Skip to main content

SERS: a versatile tool in chemical and biochemical diagnostics

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Raman spectroscopy is a valuable tool in various research fields. The technique yields structural information from all kind of samples often without the need for extensive sample preparation. Since the Raman signals are inherently weak and therefore do not allow one to investigate substances in low concentrations, one possible approach is surface-enhanced (resonance) Raman spectroscopy. Here, rough coin metal surfaces enhance the Raman signal by a factor of 104–1015, depending on the applied method. In this review we discuss recent developments in SERS spectroscopy and their impact on different research fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fleischmann M, Hendra PJ, Mcquilla Aj (1974) Chem Phys Lett 26:163–166

    CAS  Google Scholar 

  2. Moskovits M (1985) Rev Modern Phys 57:783–826

    CAS  Google Scholar 

  3. Tian Z-Q, Yang Z-L, Ren B, Wu D-Y (2006) Top Appl Phys 103:125–146

    CAS  Google Scholar 

  4. Otto A (1982) Springer Ser Chem Phys 21:186–195

    CAS  Google Scholar 

  5. Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131–136

    Google Scholar 

  6. Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–20

    CAS  Google Scholar 

  7. Wang Z, Rothberg LJ (2006) Appl Phys B 84:289–293

    CAS  Google Scholar 

  8. Yan W, Bao L, Mahurin SM, Dai S (2004) Appl Spectrosc 58:18–25

    CAS  Google Scholar 

  9. Wang CH, Sun DC, Xia XH (2006) Nanotechnol 17:651–657

    Google Scholar 

  10. Kucheyev SO, Hayes JR, Biener J, Huser T, Talley CE, Hamza AV (2006) Appl Phys Lett 89:053102–053104

    Google Scholar 

  11. Bahns JT, Yan F, Qiu D, Wang R, Chen L (2006) Appl Spectrosc 60:989–993

    CAS  Google Scholar 

  12. Lee PC, Meisel DJ (1982) J Phys Chem 86:3391–3395

    CAS  Google Scholar 

  13. Steinbrück A, Csaki A, Festag G, Fritzsche W (2006) Plasmonics 1:79–85

    Google Scholar 

  14. Jackson JB, Halas NJ (2004) PNAS 101:17930–17935

    CAS  Google Scholar 

  15. Pergolese B, Bigotto A, Muniz-Miranda M, Sbrana G (2005) Appl Spectrosc 59:194–199

    CAS  Google Scholar 

  16. Sun Y, Xia Y (2002) Science 298:2176–2179

    CAS  Google Scholar 

  17. Wiley B, Sun Y, Mayers B, Xia Y (2005) Chem Eur J 11:454–463

    CAS  Google Scholar 

  18. Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Nature 425:487–490

    CAS  Google Scholar 

  19. Leverette CL, Jacobs SA, Shanmukh S, Chaney SB, Dluhy RA, Zhao YP (2006) Appl Spectrosc 60:906–913

    CAS  Google Scholar 

  20. Zhang J, Gao A, Alvarez-Puebla RA, Buriak JM, Fenniri H (2006) Adv Mater 18:3233–3237

    CAS  Google Scholar 

  21. Fischer UC, Zingsheim HP (1981) J Vac Sci Technol 19:881–885

    CAS  Google Scholar 

  22. Haynes CL, Van Duyne RP (2001) J Phys Chem B 105:5599–5611

    CAS  Google Scholar 

  23. Hulteen JC, Van Duyne RP (1995) J Vac Sci Technol A 13:1553–1558

    Google Scholar 

  24. Haynes CL, Duyne RPv (2002) Mater Res Soc Proc 728:S10.17.11–S10.17.16

    Google Scholar 

  25. Baia L, Baia M, Popp J, Astilean S (2006) J Phys Chem B 110:23982–23986

    CAS  Google Scholar 

  26. Baia M, Toderas F, Baia L, Popp J, Astilean S (2006) Chem Phys Lett 422:127–132

    CAS  Google Scholar 

  27. Stuart DA, Yuen JM, Shah N, Lyandres O, Yonzon CR, Glucksberg MR, Walsh JT, VanDuyne RP (2006) Anal Chem 78:7211–7215

