karplus PA, Daniels MJ, Herriott JR (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251:60–66 Medline DOI 10.1126/science.1986412
Leusen JH, de Boer M, Bolscher BG, Hilarius PM, Weening RS, Ochs HD, Roos D, Verhoeven AJ (1994) A point mutation in gp91-phox of cytochrome b558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Clin Invest 93:2120–2126 Medline DOI 10.1172/JCI117207
Schapiro BL, Newburger PE, Klempner MS, Dinauer MC (1991) Chronic granulomatous disease presenting in a 69-year-old man. N Engl J Med 325:1786–1790 Medline
Yu L, Cross AR, Zhen L, Dinauer MC (1999) Functional analysis of NADPH oxidase in granulocytic cells expressing a delta488-497 gp91(phox) deletion mutant. Blood 94:2497–2504 Medline
Cross AR, Noack D, Rae J, Curnutte JT, Heyworth PG (2000) Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (first update). Blood Cells Mol Dis 26:561–565 Medline DOI 10.1006/bcmd.2000.0333
Roos D, de Boer M, Köker MY, Dekker J, Singh-Gupta V, Ahlin A, Palmblad J, Sanal O, Kurenko-Deptuch M, Jolles S, Wolach B (2006) Chronic granulomatous disease caused by mutations other than the common GT deletion in NCF1, the gene encoding the p47phox component of the phagocyte NADPH oxidase. Hum Mutat 27:1218–1229 Medline DOI 10.1002/humu.20413
Chanock SJ, Roesler J, Chanock SJ, Roesler J, Zhan S, Hopkins P, Lee P, Barrett DT, Christensen BL, Curnutte JT, Görlach A (2000) Genomic structure of the human p47-phox (NCF1) gene. Blood Cells Mol Dis 26:37–46 Medline DOI 10.1006/bcmd.2000.0274
Casimir CM, Bu-Ghanim HN, Rodaway AR, Bentley DL, Rowe P, Segal AW (1991) Autosomal recessive chronic granulomatous disease caused by deletion at a dinucleotide repeat. Proc Natl Acad Sci U S A 88:2753–2757 Medline DOI 10.1073/pnas.88.7.2753
Iwata M, Nunoi H, Yamazaki H, Nakano T, Niwa H, Tsuruta S, Ohga S, Ohmi S, Kanegasaki S, Matsuda I (1994) Homologous dinucleotide (GT or TG) deletion in Japanese patients with chronic granulomatous disease with p47-phox deficiency. Biochem Biophys Res Commun 199:1372–1377 Medline DOI 10.1006/bbrc.1994.1382
Volpp BD, Lin Y (1993) In vitro molecular reconstitution of the respiratory burst in B lymphoblasts from p47-phox deficient chronic granulomatous disease. J Clin Invest 91:201–207 Medline DOI 10.1172/JCI116171
Roesler J, Curnutte JT, Rae J, Barrett D, Patino P, Chanock SJ, Goerlach A (2000) Recombination events between the p47-phox gene and its highly homologous pseudogenes are the main cause of autosomal recessive chronic granulomatous disease. Blood 95:2150–2156 Medline
Noack D, Rae J, Cross AR, Ellis BA, Newburger PE, Curnutte JT, Heyworth PG (2001) Autosomal recessive chronic granulomatous disease caused by defects in NCF-1, the gene encoding the phagocyte p47-phox: mutations not arising in the NCF-1 pseudogenes. Blood 97:305–311 Medline DOI 10.1182/blood.V97.1.305
Jurkowska M, Kurenko-Deptuch M, Bal J, Roos D (2004) The search for a genetic defect in Polish patients with chronic granulomatous disease. Arch Immunol Ther Exp (Warsz) 52:441–446 Medline
Görlach A, Lee PL, Roesler J, Hopkins PJ, Christensen B, Green ED, Chanock SJ, Curnutte JT (1997) A p47-phox pseudogene carries the most common mutation causing p47-phox deficient chronic granulomatous disease. J Clin Invest 100:1907–1918 Medline DOI 10.1172/JCI119721
Antonell A, de Luis O, Domingo-Roura X, Pérez-Jurado LA (2005) Evolutionary mechanisms shaping the genomic structure of the Williams–Beuren syndrome chromosomal region at human 7q11.23. Genome Res 9:1179–1188 DOI 10.1101/gr.3944605
