Skip to main content

Advertisement

Genetics and immunopathology of chronic granulomatous disease

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Chronic granulomatous disease (CGD) is a primary immunodeficiency syndrome characterized by a greatly increased susceptibility to severe fungal and bacterial infections. CGD results from a failure of the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzyme in the patient’s phagocytes to produce superoxide. It is caused by mutations in any of four genes that encode the components of the NADPH oxidase. Investigation of CGD patients has identified the different subunits and the genes encoding them. Study of rare CGD variants has highlighted sequences involved in the structural stability of affected components or has provided valuable insights into their function in the oxidase activation mechanism. Functional and molecular CGD diagnosis tests are discussed in this review. Long-term antibiotic prophylaxis has been essential in fighting infections associated with CGD, but approaches based on hematopoietic stem cell transplantation and gene therapy offer great hope for the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CGD:

chronic granulomatous disease

AR CGD:

autosomal recessive chronic granulomatous disease

X CGD:

X-linked chronic granulomatous disease

NADPH:

reduced nicotinamide adenine dinucleotide phosphate

FAD:

flavin adenine dinucleotide

INT:

iodonitrotetrazolium

ROS:

reactive oxygen species

PHOX:

phagocytic oxidase

TPR:

tetratricopeptide repeat

BMT:

bone marrow transplantation

References

  1. Baldridge CW, Gerard RW (1933) The extra respiration of phagocytosis. Am J Physiol 103:235–236

    CAS  Google Scholar 

  2. Sbarra AJ, Karnovsky ML (1959) The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 234:1355–1362 Medline

    PubMed  CAS  Google Scholar 

  3. Selvaraj RJ, Sbarra AJ (1966) Relationship of glycolytic and oxidative metabolism to particle entry and destruction in phagocytosing cells. Nature 211:1272–1276 Medline DOI 10.1038/2111272a0

    Article  PubMed  CAS  Google Scholar 

  4. Janeway CA, Craig J, Davidson M, Downey W, Gitlin D, Sullivan JC (1954) Hypergammaglobulinemia associated with severe, recurrent and chronic non-specific infection. Am J Dis Child 88:388–392

    Google Scholar 

  5. Landing BH, Shirley HS (1957) A syndrome of recurrent infection and infiltration of viscera by pigmented lipid histiocytes. Pediatrics 20:431–438 Medline

    PubMed  CAS  Google Scholar 

  6. Bridges RA, Berendes H, Good RA (1959) A fatal granulomatous disease of childhood: the clinical, pathological and laboratory features of a new syndrome. Am J Dis Child 97:387–408

    CAS  Google Scholar 

  7. Quie PG, White JG, Holmes B, Good RA (1967) In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J Clin Invest 46:668–679 Medline

    PubMed  CAS  Google Scholar 

  8. Holmes B, Quie PG, Windhorst DB, Good RA (1966) Fatal granulomatous disease of childhood an inborn abnormality of phagocytic function. Lancet 1:1225–1228 Medline DOI 10.1016/S0140-6736(66)90238-8

    Article  PubMed  CAS  Google Scholar 

  9. Baehner RL, Nathan DG (1967) Leukocyte oxidase: defective activity in chronic granulomatous disease. Science 155:835–836 Medline DOI 10.1126/science.155.3764.835

    Article  PubMed  CAS  Google Scholar 

  10. Segal AW, Peters TJ (1976) Characterisation of the enzyme defect in chronic granulomatous disease. Lancet 1:1363–1365 Medline DOI 10.1016/S0140-6736(76)93021-X

    Article  PubMed  CAS  Google Scholar 

  11. Rossi F, Zatti M (1964) Changes in the metabolic pattern of polymorphonuclear leucocytes during phagocytosis. Br J Exp Patho 45:548–559 Medline

    CAS  Google Scholar 

  12. Shinagawa Y, Tanaka C, Teraoka A, Shinagawa Y (1966) A new cytochrome in neurophilic granules of rabbit leucocyte. J Biochem 59:622–624 Medline

    PubMed  CAS  Google Scholar 

  13. Takikawa K, Ohta H (1966) On the nature of neutrophilic granules. Nippon Ketsueki Gakkai Zasshi. 29:571–577 Medline

    PubMed  CAS  Google Scholar 

  14. Segal AW, Jones OT (1978) Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 276:515–517 Medline DOI 10.1038/276515a0

    Article  PubMed  CAS  Google Scholar 

  15. Teahan C, Rowe P, Parker P, Totty N, Segal AW (1987) The X-linked chronic granulomatous disease gene codes for the beta-chain of cytochrome b-245. Nature 327:720–721 Medline DOI 10.1038/327720a0

    Article  PubMed  CAS  Google Scholar 

  16. Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1987) Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 80:732–742 Medline DOI 10.1172/JCI113128

    Article  PubMed  CAS  Google Scholar 

  17. Segal AW, Cross AR, Garcia RC, Borregaard N, Valerius NH, Soothill JF, Jones OT (1983) Absence of cytochrome b245 in chronic granulomatous disease. A multicenter European evaluation of its incidence and relevance. N Engl J Med 308:245–251 Medline

    PubMed  CAS  Google Scholar 

  18. Bromberg Y, Pick E (1984) Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages. Cell Immunol 88:213–221 Medline DOI 10.1016/0008-8749(84)90066-2

    Article  PubMed  CAS  Google Scholar 

  19. Segal AW, Heyworth PG, Cockcroft S, Barrowman MM (1985) Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44,000 protein. Nature 316:547–549 Medline DOI 10.1038/316547a0

    Article  PubMed  CAS  Google Scholar 

  20. Umei T, Takeshige K, Minakami S (1987) NADPH-binding component of the superoxide-generating oxidase in unstimulated neutrophils and the neutrophils from the patients with chronic granulomatous disease. Biochem J 243:467–472 Medline

    PubMed  CAS  Google Scholar 

  21. Curnutte JT, Kuver R, Scott PJ (1987) Activation of neutrophil NADPH oxidase in a cell-free system. Partial purification of components and characterization of the activation process. J Biol Chem 262:5563–5569 Medline

    PubMed  CAS  Google Scholar 

  22. Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature 353:668–670 Medline DOI 10.1038/353668a0

    Article  PubMed  CAS  Google Scholar 

  23. Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254:1512–1515 DOI 10.1126/science.1660188

    Article  PubMed  CAS  Google Scholar 

  24. Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck RJ, Oyer R, Johnson GL, Roos D (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A 97:4654–4659 Medline DOI 10.1073/pnas.080074897

    Article  PubMed  CAS  Google Scholar 

  25. Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P, Levine JE, Petryniak B, Derrow CW, Harris C, Jia B, Zheng Y, Ambruso DR, Lowe JB, Atkinson SJ, Dinauer MC, Boxer L (2000) Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96:1646–1654

    PubMed  CAS  Google Scholar 

  26. Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59:1428–1459 Medline DOI 10.1007/s00018-002-8520-9

    Article  PubMed  CAS  Google Scholar 

  27. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189 Medline DOI 10.1038/nri1312

    Article  PubMed  CAS  Google Scholar 

  28. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313 Medline DOI 10.1152/physrev.00044.2005

    Article  PubMed  CAS  Google Scholar 

  29. Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine 79:170–300 Medline DOI 10.1097/00005792-200005000-00004

    Article  PubMed  CAS  Google Scholar 

  30. Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE, Baehner RL, Cole FS, Curnutte JT, Orkin SH (1986) Cloning the gene for an inherited human disorder—chronic granulomatous disease—on the basis of its chromosomal location. Nature 322:32–38 Medline DOI 10.1038/322032a0

    Article  PubMed  CAS  Google Scholar 

  31. Baehner RL, Kunkel LM, Monaco AP, Haines JL, Conneally PM, Palmer C, Heerema N, Orkin SH (1986) DNA linkage analysis of X chromosome-linked chronic granulomatous disease. Proc Natl Acad Sci U S A 83:3398–3401 Medline DOI 10.1073/pnas.83.10.3398

    Article  PubMed  CAS  Google Scholar 

  32. Nunoi H, Rotrosen D, Gallin JI, Malech HL (1988) Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242:1298–1301 Medline DOI 10.1126/science.2848319

    Article  PubMed  CAS  Google Scholar 

  33. Volpp BD, Nauseef WM, Clark RA (1988) Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242:1295–1297 Medline DOI 10.1126/science.2848318