    CAS  Google Scholar 

  28. Li H, Baum CE, Sun J, Cullum BM (2006) Appl Spectrosc 60:1377–1385

    CAS  Google Scholar 

  29. Kahl M, Voges E, Hill W (1998) Spectrosc Eur 10:8–13

    CAS  Google Scholar 

  30. Félidj N, Aubard J, Lévi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Phys Rev B 65:0754191–0754199

    Google Scholar 

  31. Felidj N, Aubard J, Levi G, Krenn JR, Hohenau A, Schider G, Leitner A, Aussenegg FR (2003) Appl Phys Lett 82:3095–3097

    CAS  Google Scholar 

  32. Sackmann M, Bom S, Balster T, Materny A (2007) J Raman Spectrosc 38:277–282

    CAS  Google Scholar 

  33. Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Kall M (2003) J Phys Chem B 107:7337–7342

    CAS  Google Scholar 

  34. Billot L, Lamy de la Chapelle M, Grimault AS, Vial A, Barchiesi D, Bijeon JL, Adam PM, Royer P (2006) Chem Phys Lett 422:303–307

    CAS  Google Scholar 

  35. De Jesus MA, Giesfeldt KS, Oran JM, Abu-Hatab NA, Lavrik NV, Stepaniak MJ (2005) Appl Spectrosc 59:1501–1508

    Google Scholar 

  36. Isola NR, Stokes DL, Vo-Dinh T (1998) Anal Chem 70:1352–1356

    CAS  Google Scholar 

  37. Vo-Dinh T, Houck K, Stokes DL (1994) Anal Chem 66:3379–3383

    CAS  Google Scholar 

  38. Wabuyele MB, Vo-Dinh T (2005) Anal Chem 77:7810–7815

    CAS  Google Scholar 

  39. Cao YC, Jin R, Mirkin CA (2002) Science 297:1536–1540

    CAS  Google Scholar 

  40. Jin RC, Cao YC, Thaxton CS, Mirkin CA (2006) Small 2:375–380

    CAS  Google Scholar 

  41. Cao YC, Jin R, Nam JM, Thaxton CS, Mirkin CA (2003) J Am Chem Soc 125:14676–14677

    CAS  Google Scholar 

  42. Green M, Liu FM, Cohen L, Kollensperger P, Cass T (2006) Faraday Discuss 132:269–280

    CAS  Google Scholar 

  43. Docherty FT, Monaghan PB, Keir R, Graham D, Smith WE, Cooper JM (2004) Chem Commun118–119

  44. Graham D, Brown R, Smith WE (2001) Chem Commun 1002–1003

  45. Graham D, Mallinder BJ, Smith WE (2000) Angew Chem Int Ed 39:1061–1064

    CAS  Google Scholar 

  46. Faulds K, Smith WE, Graham D (2004) Anal Chem 76:412–417

    CAS  Google Scholar 

  47. Munro CH, Smith WE, White PC (1995) Analyst 120:993–1003

    CAS  Google Scholar 

  48. Graham D, Faulds K, Smith WE (2006) Chem Commun 4363–4371

  49. Sarkar J, Chowdhury J, Pal P, Talapatra GB (2006) Vib Spectrosc 41:90–96

    CAS  Google Scholar 

  50. Carron K, Mullen K, Lanouette M, Angersbach H (1991) Appl Spectrosc 45:420–423

    CAS  Google Scholar 

  51. Mullen KI, Wang D, Crane LG, Carron KT (1992) Anal Chem 64:930–936

    CAS  Google Scholar 

  52. Uphaus RA, Cotton TM, Moebius D (1985) Thin Solid Films 132:173–184

    CAS  Google Scholar 

  53. Dick LA, Haes AJ, Van Duyne RP (2000) J Phys Chem B 104:11752–11762

    CAS  Google Scholar 

  54. Lecomte S, Wackerbarth H, Soulimane T, Buse G, Hildebrandt P (1998) J Am Chem Soc 120:7381–7382

    CAS  Google Scholar 

  55. Farrens DL, Holt RE, Rospendowski BN, Song PS, Cotton TM (1989) J Am Chem Soc 111:9162–9169

    CAS  Google Scholar 

  56. Broderick JB, Natan MJ, O’Halloran TV, Van Duyne RP (1993) Biochemistry 32:13771–13776

    CAS  Google Scholar 

  57. Jancura D, Sanchez-Cortes S, Kocisova E, Tinti A, Miskovsky P, Bertoluzza A (1995) Biospectroscopy 1:265–273

    CAS  Google Scholar 

  58. Sanchez-Cortes S, Miskovsky P, Jancura D, Bertoluzza A (1996) J Phys Chem 100:1938–1944

    CAS  Google Scholar 

  59. Gouveia VJP, Gutz IG, Rubim JC (1994) J Electroanal Chem 371:37–42

    CAS  Google Scholar 

  60. Ni F, Thomas L, Cotton TM (1989) Anal Chem 61:888–894

    CAS  Google Scholar 

  61. Somsen GW, Coulter SK, Gooijer C, Velthorst NH, Brinkman UAT (1997) Anal Chim Acta 349:189–197

    CAS  Google Scholar 

  62. Aroca R, Clavijo RE, Jennings CA, Kovacs GJ, Duff JM, Loutfy RO (1989) Spectrochim Acta A Mol Biomol Spectrosc 45A:957–962