Vazquez N, Lehrnbecher T, Chen R, Christensen BL, Gallin JI, Malech H, Holland S, Zhu S, Chanock SJ (2001) Mutational analysis of patients with p47-phox-deficient chronic granulomatous disease: the significance of recombination events between the p47-phox gene (NCF1) and its highly homologous pseudogenes. Exp Hematol 29:234–243 Medline DOI 10.1016/S0301-472X(00)00646-9
Heyworth PG, Noack D, Cross AR (2002) Identification of a novel NCF-1 (p47-phox) pseudogene not containing the signature GT deletion: significance for A47 degrees chronic granulomatous disease carrier detection. Blood 100:1845–1851 Medline DOI 10.1182/blood-2002-03-0861
De Boer M, Singh V, Dekker J, Di Rocco M, Goldblatt D, Roos D (2002) Prenatal diagnosis in two families with autosomal, p47(phox)-deficient chronic granulomatous disease due to a novel point mutation in NCF1. Prenat Diagn 22:235–240 Medline DOI 10.1002/pd.296
Dekker J, de Boer M, Roos D (2001) Gene-scan method for the recognition of carriers and patients with p47(phox)-deficient autosomal recessive chronic granulomatous disease. Exp Hematol 29:1319–1325 Medline DOI 10.1016/S0301-472X(01)00731-7
Moreno MU, San José G, Orbe J, Páramo JA, Beloqui O, Díez J, Zalba G (2003) Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension. FEBS Lett 542:27–31 Medline DOI 10.1016/S0014-5793(03)00331-4
Parkos CA, Dinauer MC, Jesaitis AJ, Orkin SH, Curnutte JT (1989) Absence of both the 91 kD and 22 kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood 73:1416–1420 Medline
Dinauer MC, Pierce EA, Erickson RW, Muhlebach TJ, Messner H, Orkin SH, Seger RA, Curnutte JT (1991) Point mutation in the cytoplasmic domain of the neutrophil p22-phox cytochrome b subunit is associated with a nonfunctional NADPH oxidase and chronic granulomatous disease. Proc Natl Acad Sci U S A 88:11231–11235 Medline DOI 10.1073/pnas.88.24.11231
De Boer M, de Klein A, Hossle JP, Seger R, Corbeel L, Weening RS, Roos D (1992) Cytochrome b558-negative, autosomal recessive chronic granulomatous disease: two new mutations in the cytochrome b558 light chain of the NADPH oxidase (p22-phox). Am J Hum Genet 51:1127–1135 Medline
Leusen JH, Bolscher BG, Hilarius PM, Weening RS, Kaulfersch W, Seger RA, Roos D, Verhoeven AJ (1994) 156Pro–>Gln substitution in the light chain of cytochrome b558 of the human NADPH oxidase (p22-phox) leads to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Exp Med 180:2329–2334 Medline DOI 10.1084/jem.180.6.2329
Hossle JP, de Boer M, Seger RA, Roos D (1994) Identification of allele-specific p22-phox mutations in a compound heterozygous patient with chronic granulomatous disease by mismatch PCR and restriction enzyme analysis. Hum Genet 93:437–442 Medline DOI 10.1007/BF00201671
Porter CD, Parkar MH, Kinnon C (1995) Identification of a donor splice mutation leading to loss of p22-phox exon 5 in autosomal chronic granulomatous disease. Hum Mut 7:374–378 DOI 10.1002/(SICI)1098-1004(1996)7:4<374::AID-HUMU16>3.0.CO;2-#
Rae J, Noack D, Heyworth PG, Ellis BA, Curnutte JT, Cross AR (2000) Molecular analysis of 9 new families with chronic granulomatous disease caused by mutations in CYBA, the gene encoding p22-phox. Blood 96:1106–1112 Medline
Yamada M, Ariga T, Kawamura N, Ohtsu M, Imajoh-Ohmi S, Ohshika E, Tatsuzawa O, Kobayashi K, Sakiyama Y (2000) Genetic studies of three Japanese patients with p22-phox-deficient chronic granulomatous disease: detection of a possible common mutant CYBA allele in Japan and a genotype–phenotype correlation in these patients. Br J Haematol 108:511–517 Medline DOI 10.1046/j.1365-2141.2000.01857.x