    Article  PubMed  CAS  Google Scholar 

  34. Volpp BD, Nauseef WM, Donelson JE, Moser DR, Clark RA (1989) Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci U S A 86:7195–7199 Medline DOI 10.1073/pnas.86.18.7195

    Article  PubMed  CAS  Google Scholar 

  35. Leto TL, Lomax KJ, Volpp BD, Nunoi H, Sechler JM, Nauseef WM, Clark RA, Gallin JI, Malech HL (1990) Cloning of a 67-kD neutrophil oxidase factor with similarity to a non-catalytic region of p60c-src. Science 248:727–730 Medline DOI 10.1126/science.1692159

    Article  PubMed  CAS  Google Scholar 

  36. Franke U, Hsieh CL, Foellmer BE, Lomax KJ, Malech HL, Leto TL (1990) Genes for two autosomal recessive forms of chronic granulomatous disease assigned to 1q25 (NCF2) and 7q11.23 (NCF1). Am J Hum Genet 47:483–492 Medline

    Google Scholar 

  37. Dinauer MC, Pierce EA, Bruns GA, Curnutte JT, Orkin SH (1990) Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest 86:1729–1737 Medline DOI 10.1172/JCI114898

    Article  PubMed  CAS  Google Scholar 

  38. Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, Malech HL, Holland SM, Ochs H, Quie P, Buckley RH, Foster CB, Chanock SJ, Dickler H (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79:155–169 Medline DOI 10.1097/00005792-200005000-00003

    Article  CAS  Google Scholar 

  39. Roos D, de Boer M, Kuribayashi F, Meischl C, Weening RS, Segal AW, Ahlin A, Nemet K, Hossle JP, Bernatowska-Matuszkiewicz E, Middleton-Price H (1996) Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood 87:1663–1681 Medline

    PubMed  CAS  Google Scholar 

  40. Rae J, Newburger PE, Dinauer MC, Noack D, Hopkins PJ, Kuruto R, Curnutte JT (1998) X-linked chronic granulomatous disease: mutations in the CYBB gene encoding the gp91-phox component of respiratory-burst oxidase. Am J Hum Genet 62:1320–1331 Medline DOI 10.1086/301874

    Article  PubMed  CAS  Google Scholar 

  41. Ishibashi F, Nunoi H, Endo F, Matsuda I, Kanegasaki S (2000) Statistical and mutational analysis of chronic granulomatous disease in Japan with special reference to gp91-phox and p22-phox deficiency. Hum Genet 106:473–481 Medline DOI 10.1007/s004390000288

    Article  PubMed  CAS  Google Scholar 

  42. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN (2003) Human gene mutation database (HGMD): 2003 update. Hum Mutat 21:577–581 Medline DOI 10.1002/humu.10212

    Article  PubMed  CAS  Google Scholar 

  43. Piirilä H, Väliaho J, Vihinen M (2006) Immunodeficiency mutation databases (IDbases). Hum Mutat 27:1200–1208 Medline DOI 10.1002/humu.20405

    Article  PubMed  CAS  Google Scholar 

  44. Cooper DN, Krawczak M (1991) Mechanisms of insertional mutagenesis in human genes causing genetic disease. Hum Genet 87:409–415 Medline

    PubMed  CAS  Google Scholar 

  45. Heyworth PG, Curnutte JT, Rae J, Noack D, Roos D, van Koppen E, Cross AR (2001) Hematologically important mutations: X-linked chronic granulomatous disease (second update). Blood Cells Mol Dis 27:16–26 Medline DOI 10.1006/bcmd.2000.0347

    Article  PubMed  CAS  Google Scholar 

  46. Krawczak M, Cooper DN (1991) Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Hum Genet 86:425–441 Medline DOI 10.1007/BF00194629

    Article  PubMed  CAS  Google Scholar 

  47. Krawczak M, Thomas NS, Hundrieser B, Mort M, Wittig M, Hampe J, Cooper DN (2007) Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 28:150–158 Medline DOI 10.1002/humu.20400

    Article  PubMed  CAS  Google Scholar 

  48. Cooper DN, Krawczak M (1990) The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum Genet 85:55–74 Medline DOI 10.1007/BF00276326

    Article  PubMed  CAS  Google Scholar 

  49. Stasia MJ, Bordigoni P, Floret D, Brion JP, Bost-Bru C, Michel G, Gatel P, Durant-Vital D, Voelckel MA, Li XJ, Guillot M, Maquet E, Martel C, Morel F (2005) Characterization of six novel mutations in the CYBB gene leading to different sub-types of X-linked chronic granulomatous disease. Hum Genet 116:72–82 Medline DOI 10.1007/s00439-004-1208-5

    Article  PubMed  CAS  Google Scholar 

  50. Valentine CR (1998) The association of nonsense codons with exon skipping. Mutation Research 411:87–117 Medline DOI 10.1016/S1383-5742(98)00010-6

    Article  PubMed  Google Scholar 

  51. Stasia MJ, Brion JP, Boutonnat J, Morel F (2003) Severe clinical forms of cytochrome b-negative chronic granulomatous disease (X91-) in 3 brothers with a point mutation in the promoter region of CYBB. J Infect Dis 188:1593–1604 Medline DOI 10.1086/379035

    Article  PubMed  CAS  Google Scholar 

  52. Newburger PE, Skalnik DG, Hopkins PJ, Eklund EA, Curnutte JT (1994) Mutation in the promoter region of the gene for gp91-phox in X-linked chronic granulomatous disease with decreased expression of cytochrome b558. J Clin Invest 94:1205–1211 Medline DOI 10.1172/JCI117437

    Article  PubMed  CAS  Google Scholar 

  53. Woodman RC, Newburger PE, Anklesaria P, Erickson RW, Rae J, Cohen MS, Curnutte JT (1995) A new X-linked variant of chronic granulomatous disease characterized by the existence of a normal clone of respiratory burst-competent phagocytic cells. Blood 85:231−241 Medline

    PubMed  Google Scholar 

  54. Suzuki S, Kumatori A, Haagen IA et al (1998) PU.1 as an essential activator for the expression of gp91phox gene in human peripheral neutrophils, monocytes, and B lymphocytes. Proc Natl Acad Sci U S A 95:6085–6090 Medline DOI 10.1073/pnas.95.11.6085

    Article  PubMed  CAS  Google Scholar 

  55. Weening RS, de Boer M, Kuijpers TW, Neefjes VME, Hack WWM, Roos D (2000) Point mutations in the promoter region of the CYBB gene leading to mild chronic granulomatous disease. Clin Exp Immunol 122:410–417 Medline DOI 10.1046/j.1365-2249.2000.01405.x

    Article  PubMed  CAS  Google Scholar 

  56. Kuribayashi F, Kumatori A, Suzuki S, Nakamura M, Matsumoto T, Tsuji Y (1995) Human peripheral eosinophils have a specific mechanism to express gp91-phox, the large subunit of cytochrome b558. Biochem Biophys Res Commun 209:146–152 Medline DOI 10.1006/bbrc.1995.1482

    Article  PubMed  CAS  Google Scholar 

  57. Yang D, Susuki S, Jun Hao L et al (2000) Eosinophil-specific regulation of gp91phox gene expression by transcription factors GATA-1 and GATA-2. J Biol Chem 275:9425–9492 Medline DOI 10.1074/jbc.275.13.9425

    Article  PubMed  CAS  Google Scholar 

  58. Roos D (1996) X-CGDbase: a database of X-CGD-causing mutations. Immunol Today 17:517–521 Medline DOI 10.1016/0167-5699(96)30060-1

    Article  PubMed  CAS  Google Scholar 

  59. Roos D (1994) The genetic basis of chronic granulomatous disease. Immunol Rev 138:121–157 Medline DOI 10.1111/j.1600-065X.1994.tb00850.x

    Article  PubMed  CAS  Google Scholar 

  60. Porter CD, Kuribayashi F, Parkar MH, Roos D, Kinnon C (1996) Detection of gp91-phox precursor protein in B-cell lines from patients with X-linked chronic granulomatous disease as an indicator for mutations impairing cytochrome b558 biosynthesis. Biochem J 315:571–575 Medline