    CAS  Google Scholar 

  63. Hidalgo M, Montes R, Laserna JJ, Ruperez A (1996) Anal Chim Acta 318:229–237

    CAS  Google Scholar 

  64. Gaudry E, Aubard J, Amouri H, Levi G, Cordier C (2006) Biopolymers 82:399–404

    CAS  Google Scholar 

  65. Nie S, Emory SR (1997) Science 275:1102–1106

    CAS  Google Scholar 

  66. Michaels AM, Nirmal M, Brus LE (1999) J Am Chem Soc 121:9932–9939

    CAS  Google Scholar 

  67. Jiang J, Bosnick K, Maillard M, Brus L (2003) J Phys Chem B 107:9964–9972

    CAS  Google Scholar 

  68. Vosgroene T, Meixner AJ (2005) ChemPhysChem 6:154–163

    CAS  Google Scholar 

  69. Xu H, Bjerneld EJ, Kall M, Borjesson L (1999) Phys Rev Lett 83:4357–4360

    CAS  Google Scholar 

  70. Bjerneld EJ, Foeldes-Papp Z, Kaell M, Rigler R (2002) J Phys Chem B 106:1213–1218

    CAS  Google Scholar 

  71. Constantino CJ, Lemma T, Antunes PA, Aroca R (2001) Anal Chem 73:3674–3678

    CAS  Google Scholar 

  72. Goulet PJG, Pieczonka NPW, Aroca RF (2005) J Raman Spectrosc 36:574–580

    CAS  Google Scholar 

  73. Kneipp K, Kneipp H, Deinum G, Itzkan I, Dasari RR, Feld MS (1998) Appl Spectrosc 52:175–178

    CAS  Google Scholar 

  74. Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, Dasari RR, Feld MS (1998) Phys Rev E 57:R6281–R6284

    CAS  Google Scholar 

  75. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Phys 247:155–162

    CAS  Google Scholar 

  76. Ren B, Lin X-F, Yang Z-L, Liu G-K, Aroca RF, Mao B-W, Tian Z-Q (2003) J Am Chem Soc 125:9598–9599

    CAS  Google Scholar 

  77. Wang P, Wu G (2004) Chem Phys Lett 385:96–100

    CAS  Google Scholar 

  78. Wen R, Fang Y (2005) J Electroanal Chem 576:237–242

    CAS  Google Scholar 

  79. Lin X-F, Ren B, Yang Z-L, Liu G-K, Tian Z-Q (2005) J Raman Spectrosc 36:606–612

    CAS  Google Scholar 

  80. Dörfer T, Schmitt M, Popp J (2007) J Raman Spectrosc 38:1379–1382

    Google Scholar 

  81. Petry R, Schmitt M, Popp J (2003) ChemPhysChem 4:14–30

    CAS  Google Scholar 

  82. Schmitt M, Popp J (2006) J Raman Spectrosc 37:20–28

    CAS  Google Scholar 

  83. Cinta-Pinzaru S, Peica N, Kustner B, Schlucker S, Schmitt M, Frosch T, Faber JH, Bringmann G, Popp J (2006) J Raman Spectrosc 37:326–334