Stasia MJ, Bordigoni P, Martel C, Morel F (2002) A novel and unusual case of chronic granulomatous disease in a child with a homozygous 36-bp deletion in the CYBA gene A220 leading to the activation of a cryptic splice site in intron 4. Hum Genet 110:444–450 Medline DOI 10.1007/s00439-002-0720-8
El Kares R, Barbouche MR, Elloumi-Zghal H, Bejaoui M, Chemli J, Mellouli F, Tebib N, Abdelmoula MS, Boukthir S, Fitouri Z, M’Rad S, Bouslama K, Touiri H, Abdelhak S, Dellagi MK (2006) Genetic and mutational heterogeneity of autosomal recessive chronic granulomatous disease in Tunisia. Hum Genet 51:887–895 DOI 10.1007/s10038-006-0039-8
Bakri F, Martel C, El-Khateeb MS, Hamamy HA, Khuri-Bolus N, Mahafzah A, Al-wahadneh AM, Hayajneh WA, Guillot M, Stasia MJ (2008) First report of chronic granulomatous disease in ten Jordanian families. Eur J Clin Invest 38(Suppl. 1):71 Medline
Kleinberg ME, Malech HL, Rotrosen D (1990) The phagocyte 47-kiloDalton cytosolic oxidase protein is an early reactant in activation of the respiratory burst. J Biol Chem 265:15577–15583 Medline
Sumimoto H, Hata K, Mizuki K, Ito T, Kage Y, Sakaki Y, Fukumaki Y, Nakamura M, Takeshige K (1996) Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem 271:22152–22158 Medline DOI 10.1074/jbc.271.36.22152
Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H, Clark RA (1991) Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest 87:352–356 Medline DOI 10.1172/JCI114993
Eklund EA, Kakar R (1999) Recruitment of CREB-binding protein by PU.1, IFN-regulatory factor-1, and the IFN consensus sequence-binding protein is necessary for IFN-gamma-induced p67phox and gp91phox expression. J Immunol 163:6095–6105 Medline
Lindsey S, Huang W, Wang H, Horvath E, Zhu C, Eklund EA (2007) Activation of SHP2 protein-tyrosine phosphatase increases HoxA10-induced repression of the genes encoding gp91(PHOX) and p67(PHOX). J Biol Chem 282:2237–2249 Medline DOI 10.1074/jbc.M608642200
Ammons MC, Siemsen DW, Nelson-Overton LK, Quinn MT, Gauss KA (2007) Binding of pleomorphic adenoma gene-like 2 to the tumor necrosis factor (TNF)-alpha-responsive region of the NCF2 promoter regulates p67(phox) expression and NADPH oxidase activity. J Biol Chem 282:17941–17952 Medline DOI 10.1074/jbc.M610618200
de Boer M, Hilarius-Stokman PM, Hossle JP, Verhoeven AJ, Graf N, Kenney RT, Seger R, Roos D (1994) Autosomal recessive chronic granulomatous disease with absence of the 67-kD cytosolic NADPH oxidase component: identification of mutation and detection of carriers. Blood 83:531–536 Medline
Tanugi-Cholley LC, Issartel JP, Lunardi J, Freycon F, Morel F, Vignais PV (1995) A mutation located at the 5′ splice junction sequence of intron 3 in the p67phox gene causes the lack of p67phox mRNA in a patient with chronic granulomatous disease. Blood 85:242–249 Medline
Nunoi H, Iwata M, Tatsuzawa S, Onoe Y, Shimizu S, Kanegasaki S, Matsuda I (1995) AG dinucleotide insertion in a patient with chronic granulomatous disease lacking cytosolic 67-kD protein. Blood 86:329–33 Medline
Ahlin A, De Boer M, Roos D, Leusen J, Smith CI, Sundin U, Rabbani H, Palmblad J, Elinder G (1995) Prevalence, genetics and clinical presentation of chronic granulomatous disease in Sweden. Acta Paediatr 84:1386–1394 Medline DOI 10.1111/j.1651-2227.1995.tb13575.x
Leusen JH, de Klein A, Hilarius PM, Ahlin A, Palmblad J, Smith CI, Diekmann D, Hall A, Verhoeven AJ, Roos D (1996) Disturbed interaction of p21-rac with mutated p67-phox causes chronic granulomatous disease. J Exp Med 184:1243–1249 Medline DOI 10.1084/jem.184.4.1243