    PubMed  CAS  Google Scholar 

  61. Tsuda M, Kaneda M, Sakiyama T, Inana I, Owada M, Kiryu C, Shiraishi T, Kakinuma K (1998) A novel mutation at a probable heme-binding ligand in neutrophil cytochrome b558 in atypical X-linked chronic granulomatous disease. Hum Genet 103:377–381 Medline DOI 10.1007/s004390050836

    Article  PubMed  CAS  Google Scholar 

  62. Fujii H, Finnegan MG, Miki T, Crouse BR, Kakinuma K, Johnson MK (1995) Spectroscopic identification of the axial ligation of cytochrome b558 in the NADPH oxidase of porcine neutrophils. FEBS Lett 377:345–348 Medline DOI 10.1016/0014-5793(95)01372-5

    Article  PubMed  CAS  Google Scholar 

  63. Bolscher BG, de Boer M, de Klein A, Weening RS, Roos D (1991) Point mutations in the beta-subunit of cytochrome b558 leading to X-linked chronic granulomatous disease. Blood 77:2482–2487 Medline

    PubMed  CAS  Google Scholar 

  64. DeLeo FR, Burritt JB, Yu L, Jesaitis AJ, Dinauer MC, Nauseef WM (2000) Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem 275:13986–13993 Medline DOI 10.1074/jbc.275.18.13986

    Article  PubMed  CAS  Google Scholar 

  65. Bu-Ghanim HN, Segal AW, Keep NH, Casimir CM (1995) Molecular analysis in three cases of X91 variant chronic granulomatous disease. Blood 86:3575–3582 Medline

    PubMed  CAS  Google Scholar 

  66. Curnutte JT (1995) Disorders of phagocyte function. In: Hoffman R, Benz EJ Jr, Shattil SJ, Furie B, Cohen HJ, Silberstein LE (eds) Hematology: basic principles and practice. Churchill Livingstone, New York, p 792

    Google Scholar 

  67. Roos D, de Boer M, Borregard N, Bjerrum OW, Valerius NH, Seger RA, Mühlebach T, Belohradsky BH, Weening RS (1992) Chronic granulomatous disease with partial deficiency of cytochrome b558 and incomplete respiratory burst: variants of the X-linked, cytochrome b558-negative form of the disease. J Leukoc Biol 51:164–171 Medline

    PubMed  CAS  Google Scholar 

  68. Roesler J, Heyden S, Burdelski M, Schafer H, Kreth HW, Lehmann R, Paul D, Marzahn J, Gahr M, Rosen-Wolff A (1999) Uncommon missense and splice mutations and resulting biochemical phenotypes in German patients with X-linked chronic granulomatous disease. Exp Hematol 27:505–511 Medline DOI 10.1016/S0301-472X(98)00024-1

    Article  PubMed  CAS  Google Scholar 

  69. Li XJ, Grunwald D, Mathieu J, Morel F, Stasia MJ (2005) Crucial role of two potential cytosolic regions of NOX2,191TSSTKTIRRS200 and 484DESQANHFAVHHDEEKD500, on NADPH oxidase activation. J Biol Chem 280:14962–14973 Medline DOI 10.1074/jbc.M500226200

    Article  PubMed  CAS  Google Scholar 

  70. Yoshida LS, Saruta F, Yoshikawa K, Tatsuzawa O, Tsunawaki S (1998) Mutation at histidine 338 of gp91(phox) depletes FAD and affects expression of cytochrome b558 of the human NADPH oxidase. J Biol Chem 273:27879–27886 Medline DOI 10.1074/jbc.273.43.27879

    Article  PubMed  CAS  Google Scholar 

  71. Ariga T, Sakiyama Y, Matsumoto S (1994) Two novel point mutations in the cytochrome b 558 heavy chain gene, detected in two Japanese patients with X-linked chronic granulomatous disease. Hum Genet 94:441 Medline DOI 10.1007/BF00201609

    Article  PubMed  CAS  Google Scholar 

  72. Zhen L, Yu L, Dinauer MC (1998) Probing the role of the carboxyl terminus of the gp91phox subunit of neutrophil flavocytochrome b558 using site-directed mutagenesis. J Biol Chem 273:6575–6658 Medline DOI 10.1074/jbc.273.11.6575

    Article  PubMed  CAS  Google Scholar 

  73. Stasia MJ (2007) The X+ chronic granulomatous disease as a fabulous model to study the NADPH oxidase complex activation. Med Sci (Paris) 23:526–532

    Google Scholar 

  74. Cross AR, Heyworth PG, Rae J, Curnutte JT (1995) A variant X-linked chronic granulomatous disease patient (X91+) with partially functional cytochrome b. J Biol Chem 270:8194–8200 Medline DOI 10.1074/jbc.270.14.8194

    Article  PubMed  CAS  Google Scholar 

  75. Ariga T, Sakiyama Y, Tomizawa K, Imajoh-Ohmi S, Kanegasaki S, Matsumoto S (1993) A newly recognized point mutation in the cytochrome b558 heavy chain gene replacing alanine57 by glutamic acid, in a patient with cytochrome b positive X-linked chronic granulomatous disease. Eur J Pediatr 152:469–472 Medline DOI 10.1007/BF01955051

    Article  PubMed  CAS  Google Scholar 

  76. Ariga T, Furuta H, Cho K, Sakiyama Y (1998) Genetic analysis of 13 families with X-linked chronic granulomatous disease reveals a low proportion of sporadic patients and a high proportion of sporadic carriers. Pediatr Res 44:85–92 Medline DOI 10.1203/00006450-199807000-00014

    Article  PubMed  CAS  Google Scholar 

  77. Stasia MJ, Lardy B, Maturana A, Rousseau P, Martel C, Bordigoni P, Demaurex N, Morel F (2002) Molecular and functional characterization of a new X-linked chronic granulomatous disease variant (X91+) case with a double missense mutation in the cytosolic gp91phox C-terminal tail. Biochim Biophys Acta 1586:316–330 Medline

    PubMed  CAS  Google Scholar 

  78. Zhen L, King AA, Xiao Y, Chanock SJ, Orkin SH, Dinauer MC (1993) Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc Natl Acad Sci U S A 90:9832–9836 Medline DOI 10.1073/pnas.90.21.9832

    Article  PubMed  CAS  Google Scholar 

  79. Tucker KA, Lilly MB, Heck L Jr, Rado TA (1987) Characterization of a new human diploid myeloid leukemia cell line (PLB-985) with granulocytic and monocytic differentiating capacity. Blood 70:372–378 Medline

    PubMed  CAS  Google Scholar 

  80. Bionda C, Li XJ, van Bruggen R, Eppink M, Roos D, Morel F, Stasia MJ (2004) Functional analysis of two-amino acid substitutions in gp91 phox in a patient with X-linked flavocytochrome b558-positive chronic granulomatous disease by means of transgenic PLB-985 cells. Hum Genet 115:418–427 Medline DOI 10.1007/s00439-004-1173-z

    Article  PubMed  Google Scholar 

  81. Dusi S, Nadalini KA, Donini M, Zentilin L, Wientjes FB, Roos D, Giacca M, Rossi F (1998) Nicotinamide–adenine dinucleotide phosphate oxidase assembly and activation in EBV-transformed B lymphoblastoid cell lines of normal and chronic granulomatous disease patients. J Immunol 161:4968–4974 Medline

    PubMed  CAS  Google Scholar 

  82. Leusen JH, Meischl C, Eppink MH, Hilarius PM, de Boer M, Weening RS, Ahlin A, Sanders L, Goldblatt D, Skopczynska H, Bernatowska E, Palmblad J, Verhoeven AJ, van Berkel WJ, Roos D (2000) Four novel mutations in the gene encoding gp91-phox of human NADPH oxidase: consequences for oxidase assembly. Blood 95:666–673 Medline

    PubMed  CAS  Google Scholar 

  83. Dinauer MC, Curnutte JT, Rosen H, Orkin SH (1989) A missense mutation in the neutrophil cytochrome b heavy chain in cytochrome-positive X-linked chronic granulomatous disease. J Clin Invest 84:2012–2016 Medline DOI 10.1172/JCI114393

    Article  PubMed  CAS  Google Scholar 

  84. Segal AW, West I, Wientjes F, Nugent JH, Chavan AJ, Haley B, Garcia RC, Rosen H, Scrace G (1992) Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 284:781–788 Medline