    CAS  Google Scholar 

  84. Peica N, Pavel I, Pinzaru SC, Rastogi VK, Kiefer W (2005) J Raman Spectrosc 36:657–666

    CAS  Google Scholar 

  85. Faulds K, Littleford RE, Graham D, Dent G, Smith WE (2004) Anal Chem 76:592–598

    CAS  Google Scholar 

  86. Schneider S, Grau H, Halbig P, Nickel U (1993) Analyst 118:689–694

    CAS  Google Scholar 

  87. Ayora Canada MJ, Ruiz Medina A, Frank J, Lendl B (2002) Analyst 127:1365–1369

    CAS  Google Scholar 

  88. Keir R, Igata E, Arundell M, Smith WE, Graham D, McHugh C, Cooper JM (2002) Anal Chem 74:1503–1508

    CAS  Google Scholar 

  89. Lee D, Lee S, Seong GH, Choo J, Lee EK, Gweon D-G, Lee S (2006) Appl Spectrosc 60:373–377

    Google Scholar 

  90. Jung J, Choo J, Kim DJ, Lee S (2006) Bull Korean Chem Soc 27:277–280

    Article  CAS  Google Scholar 

  91. Yea K-h, Lee S, Kyong JB, Choo J, Lee EK, Joo S-W, Lee S (2005) Analyst 130:1009 1011

    Google Scholar 

  92. McLaughlin C, MacMillan D, McCardle C, Smith WE (2002) Anal Chem 74:3160–3167

    CAS  Google Scholar 

  93. Strehle KR, Cialla D, Rösch P, Henkel T, Köhler M, Popp J (2007) Anal Chem 79:1542–1547

    CAS  Google Scholar 

  94. Bell SEJ, Mackle JN, Sirimuthu NMS (2005) Analyst 130:545–549

    CAS  Google Scholar 

  95. Stosch R, Henrion A, Schiel D, Guettler B (2005) Anal Chem 77:7386–7392

    CAS  Google Scholar 

  96. Zhang D, Xie Y, Deb SK, Davison VJ, Ben-Amotz D (2005) Anal Chem 77:3563–3569

    CAS  Google Scholar 

  97. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) J Am Chem Soc 123:1471–1482

    CAS  Google Scholar 

  98. Yonzon CR, Lyandres O, Shah NC, Dieringer JA, Van Duyne RD (2006) Top Appl Phys 103:367–379

    Article  CAS  Google Scholar 

  99. Yonzon CR, Haynes CL, Zhang X, Walsh JT Jr, Van Duyne RP (2004) Anal Chem 76:78–85

    CAS  Google Scholar 

  100. Efrima S, Bronk BV (1998) J Phys Chem B 102:5947–5950

    CAS  Google Scholar 

  101. Jarvis RM, Brooker A, Goodacre R (2004) Anal Chem 76:5198–5202

    CAS  Google Scholar 

  102. Zeiri L, Bronk BV, Shabtai Y, Eichler J, Efrima S (2004) Appl Spectrosc 58:33–40

    CAS  Google Scholar 

  103. Zeiri L, Efrima S (2005) J Raman Spectrosc 36:667–675

    CAS  Google Scholar 

  104. Jarvis RM, Brooker A, Goodacre R (2006) Faraday Discuss 132:281–292

    CAS  Google Scholar 

  105. Laucks ML, Sengupta A, Junge K, Davis EJ, Swanson BD (2005) Appl Spectrosc 59:1222–1228

    CAS  Google Scholar 

  106. Sengupta A, Mujacic M, Davis EJ (2006) Anal Bioanal Chem 386:1379–1386

    CAS  Google Scholar 

  107. Leyton P, Lizama-Vergara PA, Campos-Vallette MM, Becker MI, Clavijo E, Cordova Reyes I, Vera M, Jerez CA (2005) J Chilean Chem Soc 50:725–730

    CAS  Google Scholar 

  108. Biju V, Pan D, Gorby YA, Fredrickson J, McLean J, Saffarini D, Lu HP (2007) Langmuir 23:1333–1338

    CAS  Google Scholar 

  109. Haynes CL, Yonzon CR, Zhang X, Van Duyne RP (2005) J Raman Spectrosc 36:471–484

    CAS  Google Scholar 

  110. Alexander TA, Pellegrino PM, Gillespie JB (2003) Appl Spectrosc 57:1340–1345

    CAS  Google Scholar 

  111. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones G II, Ziegler LD (2005) J Phys Chem B 109:312–320

    CAS  Google Scholar 

  112. Rösch P, Kiefer W, Popp J (2002) Biopolymers 67:358–361

    Google Scholar 

  113. Rösch P, Popp J, Kiefer W (1999) J Mol Struct 480–481:121–124

    Google Scholar 

  114. Dijkstra Reyer J, Scheenen Wim JJM, Dam N, Roubos Eric W, ter Meulen JJ (2007) J Neurosci Methods 159:43–50

    CAS  Google Scholar 

  115. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) Nano Lett 6:2225–2231

    CAS  Google Scholar 

  116. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS (2002) Appl Spectrosc 56:150–154