Aoshima M, Nunoi H, Shimazu M, Shimizu S, Tatsuzawa O, Kenney RT, Kanegasaki S (1996) Two-exon skipping due to a point mutation in p67-phox-deficient chronic granulomatous disease. Blood 88:1841–1845 Medline
Bonizzato A, Russo MP, Donini M, Dusi S (1997) Identification of a double mutation (D160V–K161E) in the p67phox gene of a chronic granulomatous disease patient. Biochem Biophys Res Commun 231:861–863 Medline DOI 10.1006/bbrc.1997.6204
Patino PJ, Rae J, Noack D, Erickson R, Ding J, de Olarte DG, Curnutte JT (1999) Molecular characterization of autosomal recessive chronic granulomatous disease caused by a defect of the nicotinamide adenine dinucleotide phosphate (reduced form) oxidase component p67-phox. Blood 94:2505–2514 Medline
Noack D, Rae J, Cross AR, Muñoz J, Salmen S, Mendoza JA, Rossi N, Curnutte JT, Heyworth PG (1999) Autosomal recessive chronic granulomatous disease caused by novel mutations in NCF-2, the gene encoding the p67-phox component of phagocyte NADPH oxidase. Hum Genet 105:460–467 Medline DOI 10.1007/s004390051131
Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microbes Infect 5:1307–1315 Medline DOI 10.1016/j.micinf.2003.09.009
Diekmann D, Abo A, Johnston C, Segal AW, Hall A (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265:531–533 Medline DOI 10.1126/science.8036496
Grizot S, Fieschi F, Dagher MC, Pebay-Peyroula E (2001) The active N-terminal region of p67phox. Structure at 1.8 A resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease. J Biol Chem 276:21627–21631 Medline DOI 10.1074/jbc.M100893200
Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K (2000) Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell 6:899–907 Medline
Borgato L, Bonizzato A, Lunardi C, Dusi S, Andrioli G, Scarperi A, Corrocher R (2001) A 1.1-kb duplication in the p67-phox gene causes chronic granulomatous disease. Hum Genet 108:504–510 Medline DOI 10.1007/s004390100526
Vergnaud S, Paclet MH, El Benna J, Pocidalo MA, Morel F (2000) Complementation of NADPH oxidase in p67-phox-deficient CGD patients p67-phox/p40-phox interaction. Eur J Biochem 267:1059–1067 Medline DOI 10.1046/j.1432-1327.2000.01097.x
Tsunawaki S, Yoshikawa K (2002) Relationships of p40(phox) with p67(phox) in the activation and expression of the human respiratory burst NADPH oxidase. J Biochem 128:777–783
Cathebras P, Sauron C, Morel F, Stasia MJ (2001) An unusual case of sarcoidosis. Lancet 358:294 Medline DOI 10.1016/S0140-6736(01)05485-X
Martire B, Rondelli R, Soresina A, Pignata C, Broccoletti T, Finocchi A, Rossi P, Gattorno M, Rabusin M, Azzari C, Dellepiane RM, Pietrogrande MC, Trizzino A, Di Bartolomeo P, Martino S, Carpino L, Cossu F, Locatelli F, Maccario R, Pierani P, Putti MC, Stabile A, Notarangelo LD, Ugazio AG, Plebani A, De Mattia D (2008) Links clinical features, long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: an Italian multicenter study. IPINET (Italian Network for Primary Immunodeficiencies) Clin Immunol 126:155–164 Medline DOI 10.1016/j.clim.2007.09.008
Marciano BE, Wesley R, De Carlo ES, Anderson VL, Barnhart LA, Darnell D, Malech HL, Gallin JI, Holland SM (2004) Long-term interferon-gamma therapy for patients with chronic granulomatous disease. Clin Infect Dis 39(5):692–699 Medline DOI 10.1086/422993
Seger RA (2008) Modern management of chronic granulomatous disease. Br J Haematol 140:255–266 Medline DOI 10.1111/j.1365-2141.2007.06880.x
Margolis DM, Melnick DA, Alling DW, Gallin JI (1990) Trimethoprim-sulfamethoxazole prophylaxis in the management of chronic granulomatous disease. J Infect Dis 162(3):723–726 Medline