    PubMed  CAS  Google Scholar 

  85. Taylor WR, Jones DT, Segal AW (1993) A structural model for the nucleotide binding domains of the flavocytochrome b-245 beta-chain. Protein Sci 2:1675–1685 Medline

    Article  PubMed  CAS  Google Scholar 

  86. Li XJ, Fieschi F, Paclet MH, Grunwald D, Campion Y, Gaudin P, Morel F, Stasia MJ (2007) Leu505 of NOX2 is crucial in the NADPH-binding process during NADPH oxidase activation in phagocytes. J Leukoc Biol 81:238–249 Medline DOI 10.1189/jlb.0905541

    Article  PubMed  CAS  Google Scholar 

  87. Azuma H, Oomi H, Sasaki K, Kawabata I, Sakaino T, Koyano S, Suzutani T, Nunoi H, Okuno A (1995) A new mutation in exon 12 of the gp91-phox gene leading to cytochrome b-positive X-linked chronic granulomatous disease. Blood 85:3274–3277 Medline

    PubMed  CAS  Google Scholar 

  88. Karplus PA, Daniels MJ, Herriott JR (1991) Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science 251:60–66 Medline DOI 10.1126/science.1986412

    Article  PubMed  CAS  Google Scholar 

  89. Leusen JH, de Boer M, Bolscher BG, Hilarius PM, Weening RS, Ochs HD, Roos D, Verhoeven AJ (1994) A point mutation in gp91-phox of cytochrome b558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Clin Invest 93:2120–2126 Medline DOI 10.1172/JCI117207

    Article  PubMed  CAS  Google Scholar 

  90. Schapiro BL, Newburger PE, Klempner MS, Dinauer MC (1991) Chronic granulomatous disease presenting in a 69-year-old man. N Engl J Med 325:1786–1790 Medline

    PubMed  CAS  Google Scholar 

  91. Yu L, Cross AR, Zhen L, Dinauer MC (1999) Functional analysis of NADPH oxidase in granulocytic cells expressing a delta488-497 gp91(phox) deletion mutant. Blood 94:2497–2504 Medline

    PubMed  CAS  Google Scholar 

  92. Cross AR, Noack D, Rae J, Curnutte JT, Heyworth PG (2000) Hematologically important mutations: the autosomal recessive forms of chronic granulomatous disease (first update). Blood Cells Mol Dis 26:561–565 Medline DOI 10.1006/bcmd.2000.0333

    Article  PubMed  CAS  Google Scholar 

  93. Roos D, de Boer M, Köker MY, Dekker J, Singh-Gupta V, Ahlin A, Palmblad J, Sanal O, Kurenko-Deptuch M, Jolles S, Wolach B (2006) Chronic granulomatous disease caused by mutations other than the common GT deletion in NCF1, the gene encoding the p47phox component of the phagocyte NADPH oxidase. Hum Mutat 27:1218–1229 Medline DOI 10.1002/humu.20413

    Article  PubMed  CAS  Google Scholar 

  94. Chanock SJ, Roesler J, Chanock SJ, Roesler J, Zhan S, Hopkins P, Lee P, Barrett DT, Christensen BL, Curnutte JT, Görlach A (2000) Genomic structure of the human p47-phox (NCF1) gene. Blood Cells Mol Dis 26:37–46 Medline DOI 10.1006/bcmd.2000.0274

    Article  PubMed  CAS  Google Scholar 

  95. Casimir CM, Bu-Ghanim HN, Rodaway AR, Bentley DL, Rowe P, Segal AW (1991) Autosomal recessive chronic granulomatous disease caused by deletion at a dinucleotide repeat. Proc Natl Acad Sci U S A 88:2753–2757 Medline DOI 10.1073/pnas.88.7.2753

    Article  PubMed  CAS  Google Scholar 

  96. Iwata M, Nunoi H, Yamazaki H, Nakano T, Niwa H, Tsuruta S, Ohga S, Ohmi S, Kanegasaki S, Matsuda I (1994) Homologous dinucleotide (GT or TG) deletion in Japanese patients with chronic granulomatous disease with p47-phox deficiency. Biochem Biophys Res Commun 199:1372–1377 Medline DOI 10.1006/bbrc.1994.1382

    Article  PubMed  CAS  Google Scholar 

  97. Volpp BD, Lin Y (1993) In vitro molecular reconstitution of the respiratory burst in B lymphoblasts from p47-phox deficient chronic granulomatous disease. J Clin Invest 91:201–207 Medline DOI 10.1172/JCI116171

    Article  PubMed  CAS  Google Scholar 

  98. Roesler J, Curnutte JT, Rae J, Barrett D, Patino P, Chanock SJ, Goerlach A (2000) Recombination events between the p47-phox gene and its highly homologous pseudogenes are the main cause of autosomal recessive chronic granulomatous disease. Blood 95:2150–2156 Medline

    PubMed  CAS  Google Scholar 

  99. Noack D, Rae J, Cross AR, Ellis BA, Newburger PE, Curnutte JT, Heyworth PG (2001) Autosomal recessive chronic granulomatous disease caused by defects in NCF-1, the gene encoding the phagocyte p47-phox: mutations not arising in the NCF-1 pseudogenes. Blood 97:305–311 Medline DOI 10.1182/blood.V97.1.305

    Article  PubMed  CAS  Google Scholar 

  100. Jurkowska M, Kurenko-Deptuch M, Bal J, Roos D (2004) The search for a genetic defect in Polish patients with chronic granulomatous disease. Arch Immunol Ther Exp (Warsz) 52:441–446 Medline

    CAS  Google Scholar 

  101. Görlach A, Lee PL, Roesler J, Hopkins PJ, Christensen B, Green ED, Chanock SJ, Curnutte JT (1997) A p47-phox pseudogene carries the most common mutation causing p47-phox deficient chronic granulomatous disease. J Clin Invest 100:1907–1918 Medline DOI 10.1172/JCI119721

    Article  PubMed  Google Scholar 

  102. Antonell A, de Luis O, Domingo-Roura X, Pérez-Jurado LA (2005) Evolutionary mechanisms shaping the genomic structure of the Williams–Beuren syndrome chromosomal region at human 7q11.23. Genome Res 9:1179–1188 DOI 10.1101/gr.3944605

    Article  CAS  Google Scholar 

  103. Vazquez N, Lehrnbecher T, Chen R, Christensen BL, Gallin JI, Malech H, Holland S, Zhu S, Chanock SJ (2001) Mutational analysis of patients with p47-phox-deficient chronic granulomatous disease: the significance of recombination events between the p47-phox gene (NCF1) and its highly homologous pseudogenes. Exp Hematol 29:234–243 Medline DOI 10.1016/S0301-472X(00)00646-9

    Article  PubMed  CAS  Google Scholar 

  104. Heyworth PG, Noack D, Cross AR (2002) Identification of a novel NCF-1 (p47-phox) pseudogene not containing the signature GT deletion: significance for A47 degrees chronic granulomatous disease carrier detection. Blood 100:1845–1851 Medline DOI 10.1182/blood-2002-03-0861

    Article  PubMed  CAS  Google Scholar 

  105. De Boer M, Singh V, Dekker J, Di Rocco M, Goldblatt D, Roos D (2002) Prenatal diagnosis in two families with autosomal, p47(phox)-deficient chronic granulomatous disease due to a novel point mutation in NCF1. Prenat Diagn 22:235–240 Medline DOI 10.1002/pd.296

    Article  PubMed  CAS  Google Scholar 

  106. Dekker J, de Boer M, Roos D (2001) Gene-scan method for the recognition of carriers and patients with p47(phox)-deficient autosomal recessive chronic granulomatous disease. Exp Hematol 29:1319–1325 Medline DOI 10.1016/S0301-472X(01)00731-7

    Article  PubMed  CAS  Google Scholar 

  107. Moreno MU, San José G, Orbe J, Páramo JA, Beloqui O, Díez J, Zalba G (2003) Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension. FEBS Lett 542:27–31 Medline DOI 10.1016/S0014-5793(03)00331-4

    Article  PubMed  CAS  Google Scholar 

  108. Parkos CA, Dinauer MC, Jesaitis AJ, Orkin SH, Curnutte JT (1989) Absence of both the 91 kD and 22 kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood 73:1416–1420 Medline