    CAS  Google Scholar 

  117. Hu Q, Tay L-L, Noestheden M, Pezacki JP (2007) J Am Chem Soc 129:14–15

    CAS  Google Scholar 

  118. Eliasson C, Loren A, Engelbrektsson J, Josefson M, Abrahamsson J, Abrahamsson K (2005) Spectrochim Acta A Mol Biomol Spectrosc 61A:755–760

    CAS  Google Scholar 

  119. Nithipatikom K, McCoy MJ, Hawi SR, Nakamoto K, Adar F, Campbell WB (2003) Anal Biochem 322:198–207

    CAS  Google Scholar 

  120. Schlücker S, Küstner B, Punge A, Bonfig R, Marx A, Ströbel P (2006) J Raman Spectrosc 37:719–721

    Google Scholar 

  121. Kim J-H, Kim J-S, Choi H, Lee S-M, Jun B-H, Yu K-N, Kuk E, Kim Y-K, Jeong DH, Cho M-H, Lee Y-S (2006) Anal Chem 78:6967–6973

    CAS  Google Scholar 

  122. Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha S, Kang K, Oh CH (2007) Anal Chem 79:916–922

    Article  CAS  Google Scholar 

  123. Geßner R, Rösch P, Kiefer W, Popp J (2002) Biopolymers 61:327–330

    Google Scholar 

  124. Geßner R, Winter C, Rösch P, Schmitt M, Petry R, Kiefer W, Lankers M, Popp J (2004) ChemPhysChem 5:1159–1170

    Google Scholar 

  125. Yano T-a, Verma P, Kawata S, Inouye Y (2006) Appl Phys Lett 88:093125/093121–093125/093123

    Google Scholar 

  126. Anderson N, Anger P, Hartschuh A, Novotny L (2006) Nano Lett 6:744–749

    CAS  Google Scholar 

  127. Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S (2003) Chem Phys Lett 376:174–180

    CAS  Google Scholar 

  128. Roy D, Wang J, Welland ME (2006) Faraday Discuss 132:215–225

    CAS  Google Scholar 

  129. Verma P, Yamada K, Watanabe H, Inouye Y, Kawata S (2006) Phys Rev B 73:045416/045411–045416/045416

    Google Scholar 

  130. Wang JJ, Smith DA, Batchelder DN, Saito Y, Kirkham J, Robinson C, Baldwin K, Li G, Bennett B (2003) J Microsc 210:330–333

    CAS  Google Scholar 

  131. Kodama T, Ohtani H (2006) Appl Phys Lett 89:223107/223101–223107/223103

    Google Scholar 

  132. Yano T-A, Inouye Y, Kawata S (2006) Nano Lett 6:1269–1273

    CAS  Google Scholar 

  133. Saito Y, Yanagi K, Hayazawa N, Ishitobi H, Ono A, Kataura H, Kawata S (2006) Jpn J Appl Phys Part 1 45:9286–9289

    CAS  Google Scholar 

  134. Yeo B-S, Schmid T, Zhang W, Zenobi R (2007) Anal Bioanal Chem 387:2655–2662

    CAS  Google Scholar 

  135. Pan D, Klymyshyn N, Hu D, Lu HP (2006) Appl Phys Lett 88:093121/093121–093121/093123

    Google Scholar 

  136. Hayazawa N, Tarun A, Inouye Y, Kawata S (2002) J Appl Phys 92:6983–6986

    CAS  Google Scholar 

  137. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2005) J Raman Spectrosc 36:541–550

    CAS  Google Scholar 

  138. Hayazawa N, Watanabe H, Saito Y, Kawata S (2006) J Chem Phys 125:244706/244701–244706/244707

    Google Scholar 

  139. Rasmussen A, Deckert V (2006) J Raman Spectrosc 37:311–317

    CAS  Google Scholar 

  140. Watanabe H, Ishida Y, Hayazawa N, Inouye Y, Kawata S (2004) Phys Rev B 69:155418/155411–155418/155411

    Google Scholar 

  141. Neugebauer U, Rösch P, Schmitt M, Popp J, Julien C, Rasmussen A, Budich C, Deckert V (2006) ChemPhysChem 7:1428–1430

    CAS  Google Scholar 

  142. Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, Schmitt M, Popp J (2007) ChemPhysChem 8:124–137

    CAS  Google Scholar 

Download references

Acknowledgement

We gratefully thank the “Fonds der Chemischen Industrie” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Popp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hering, K., Cialla, D., Ackermann, K. et al. SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 390, 113–124 (2008). https://doi.org/10.1007/s00216-007-1667-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1667-3

Keywords