Dinauer MC, Lekstrom-Himes JA, Dale DC (2000) Inherited neutrophil disorders: molecular basis and new therapies. Hematology Am Soc Hematol Educ Program 5:303–318 Medline DOI 10.1182/asheducation-2000.1.303
Wolfe LC, Curran KJ (2006) Chronic granulomatous disease. http://www.emedicine.com/ped/topic1590.htm
Mouy R, Veber F, Blanche S, Donadieu J, Brauner R, Levron JC, Griscelli C, Fischer A (1994) Long-term itraconazole prophylaxis against Aspergillus infections in thirty-two patients with chronic granulomatous disease. J Pediatr 125:998–1003 Medline DOI 10.1016/S0022-3476(05)82023-2
Gallin JI, Alling DW, Malech HL, Wesley R, Koziol D, Marciano B, Eisenstein EM, Turner ML, DeCarlo ES, Starling JM, Holland SM (2003) Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med 348(24):2416–2422 Medline DOI 10.1056/NEJMoa021931
Cale CM, Jones AM, Goldblatt DL (2000) Follow up of patients with chronic granulomatous disease diagnosed since 1990. Clin Exp Immunol 120(2):351–315 Medline DOI 10.1046/j.1365-2249.2000.01234.x
The International Chronic Granulomatous Disease Cooperative Study Group (1991) A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med 324(8):509–516 Feb 21 Comment in: N Engl J Med. 1991 Nov 21;325(21):1516–1517, Medline
Ezekowitz RA, Orkin SH, Newburger PE (1987) Recombinant interferon gamma augments phagocyte superoxide production and X-chronic granulomatous disease gene expression in X-linked variant chronic granulomatous disease. J Clin Invest 80(4):1009–1016 Medline DOI 10.1172/JCI113153
Newburger PE, Ezekowitz RA (1988) Cellular and molecular effects of recombinant interferon gamma in chronic granulomatous disease. Hematol Oncol Clin North Am 2(2):267–276 Medline
Weening RS, Leitz GJ, Seger RA (1995) Recombinant human interferon-gamma in patients with chronic granulomatous disease—European follow up study. Eur J Pediatr 154(4):295–298 Medline
Jackson SH, Miller GF, Segal BH, Mardiney M 3rd, Domachowske JB, Gallin JI, Holland SM (2001) IFN-gamma is effective in reducing infections in the mouse model of chronic granulomatous disease (CGD). J Interferon Cytokine Res 21(8):567–573 Medline DOI 10.1089/10799900152547821
Leung T, Chik K, Li C, Shing M, Yuen P (1999) Bone marrow transplantation for chronic granulomatous disease: long-term follow-up and review of literature. Bone Marrow Transplant 24:567–570 Medline DOI 10.1038/sj.bmt.1701932
Horwitz ME, Barrett AJ, Brown MR, Carter CS, Childs R, Gallin JI, Holland SM, Linton GF, Miller JA, Leitman SF, Read EJ, Malech HL (2001) Treatment of chronic granulomatous disease with nonmyeloablative conditioning and a T-cell-depleted hematopoietic allograft. N Engl J Med 344(12):881–888 Comment in: N Engl J Med 344(12):926–927, 2001, Mar 22, Medline DOI 10.1056/NEJM200103223441203
Seger RA, Gungor T, Belohradsky BH, Blanche S, Bordigoni P, Di Bartolomeo P, Flood T, Landais P, Müller S, Ozsahin H, Passwell JH, Porta F, Slavin S, Wulffraat N, Zintl F, Nagler A, Cant A, Fischer A (2002) Treatment of chronic granulomatous disease with myeloablative conditioning and an unmodified hemopoietic allograft: a survey of the European experience. 1985-2000. Blood 100(13):4344–4350 Medline DOI 10.1182/blood-2002-02-0583
Goldblatt D, Thrasher AJ (2000) Chronic granulomatous disease. Clin Exp Immunol 122(1):1–9 Medline DOI 10.1046/j.1365-2249.2000.01314.x
Goudemand J, Anssens R, Delmas-Marsalet Y, Farriaux JP, Fontaine G (1976) Attempt to treat a case of chronic familial granulomatous disease by allogenic bone marrow transplantation. Arch Fr Pediatr 33:121–129 Medline
Stein S, Siler U, Ott MG, Seger R, Grez M (2006) Gene therapy for chronic granulomatous disease. Curr Opin Mol Ther 8:415–422 Medline