    PubMed  CAS  Google Scholar 

  109. Dinauer MC, Pierce EA, Erickson RW, Muhlebach TJ, Messner H, Orkin SH, Seger RA, Curnutte JT (1991) Point mutation in the cytoplasmic domain of the neutrophil p22-phox cytochrome b subunit is associated with a nonfunctional NADPH oxidase and chronic granulomatous disease. Proc Natl Acad Sci U S A 88:11231–11235 Medline DOI 10.1073/pnas.88.24.11231

    Article  PubMed  CAS  Google Scholar 

  110. De Boer M, de Klein A, Hossle JP, Seger R, Corbeel L, Weening RS, Roos D (1992) Cytochrome b558-negative, autosomal recessive chronic granulomatous disease: two new mutations in the cytochrome b558 light chain of the NADPH oxidase (p22-phox). Am J Hum Genet 51:1127–1135 Medline

    PubMed  Google Scholar 

  111. Leusen JH, Bolscher BG, Hilarius PM, Weening RS, Kaulfersch W, Seger RA, Roos D, Verhoeven AJ (1994) 156Pro–>Gln substitution in the light chain of cytochrome b558 of the human NADPH oxidase (p22-phox) leads to defective translocation of the cytosolic proteins p47-phox and p67-phox. J Exp Med 180:2329–2334 Medline DOI 10.1084/jem.180.6.2329

    Article  PubMed  CAS  Google Scholar 

  112. Hossle JP, de Boer M, Seger RA, Roos D (1994) Identification of allele-specific p22-phox mutations in a compound heterozygous patient with chronic granulomatous disease by mismatch PCR and restriction enzyme analysis. Hum Genet 93:437–442 Medline DOI 10.1007/BF00201671

    Article  PubMed  CAS  Google Scholar 

  113. Porter CD, Parkar MH, Kinnon C (1995) Identification of a donor splice mutation leading to loss of p22-phox exon 5 in autosomal chronic granulomatous disease. Hum Mut 7:374–378 DOI 10.1002/(SICI)1098-1004(1996)7:4<374::AID-HUMU16>3.0.CO;2-#

    Article  Google Scholar 

  114. Rae J, Noack D, Heyworth PG, Ellis BA, Curnutte JT, Cross AR (2000) Molecular analysis of 9 new families with chronic granulomatous disease caused by mutations in CYBA, the gene encoding p22-phox. Blood 96:1106–1112 Medline

    PubMed  CAS  Google Scholar 

  115. Yamada M, Ariga T, Kawamura N, Ohtsu M, Imajoh-Ohmi S, Ohshika E, Tatsuzawa O, Kobayashi K, Sakiyama Y (2000) Genetic studies of three Japanese patients with p22-phox-deficient chronic granulomatous disease: detection of a possible common mutant CYBA allele in Japan and a genotype–phenotype correlation in these patients. Br J Haematol 108:511–517 Medline DOI 10.1046/j.1365-2141.2000.01857.x

    Article  PubMed  CAS  Google Scholar 

  116. Stasia MJ, Bordigoni P, Martel C, Morel F (2002) A novel and unusual case of chronic granulomatous disease in a child with a homozygous 36-bp deletion in the CYBA gene A220 leading to the activation of a cryptic splice site in intron 4. Hum Genet 110:444–450 Medline DOI 10.1007/s00439-002-0720-8

    Article  PubMed  Google Scholar 

  117. El Kares R, Barbouche MR, Elloumi-Zghal H, Bejaoui M, Chemli J, Mellouli F, Tebib N, Abdelmoula MS, Boukthir S, Fitouri Z, M’Rad S, Bouslama K, Touiri H, Abdelhak S, Dellagi MK (2006) Genetic and mutational heterogeneity of autosomal recessive chronic granulomatous disease in Tunisia. Hum Genet 51:887–895 DOI 10.1007/s10038-006-0039-8

    Article  CAS  Google Scholar 

  118. Bakri F, Martel C, El-Khateeb MS, Hamamy HA, Khuri-Bolus N, Mahafzah A, Al-wahadneh AM, Hayajneh WA, Guillot M, Stasia MJ (2008) First report of chronic granulomatous disease in ten Jordanian families. Eur J Clin Invest 38(Suppl. 1):71 Medline

    Google Scholar 

  119. Kleinberg ME, Malech HL, Rotrosen D (1990) The phagocyte 47-kiloDalton cytosolic oxidase protein is an early reactant in activation of the respiratory burst. J Biol Chem 265:15577–15583 Medline

    PubMed  CAS  Google Scholar 

  120. Sumimoto H, Hata K, Mizuki K, Ito T, Kage Y, Sakaki Y, Fukumaki Y, Nakamura M, Takeshige K (1996) Assembly and activation of the phagocyte NADPH oxidase. Specific interaction of the N-terminal Src homology 3 domain of p47phox with p22phox is required for activation of the NADPH oxidase. J Biol Chem 271:22152–22158 Medline DOI 10.1074/jbc.271.36.22152

    Article  PubMed  CAS  Google Scholar 

  121. Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H, Clark RA (1991) Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest 87:352–356 Medline DOI 10.1172/JCI114993

    Article  PubMed  CAS  Google Scholar 

  122. Eklund EA, Kakar R (1999) Recruitment of CREB-binding protein by PU.1, IFN-regulatory factor-1, and the IFN consensus sequence-binding protein is necessary for IFN-gamma-induced p67phox and gp91phox expression. J Immunol 163:6095–6105 Medline

    PubMed  CAS  Google Scholar 

  123. Lindsey S, Huang W, Wang H, Horvath E, Zhu C, Eklund EA (2007) Activation of SHP2 protein-tyrosine phosphatase increases HoxA10-induced repression of the genes encoding gp91(PHOX) and p67(PHOX). J Biol Chem 282:2237–2249 Medline DOI 10.1074/jbc.M608642200

    Article  PubMed  CAS  Google Scholar 

  124. Ammons MC, Siemsen DW, Nelson-Overton LK, Quinn MT, Gauss KA (2007) Binding of pleomorphic adenoma gene-like 2 to the tumor necrosis factor (TNF)-alpha-responsive region of the NCF2 promoter regulates p67(phox) expression and NADPH oxidase activity. J Biol Chem 282:17941–17952 Medline DOI 10.1074/jbc.M610618200

    Article  PubMed  CAS  Google Scholar 

  125. de Boer M, Hilarius-Stokman PM, Hossle JP, Verhoeven AJ, Graf N, Kenney RT, Seger R, Roos D (1994) Autosomal recessive chronic granulomatous disease with absence of the 67-kD cytosolic NADPH oxidase component: identification of mutation and detection of carriers. Blood 83:531–536 Medline

    PubMed  Google Scholar 

  126. Tanugi-Cholley LC, Issartel JP, Lunardi J, Freycon F, Morel F, Vignais PV (1995) A mutation located at the 5′ splice junction sequence of intron 3 in the p67phox gene causes the lack of p67phox mRNA in a patient with chronic granulomatous disease. Blood 85:242–249 Medline

    PubMed  CAS  Google Scholar 

  127. Nunoi H, Iwata M, Tatsuzawa S, Onoe Y, Shimizu S, Kanegasaki S, Matsuda I (1995) AG dinucleotide insertion in a patient with chronic granulomatous disease lacking cytosolic 67-kD protein. Blood 86:329–33 Medline

    PubMed  CAS  Google Scholar 

  128. Ahlin A, De Boer M, Roos D, Leusen J, Smith CI, Sundin U, Rabbani H, Palmblad J, Elinder G (1995) Prevalence, genetics and clinical presentation of chronic granulomatous disease in Sweden. Acta Paediatr 84:1386–1394 Medline DOI 10.1111/j.1651-2227.1995.tb13575.x

    Article  PubMed  CAS  Google Scholar 

  129. Leusen JH, de Klein A, Hilarius PM, Ahlin A, Palmblad J, Smith CI, Diekmann D, Hall A, Verhoeven AJ, Roos D (1996) Disturbed interaction of p21-rac with mutated p67-phox causes chronic granulomatous disease. J Exp Med 184:1243–1249 Medline DOI 10.1084/jem.184.4.1243