Del Giudice I, Iori AP, Mengarelli A, Testi AM, Romano A, Cerretti R, Macrì F, Iacobini M, Arcese W (2003) Allogeneic stem cell transplant from HLA-identical sibling for chronic granulomatous disease and review of the literature. Ann Hematol 82(3):189–192 Medline
Sastry J, Kakakios A, Tugwell H, Shaw PJ (2006) Links allogeneic bone marrow transplantation with reduced intensity conditioning for chronic granulomatous disease complicated by invasive Aspergillus infection. Pediatr Blood Cancer 47:327–329 Medline DOI 10.1002/pbc.20865
Thrasher A, Chetty M, Casimir C, Segal AW (1992) Restoration of superoxide generation to a chronic granulomatous disease-derived B-cell line by retrovirus mediated gene transfer. Blood 80:1125–1129 Medline
Maly FE, Schuerer-Maly CC, Quilliam L, Cochrane CG, Newburger PE, Curnutte JT, Gifford M, Dinauer MC (1993) Restitution of superoxide generation in autosomal cytochrome-negative chronic granulomatous disease (A22(0) CGD)-derived B lymphocyte cell lines by transfection with p22phax cDNA. J Exp Med 178:2047–2053 Medline DOI 10.1084/jem.178.6.2047
Porter CD, Parkar MH, Levinsky RJ, Collins MK, Kinnon C (1993) X-linked chronic granulomatous disease: correction of NADPH oxidase defect by retrovirus-mediated expression of gp91-phox. Blood. 82:2196–2202 Medline
Thrasher AJ, Casimir CM, Kinnon C, Morgan G, Segal AW, Levinsky RJ (1995) Gene transfer to primary chronic granulomatous disease monocytes. Lancet 346:92–93 Medline DOI 10.1016/S0140-6736(95)92116-8
Sekhsaria S, Gallin JI, Linton GF, Mallory RM, Mulligan RC, Malech HL (1993) Peripheral blood progenitors as a target for genetic correction of p47phox-deficient chronic granulomatous disease. Proc Natl Acad Sci U S A 90:7446–7450 Medline DOI 10.1073/pnas.90.16.7446
Li F, Linton GF, Sekhsaria S, Whiting-Theobald N, Katkin JP, Gallin JI, Malech HL (1994) CD34+ peripheral blood progenitors as a target for genetic correction of the two flavocytochrome b558 defective forms of chronic granulomatous disease. Blood 84:53–58 Medline
Becker S, Wasser S, Hauses M, Hossle JP, Ott MG, Dinauer MC, Ganser A, Hoelzer D, Seger R, Grez M (1998) Correction of respiratory burst activity in X-linked chronic granulomatous cells to therapeutically relevant levels after gene transfer into bone marrow CD34+ cells. Hum Gene Ther 9:1561–1570 Medline DOI 10.1089/hum.1998.9.11-1561
Weil WM, Linton GF, Whiting-Theobald N, Vowells SJ, Rafferty SP, Li F, Malech HL (1997) Genetic correction of p67phox deficient chronic granulomatous disease using peripheral blood progenitor cells as a target for retrovirus mediated gene transfer. Blood 89:1754–1761 Medline
Ding C, Kume A, Bjorgvinsdottir H, Hawley RG, Pech N, Dinauer MC (1996) High-level reconstitution of respiratory burst activity in a human X-linked chronic granulomatous disease (X-CGD) cell line and correction of murine X-CGD bone marrow cells by retroviral mediated gene transfer of human gp91phox. Blood 88:1834–1840 Medline
Bjorgvinsdottir H, Ding C, Pech N, Gifford MA, Li LL, Dinauer MC (1997) Retroviral-mediated gene transfer of gp91phox into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease. Blood 89:41–48 Medline
Mardiney M, Jackson SH, Spratt SK, Li F, Holland SM, Malech HL (1997) Enhanced host defense after gene transfer in the murine p47phox deficient model of chronic granulomatous disease. Blood 89:2268–2275 Medline
Dinauer MC, Li LL, Björgvinsdóttir H, Ding C, Pech N (1999) Long-term correction of phagocyte NADPH oxidase activity by retroviral-mediated gene transfer in murine X-linked chronic granulomatous disease. Blood 94:914–922 Medline
Dinauer MC, Gifford MA, Pech N, Li LL, Emshwiller P (2001) Variable correction of host defense following gene transfer and bone marrow transplantation in murine X-linked chronic granulomatous disease. Blood 97:3738–3745 Medline DOI 10.1182/blood.V97.12.3738
Goebel WS, Dinauer MC (2002) Retroviral-mediated gene transfer and nonmyeloablative conditioning: studies in a murine X-linked chronic granulomatous disease model. J Pediatr Hematol Oncol 24:787–790 Medline DOI 10.1097/00043426-200212000-00026
Schwickerath O, Brouns G, Thrasher A, Kinnon C, Roes J, Casimir C (1997) Enhancer-deleted retroviral vectors restore high levels of superoxide generation in a mouse model of CGD. J Gene Med 6:603–615 DOI 10.1002/jgm.557
Schneider SD, Rusconi S, Seger RA, Hossle JP (1997) Adenovirus-mediated gene transfer into monocyte-derived macrophages of patients with X-linked chronic granulomatous disease: ex vivo correction of deficient respiratory burst. Gene Ther 4:524–532 Medline DOI 10.1038/sj.gt.3300432
Trasher AJ, de Alwis M, Casimir CM, Kinnon C, Page K, Lebkowski J, Segal AW, Levinsky RJ (1995) Generation of recombinant adeno-associated virus (rAAV) from an adenoviral vector and functional reconstitution of the NADPH-oxidase. Gene Ther 2:481–485 Medline
Li LL, Dinauer M (1998) Reconstitution of NADPH oxidase activity in human X-linked chronic granulomatous disease myeloid cells after stable gene transfer using a recombinant adeno-associated virus 2 vector. Blood Cells Mol Dis 24:522–538 Medline DOI 10.1006/bcmd.1998.0216
Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256 Medline DOI 10.1056/NEJM200301163480314
Nienhuis AW, Dunbar CE, Sorrentino BP (2006) Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 13:1031–1049 Medline DOI 10.1016/j.ymthe.2006.03.001
Ott MG, Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H, Kühlcke K, Schilz A, Kunkel H, Naundorf S, Brinkmann A, Deichmann A, Fischer M, Ball C, Pilz I, Dunbar C, Du Y, Jenkins NA, Copeland NG, Lüthi U, Hassan M, Thrasher AJ, Hoelzer D, von Kalle C, Seger R, Grez M (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12:386–388 Medline DOI 10.1038/nm1393
Sokolic RA, Sekhsaria S, Sugimoto Y, Whiting-Theobald N, Linton GF, Li F, Gottesman MM, Malech HL (1996) A bicistronic retrovirus vector containing a picornavirus internal ribosome entry site allows for correction of X-linked CGD by selection for MDR1 expression. Blood 87:42–50 Medline
Iwata M, Nunoi H, Matsuda I, Kanegasaki S, Tsuruo T, Sugimoto Y (1998) Drug-selected complete restoration of superoxide generation in Epstein–Barr virus-transformed B cells from p47phox-deficient chronic granulomatous disease patients by using a bicistronic retrovirus vector encoding a human multi-drug resistance gene (MDR1) and the p47phox gene. Hum Genet 103:419–423 Medline DOI 10.1007/s004390050844
Naumann N, De Ravin SS, Choi U, Moayeri M, Whiting-Theobald N, Linton GF, Ikeda Y, Malech HL (2007) Simian immunodeficiency virus lentivector corrects human X-linked chronic granulomatous disease in the NOD/SCID mouse xenograft. Gene Ther 14(21):1513–1524 Epub 2007 Aug 30, Medline DOI 10.1038/sj.gt.3303010
Brenner S, Whiting-Theobald NL, Linton GF, Holmes KL, Anderson-Cohen M, Kelly PF, Vanin EF, Pilon AM, Bodine DM, Horwitz ME, Malech HL (2003) Concentrated RD114-pseudotyped MFGS-gp91phox vector achieves high levels of functional correction of the chronic granulomatous disease oxidase defect in NOD/SCID/beta-microglobulin−/− repopulating mobilized human peripheral blood CD34+ cells. Blood 102:2789–2797 Medline DOI 10.1182/blood-2002-05-1482