    Article  PubMed  CAS  Google Scholar 

  130. Aoshima M, Nunoi H, Shimazu M, Shimizu S, Tatsuzawa O, Kenney RT, Kanegasaki S (1996) Two-exon skipping due to a point mutation in p67-phox-deficient chronic granulomatous disease. Blood 88:1841–1845 Medline

    PubMed  CAS  Google Scholar 

  131. Bonizzato A, Russo MP, Donini M, Dusi S (1997) Identification of a double mutation (D160V–K161E) in the p67phox gene of a chronic granulomatous disease patient. Biochem Biophys Res Commun 231:861–863 Medline DOI 10.1006/bbrc.1997.6204

    Article  PubMed  CAS  Google Scholar 

  132. Patino PJ, Rae J, Noack D, Erickson R, Ding J, de Olarte DG, Curnutte JT (1999) Molecular characterization of autosomal recessive chronic granulomatous disease caused by a defect of the nicotinamide adenine dinucleotide phosphate (reduced form) oxidase component p67-phox. Blood 94:2505–2514 Medline

    PubMed  CAS  Google Scholar 

  133. Noack D, Rae J, Cross AR, Muñoz J, Salmen S, Mendoza JA, Rossi N, Curnutte JT, Heyworth PG (1999) Autosomal recessive chronic granulomatous disease caused by novel mutations in NCF-2, the gene encoding the p67-phox component of phagocyte NADPH oxidase. Hum Genet 105:460–467 Medline DOI 10.1007/s004390051131

    Article  PubMed  CAS  Google Scholar 

  134. Roos D, van Bruggen R, Meischl C (2003) Oxidative killing of microbes by neutrophils. Microbes Infect 5:1307–1315 Medline DOI 10.1016/j.micinf.2003.09.009

    Article  PubMed  CAS  Google Scholar 

  135. Diekmann D, Abo A, Johnston C, Segal AW, Hall A (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265:531–533 Medline DOI 10.1126/science.8036496

    Article  PubMed  CAS  Google Scholar 

  136. Grizot S, Fieschi F, Dagher MC, Pebay-Peyroula E (2001) The active N-terminal region of p67phox. Structure at 1.8 A resolution and biochemical characterizations of the A128V mutant implicated in chronic granulomatous disease. J Biol Chem 276:21627–21631 Medline DOI 10.1074/jbc.M100893200

    Article  PubMed  CAS  Google Scholar 

  137. Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K (2000) Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol Cell 6:899–907 Medline

    PubMed  CAS  Google Scholar 

  138. Borgato L, Bonizzato A, Lunardi C, Dusi S, Andrioli G, Scarperi A, Corrocher R (2001) A 1.1-kb duplication in the p67-phox gene causes chronic granulomatous disease. Hum Genet 108:504–510 Medline DOI 10.1007/s004390100526

    Article  PubMed  CAS  Google Scholar 

  139. Vergnaud S, Paclet MH, El Benna J, Pocidalo MA, Morel F (2000) Complementation of NADPH oxidase in p67-phox-deficient CGD patients p67-phox/p40-phox interaction. Eur J Biochem 267:1059–1067 Medline DOI 10.1046/j.1432-1327.2000.01097.x

    Article  PubMed  CAS  Google Scholar 

  140. Tsunawaki S, Yoshikawa K (2002) Relationships of p40(phox) with p67(phox) in the activation and expression of the human respiratory burst NADPH oxidase. J Biochem 128:777–783

    Google Scholar 

  141. Cathebras P, Sauron C, Morel F, Stasia MJ (2001) An unusual case of sarcoidosis. Lancet 358:294 Medline DOI 10.1016/S0140-6736(01)05485-X

    Article  PubMed  CAS  Google Scholar 

  142. Martire B, Rondelli R, Soresina A, Pignata C, Broccoletti T, Finocchi A, Rossi P, Gattorno M, Rabusin M, Azzari C, Dellepiane RM, Pietrogrande MC, Trizzino A, Di Bartolomeo P, Martino S, Carpino L, Cossu F, Locatelli F, Maccario R, Pierani P, Putti MC, Stabile A, Notarangelo LD, Ugazio AG, Plebani A, De Mattia D (2008) Links clinical features, long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: an Italian multicenter study. IPINET (Italian Network for Primary Immunodeficiencies) Clin Immunol 126:155–164 Medline DOI 10.1016/j.clim.2007.09.008

    Article  PubMed  CAS  Google Scholar 

  143. Marciano BE, Wesley R, De Carlo ES, Anderson VL, Barnhart LA, Darnell D, Malech HL, Gallin JI, Holland SM (2004) Long-term interferon-gamma therapy for patients with chronic granulomatous disease. Clin Infect Dis 39(5):692–699 Medline DOI 10.1086/422993

    Article  PubMed  CAS  Google Scholar 

  144. Seger RA (2008) Modern management of chronic granulomatous disease. Br J Haematol 140:255–266 Medline DOI 10.1111/j.1365-2141.2007.06880.x

    Article  PubMed  CAS  Google Scholar 

  145. Margolis DM, Melnick DA, Alling DW, Gallin JI (1990) Trimethoprim-sulfamethoxazole prophylaxis in the management of chronic granulomatous disease. J Infect Dis 162(3):723–726 Medline

    PubMed  CAS  Google Scholar 

  146. Dinauer MC, Lekstrom-Himes JA, Dale DC (2000) Inherited neutrophil disorders: molecular basis and new therapies. Hematology Am Soc Hematol Educ Program 5:303–318 Medline DOI 10.1182/asheducation-2000.1.303

    Google Scholar 

  147. Wolfe LC, Curran KJ (2006) Chronic granulomatous disease. http://www.emedicine.com/ped/topic1590.htm

  148. Mouy R, Veber F, Blanche S, Donadieu J, Brauner R, Levron JC, Griscelli C, Fischer A (1994) Long-term itraconazole prophylaxis against Aspergillus infections in thirty-two patients with chronic granulomatous disease. J Pediatr 125:998–1003 Medline DOI 10.1016/S0022-3476(05)82023-2

    Article  PubMed  CAS  Google Scholar 

  149. Gallin JI, Alling DW, Malech HL, Wesley R, Koziol D, Marciano B, Eisenstein EM, Turner ML, DeCarlo ES, Starling JM, Holland SM (2003) Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med 348(24):2416–2422 Medline DOI 10.1056/NEJMoa021931

    Article  PubMed  CAS  Google Scholar 

  150. Cale CM, Jones AM, Goldblatt DL (2000) Follow up of patients with chronic granulomatous disease diagnosed since 1990. Clin Exp Immunol 120(2):351–315 Medline DOI 10.1046/j.1365-2249.2000.01234.x

    Article  PubMed  CAS  Google Scholar 

  151. The International Chronic Granulomatous Disease Cooperative Study Group (1991) A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med 324(8):509–516 Feb 21 Comment in: N Engl J Med. 1991 Nov 21;325(21):1516–1517, Medline

    Google Scholar 

  152. Ezekowitz RA, Orkin SH, Newburger PE (1987) Recombinant interferon gamma augments phagocyte superoxide production and X-chronic granulomatous disease gene expression in X-linked variant chronic granulomatous disease. J Clin Invest 80(4):1009–1016 Medline DOI 10.1172/JCI113153

    Article  PubMed  CAS  Google Scholar 

  153. Newburger PE, Ezekowitz RA (1988) Cellular and molecular effects of recombinant interferon gamma in chronic granulomatous disease. Hematol Oncol Clin North Am 2(2):267–276 Medline

    PubMed  CAS  Google Scholar 

  154. Weening RS, Leitz GJ, Seger RA (1995) Recombinant human interferon-gamma in patients with chronic granulomatous disease—European follow up study. Eur J Pediatr 154(4):295–298 Medline

    PubMed  CAS  Google Scholar 

  155. Jackson SH, Miller GF, Segal BH, Mardiney M 3rd, Domachowske JB, Gallin JI, Holland SM (2001) IFN-gamma is effective in reducing infections in the mouse model of chronic granulomatous disease (CGD). J Interferon Cytokine Res 21(8):567–573 Medline DOI 10.1089/10799900152547821

    Article  PubMed  CAS  Google Scholar 

  156. Leung T, Chik K, Li C, Shing M, Yuen P (1999) Bone marrow transplantation for chronic granulomatous disease: long-term follow-up and review of literature. Bone Marrow Transplant 24:567–570 Medline DOI 10.1038/sj.bmt.1701932

    Article  PubMed  CAS  Google Scholar 

  157. Horwitz ME, Barrett AJ, Brown MR, Carter CS, Childs R, Gallin JI, Holland SM, Linton GF, Miller JA, Leitman SF, Read EJ, Malech HL (2001) Treatment of chronic granulomatous disease with nonmyeloablative conditioning and a T-cell-depleted hematopoietic allograft. N Engl J Med 344(12):881–888 Comment in: N Engl J Med 344(12):926–927, 2001, Mar 22, Medline DOI 10.1056/NEJM200103223441203

    Article  PubMed  CAS  Google Scholar 

  158. Seger RA, Gungor T, Belohradsky BH, Blanche S, Bordigoni P, Di Bartolomeo P, Flood T, Landais P, Müller S, Ozsahin H, Passwell JH, Porta F, Slavin S, Wulffraat N, Zintl F, Nagler A, Cant A, Fischer A (2002) Treatment of chronic granulomatous disease with myeloablative conditioning and an unmodified hemopoietic allograft: a survey of the European experience. 1985-2000. Blood 100(13):4344–4350 Medline DOI 10.1182/blood-2002-02-0583

    CAS  Google Scholar 

  159. Goldblatt D, Thrasher AJ (2000) Chronic granulomatous disease. Clin Exp Immunol 122(1):1–9 Medline DOI 10.1046/j.1365-2249.2000.01314.x

    Article  PubMed  CAS  Google Scholar 

  160. Goudemand J, Anssens R, Delmas-Marsalet Y, Farriaux JP, Fontaine G (1976) Attempt to treat a case of chronic familial granulomatous disease by allogenic bone marrow transplantation. Arch Fr Pediatr 33:121–129 Medline

    PubMed  CAS  Google Scholar 

  161. Stein S, Siler U, Ott MG, Seger R, Grez M (2006) Gene therapy for chronic granulomatous disease. Curr Opin Mol Ther 8:415–422 Medline

    PubMed  CAS  Google Scholar 

  162. Del Giudice I, Iori AP, Mengarelli A, Testi AM, Romano A, Cerretti R, Macrì F, Iacobini M, Arcese W (2003) Allogeneic stem cell transplant from HLA-identical sibling for chronic granulomatous disease and review of the literature. Ann Hematol 82(3):189–192 Medline

    PubMed  CAS  Google Scholar 

  163. Sastry J, Kakakios A, Tugwell H, Shaw PJ (2006) Links allogeneic bone marrow transplantation with reduced intensity conditioning for chronic granulomatous disease complicated by invasive Aspergillus infection. Pediatr Blood Cancer 47:327–329 Medline DOI 10.1002/pbc.20865

    Article  PubMed  Google Scholar 

  164. Thrasher A, Chetty M, Casimir C, Segal AW (1992) Restoration of superoxide generation to a chronic granulomatous disease-derived B-cell line by retrovirus mediated gene transfer. Blood 80:1125–1129 Medline

    PubMed  CAS  Google Scholar 

  165. Maly FE, Schuerer-Maly CC, Quilliam L, Cochrane CG, Newburger PE, Curnutte JT, Gifford M, Dinauer MC (1993) Restitution of superoxide generation in autosomal cytochrome-negative chronic granulomatous disease (A22(0) CGD)-derived B lymphocyte cell lines by transfection with p22phax cDNA. J Exp Med 178:2047–2053 Medline DOI 10.1084/jem.178.6.2047

    Article  PubMed  CAS  Google Scholar 

  166. Porter CD, Parkar MH, Levinsky RJ, Collins MK, Kinnon C (1993) X-linked chronic granulomatous disease: correction of NADPH oxidase defect by retrovirus-mediated expression of gp91-phox. Blood. 82:2196–2202 Medline

    PubMed  CAS  Google Scholar 

  167. Thrasher AJ, Casimir CM, Kinnon C, Morgan G, Segal AW, Levinsky RJ (1995) Gene transfer to primary chronic granulomatous disease monocytes. Lancet 346:92–93 Medline DOI 10.1016/S0140-6736(95)92116-8

    Article  PubMed  CAS  Google Scholar 

  168. Sekhsaria S, Gallin JI, Linton GF, Mallory RM, Mulligan RC, Malech HL (1993) Peripheral blood progenitors as a target for genetic correction of p47phox-deficient chronic granulomatous disease. Proc Natl Acad Sci U S A 90:7446–7450 Medline DOI 10.1073/pnas.90.16.7446

    Article  PubMed  CAS  Google Scholar 

  169. Li F, Linton GF, Sekhsaria S, Whiting-Theobald N, Katkin JP, Gallin JI, Malech HL (1994) CD34+ peripheral blood progenitors as a target for genetic correction of the two flavocytochrome b558 defective forms of chronic granulomatous disease. Blood 84:53–58 Medline

    PubMed  CAS  Google Scholar 

  170. Becker S, Wasser S, Hauses M, Hossle JP, Ott MG, Dinauer MC, Ganser A, Hoelzer D, Seger R, Grez M (1998) Correction of respiratory burst activity in X-linked chronic granulomatous cells to therapeutically relevant levels after gene transfer into bone marrow CD34+ cells. Hum Gene Ther 9:1561–1570 Medline DOI 10.1089/hum.1998.9.11-1561

    Article  PubMed  CAS  Google Scholar 

  171. Weil WM, Linton GF, Whiting-Theobald N, Vowells SJ, Rafferty SP, Li F, Malech HL (1997) Genetic correction of p67phox deficient chronic granulomatous disease using peripheral blood progenitor cells as a target for retrovirus mediated gene transfer. Blood 89:1754–1761 Medline

    PubMed  CAS  Google Scholar 

  172. Ding C, Kume A, Bjorgvinsdottir H, Hawley RG, Pech N, Dinauer MC (1996) High-level reconstitution of respiratory burst activity in a human X-linked chronic granulomatous disease (X-CGD) cell line and correction of murine X-CGD bone marrow cells by retroviral mediated gene transfer of human gp91phox. Blood 88:1834–1840 Medline

    PubMed  CAS  Google Scholar 

  173. Bjorgvinsdottir H, Ding C, Pech N, Gifford MA, Li LL, Dinauer MC (1997) Retroviral-mediated gene transfer of gp91phox into bone marrow cells rescues defect in host defense against Aspergillus fumigatus in murine X-linked chronic granulomatous disease. Blood 89:41–48 Medline

    PubMed  CAS  Google Scholar 

  174. Mardiney M, Jackson SH, Spratt SK, Li F, Holland SM, Malech HL (1997) Enhanced host defense after gene transfer in the murine p47phox deficient model of chronic granulomatous disease. Blood 89:2268–2275 Medline

    PubMed  CAS  Google Scholar 

  175. Dinauer MC, Li LL, Björgvinsdóttir H, Ding C, Pech N (1999) Long-term correction of phagocyte NADPH oxidase activity by retroviral-mediated gene transfer in murine X-linked chronic granulomatous disease. Blood 94:914–922 Medline

    PubMed  CAS  Google Scholar 

  176. Dinauer MC, Gifford MA, Pech N, Li LL, Emshwiller P (2001) Variable correction of host defense following gene transfer and bone marrow transplantation in murine X-linked chronic granulomatous disease. Blood 97:3738–3745 Medline DOI 10.1182/blood.V97.12.3738

    Article  PubMed  CAS  Google Scholar 

  177. Goebel WS, Dinauer MC (2002) Retroviral-mediated gene transfer and nonmyeloablative conditioning: studies in a murine X-linked chronic granulomatous disease model. J Pediatr Hematol Oncol 24:787–790 Medline DOI 10.1097/00043426-200212000-00026

    Article  PubMed  Google Scholar 

  178. Schwickerath O, Brouns G, Thrasher A, Kinnon C, Roes J, Casimir C (1997) Enhancer-deleted retroviral vectors restore high levels of superoxide generation in a mouse model of CGD. J Gene Med 6:603–615 DOI 10.1002/jgm.557