Malech HL, Maples PB, Whiting-Theobald N, Linton GF, Sekhsaria S, Vowells SJ, Li F, Miller JA, DeCarlo E, Holland SM, Leitman SF, Carter CS, Butz RE, Read EJ, Fleisher TA, Schneiderman RD, Van Epps DE, Spratt SK, Maack CA, Rokovich JA, Cohen LK, Gallin JI (1997) Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci U S A 94:12133–12338 Medline DOI 10.1073/pnas.94.22.12133
Malech HL, Bauer TR Jr, Hickstein DD (1997) Prospects for gene therapy of neutrophil defects. Semin Hematol 34:355–361 Medline
Malech HL (1999) Progress in gene therapy for chronic granulomatous disease. J Infect Dis 2(179 Suppl):S318–S325 Medline DOI 10.1086/513852
Malech HL, Choi U, Brenner S (2004) Progress toward effective gene therapy for chronic granulomatous disease. Jpn J Infect Dis 57:S27–S28 Medline
Barese CN, Goebel WS, Dinauer MC (2004) Gene therapy for chronic granulomatous disease. Expert Opin Biol Ther 4:1423–1434 Medline DOI 10.1517/14712598.4.9.1423
Ott MG, Koehl U, Sadat MA, Merget-Millitzer H, Stein S, Saulnier S, Hossle JP, Dinauer MC, Seger R, Hoelzer D, Grez M (2003) Gene therapy of chronic granulomatous disease: results from pre-clinical and phase I clinical studies. Mol Ther 7(5 Suppl):S408
Siler U, Ott MG, Stein S, Karaus E, Rutishauser M, Wenk C, Hoelzer D, Grez M, Seger R (2005) Chronic granulomatous disease gene therapy functionally corrects the phenotype of polymorphonuclear leukocytes (PMN). Mol Ther 11(Suppl 1):S129 DOI 10.1016/j.ymthe.2005.06.335
Grez M, Ott MG, Stein S, Siler U, Koehl U, Kunkel H, Schilz A, Kuehlcke K, Hoelzer D, Seger R (2005) Correction of chronic granulomatous disease by gene therapy. Mol Ther 11(Suppl 1):S130 DOI 10.1016/j.ymthe.2005.06.339
Ott MG, Seger R, Stein S, Siler U, Hoelzer D, Grez M (2007) Advances in the treatment of chronic granulomatous disease by gene therapy. Curr Gene Ther 7:155–161 Medline DOI 10.2174/156652307780859044
Decoursey TE, Ligeti E (2005) Regulation and termination of NADPH oxidase activity. Cell Mol Life 62:2173–2193 DOI 10.1007/s00018-005-5177-1
de Boer M, Hartl D, Wintergerst U, Belohradsly BH, Roos D (2005) A donor splice site mutation in intron 1 of CYBA, leading to chronic granulomatous disease. Blood Cells Mol Dis 35:365–369 Medline DOI 10.1016/j.bcmd.2005.08.002
Acknowledgements
The US Immunodeficiency Network and the Primary Immunodeficiency Disease Consortium’s National Institutes of Health contract no. N01-AI-30070 supported this work. We thank Françoise Morel for her constant support and belief in our work. We are so grateful to Cécile Martel, Michelle Mollin, Laure Carrichon, Federica Defendi, Sylvain Beaumel, Antoine Picciocchi, and Franck Demeurme for their enthusiasm at work in the CGD diagnosis and research center. Special thanks are extended to Lila Laval for her excellent secretarial work and to Linda Northrup for editing the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by grants from the US Immunodeficiency Network a National Institute of Health consortium, Towson, MD, USA, the Université Joseph Fourier et the Faculté de Médecine, Grenoble, France, the Région Rhône–Alpes, programme Emergence, the Ministère de l’Education et de la Recherche, and the Direction de la Recherche Régionale Clinique.
Rights and permissions
About this article
Cite this article
Stasia, M.J., Li, X.J. Genetics and immunopathology of chronic granulomatous disease. Semin Immunopathol 30, 209–235 (2008). https://doi.org/10.1007/s00281-008-0121-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00281-008-0121-8