    Article  CAS  Google Scholar 

  179. Schneider SD, Rusconi S, Seger RA, Hossle JP (1997) Adenovirus-mediated gene transfer into monocyte-derived macrophages of patients with X-linked chronic granulomatous disease: ex vivo correction of deficient respiratory burst. Gene Ther 4:524–532 Medline DOI 10.1038/sj.gt.3300432

    Article  PubMed  CAS  Google Scholar 

  180. Trasher AJ, de Alwis M, Casimir CM, Kinnon C, Page K, Lebkowski J, Segal AW, Levinsky RJ (1995) Generation of recombinant adeno-associated virus (rAAV) from an adenoviral vector and functional reconstitution of the NADPH-oxidase. Gene Ther 2:481–485 Medline

    Google Scholar 

  181. Li LL, Dinauer M (1998) Reconstitution of NADPH oxidase activity in human X-linked chronic granulomatous disease myeloid cells after stable gene transfer using a recombinant adeno-associated virus 2 vector. Blood Cells Mol Dis 24:522–538 Medline DOI 10.1006/bcmd.1998.0216

    Article  PubMed  CAS  Google Scholar 

  182. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255–256 Medline DOI 10.1056/NEJM200301163480314

    Article  PubMed  Google Scholar 

  183. Nienhuis AW, Dunbar CE, Sorrentino BP (2006) Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 13:1031–1049 Medline DOI 10.1016/j.ymthe.2006.03.001

    Article  PubMed  CAS  Google Scholar 

  184. Ott MG, Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H, Kühlcke K, Schilz A, Kunkel H, Naundorf S, Brinkmann A, Deichmann A, Fischer M, Ball C, Pilz I, Dunbar C, Du Y, Jenkins NA, Copeland NG, Lüthi U, Hassan M, Thrasher AJ, Hoelzer D, von Kalle C, Seger R, Grez M (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12:386–388 Medline DOI 10.1038/nm1393

    Article  CAS  Google Scholar 

  185. Sokolic RA, Sekhsaria S, Sugimoto Y, Whiting-Theobald N, Linton GF, Li F, Gottesman MM, Malech HL (1996) A bicistronic retrovirus vector containing a picornavirus internal ribosome entry site allows for correction of X-linked CGD by selection for MDR1 expression. Blood 87:42–50 Medline

    PubMed  CAS  Google Scholar 

  186. Iwata M, Nunoi H, Matsuda I, Kanegasaki S, Tsuruo T, Sugimoto Y (1998) Drug-selected complete restoration of superoxide generation in Epstein–Barr virus-transformed B cells from p47phox-deficient chronic granulomatous disease patients by using a bicistronic retrovirus vector encoding a human multi-drug resistance gene (MDR1) and the p47phox gene. Hum Genet 103:419–423 Medline DOI 10.1007/s004390050844

    Article  PubMed  CAS  Google Scholar 

  187. Naumann N, De Ravin SS, Choi U, Moayeri M, Whiting-Theobald N, Linton GF, Ikeda Y, Malech HL (2007) Simian immunodeficiency virus lentivector corrects human X-linked chronic granulomatous disease in the NOD/SCID mouse xenograft. Gene Ther 14(21):1513–1524 Epub 2007 Aug 30, Medline DOI 10.1038/sj.gt.3303010

    Article  PubMed  CAS  Google Scholar 

  188. Brenner S, Whiting-Theobald NL, Linton GF, Holmes KL, Anderson-Cohen M, Kelly PF, Vanin EF, Pilon AM, Bodine DM, Horwitz ME, Malech HL (2003) Concentrated RD114-pseudotyped MFGS-gp91phox vector achieves high levels of functional correction of the chronic granulomatous disease oxidase defect in NOD/SCID/beta-microglobulin−/− repopulating mobilized human peripheral blood CD34+ cells. Blood 102:2789–2797 Medline DOI 10.1182/blood-2002-05-1482

    Article  PubMed  CAS  Google Scholar 

  189. Malech HL, Maples PB, Whiting-Theobald N, Linton GF, Sekhsaria S, Vowells SJ, Li F, Miller JA, DeCarlo E, Holland SM, Leitman SF, Carter CS, Butz RE, Read EJ, Fleisher TA, Schneiderman RD, Van Epps DE, Spratt SK, Maack CA, Rokovich JA, Cohen LK, Gallin JI (1997) Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc Natl Acad Sci U S A 94:12133–12338 Medline DOI 10.1073/pnas.94.22.12133

    Article  PubMed  CAS  Google Scholar 

  190. Malech HL, Bauer TR Jr, Hickstein DD (1997) Prospects for gene therapy of neutrophil defects. Semin Hematol 34:355–361 Medline

    PubMed  CAS  Google Scholar 

  191. Malech HL (1999) Progress in gene therapy for chronic granulomatous disease. J Infect Dis 2(179 Suppl):S318–S325 Medline DOI 10.1086/513852

    Article  Google Scholar 

  192. Malech HL, Choi U, Brenner S (2004) Progress toward effective gene therapy for chronic granulomatous disease. Jpn J Infect Dis 57:S27–S28 Medline

    PubMed  Google Scholar 

  193. Barese CN, Goebel WS, Dinauer MC (2004) Gene therapy for chronic granulomatous disease. Expert Opin Biol Ther 4:1423–1434 Medline DOI 10.1517/14712598.4.9.1423

    Article  PubMed  CAS  Google Scholar 

  194. Ott MG, Koehl U, Sadat MA, Merget-Millitzer H, Stein S, Saulnier S, Hossle JP, Dinauer MC, Seger R, Hoelzer D, Grez M (2003) Gene therapy of chronic granulomatous disease: results from pre-clinical and phase I clinical studies. Mol Ther 7(5 Suppl):S408

    Google Scholar 

  195. Siler U, Ott MG, Stein S, Karaus E, Rutishauser M, Wenk C, Hoelzer D, Grez M, Seger R (2005) Chronic granulomatous disease gene therapy functionally corrects the phenotype of polymorphonuclear leukocytes (PMN). Mol Ther 11(Suppl 1):S129 DOI 10.1016/j.ymthe.2005.06.335

    Article  Google Scholar 

  196. Grez M, Ott MG, Stein S, Siler U, Koehl U, Kunkel H, Schilz A, Kuehlcke K, Hoelzer D, Seger R (2005) Correction of chronic granulomatous disease by gene therapy. Mol Ther 11(Suppl 1):S130 DOI 10.1016/j.ymthe.2005.06.339

    Article  Google Scholar 

  197. Ott MG, Seger R, Stein S, Siler U, Hoelzer D, Grez M (2007) Advances in the treatment of chronic granulomatous disease by gene therapy. Curr Gene Ther 7:155–161 Medline DOI 10.2174/156652307780859044

    Article  PubMed  CAS  Google Scholar 

  198. Decoursey TE, Ligeti E (2005) Regulation and termination of NADPH oxidase activity. Cell Mol Life 62:2173–2193 DOI 10.1007/s00018-005-5177-1

    Article  CAS  Google Scholar 

  199. de Boer M, Hartl D, Wintergerst U, Belohradsly BH, Roos D (2005) A donor splice site mutation in intron 1 of CYBA, leading to chronic granulomatous disease. Blood Cells Mol Dis 35:365–369 Medline DOI 10.1016/j.bcmd.2005.08.002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The US Immunodeficiency Network and the Primary Immunodeficiency Disease Consortium’s National Institutes of Health contract no. N01-AI-30070 supported this work. We thank Françoise Morel for her constant support and belief in our work. We are so grateful to Cécile Martel, Michelle Mollin, Laure Carrichon, Federica Defendi, Sylvain Beaumel, Antoine Picciocchi, and Franck Demeurme for their enthusiasm at work in the CGD diagnosis and research center. Special thanks are extended to Lila Laval for her excellent secretarial work and to Linda Northrup for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie José Stasia.

Additional information

This work was supported by grants from the US Immunodeficiency Network a National Institute of Health consortium, Towson, MD, USA, the Université Joseph Fourier et the Faculté de Médecine, Grenoble, France, the Région Rhône–Alpes, programme Emergence, the Ministère de l’Education et de la Recherche, and the Direction de la Recherche Régionale Clinique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stasia, M.J., Li, X.J. Genetics and immunopathology of chronic granulomatous disease. Semin Immunopathol 30, 209–235 (2008). https://doi.org/10.1007/s00281-008-0121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-008-0121-8

Keywords