Skip to main content

Advertisement

Bone turnover markers: understanding their value in clinical trials and clinical practice

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

While bone mineral density (BMD) by dual-energy X-ray absorptiometry is the primary method of determining fracture risk, assessing bone turnover may add valuable information for the management of patients with low bone mass. Bone turnover markers (BTMs) are used in clinical trials where they can provide essential information on the biological efficacy of osteoporosis treatments. In such population-based studies, BTMs can predict fracture risk independent of BMD. When combined with BMD, they improve the fracture risk estimate above and beyond BMD alone in postmenopausal osteoporotic women. Since changes in bone turnover after the initiation of therapy with bone resorption inhibitors occur much more rapidly than changes in BMD, treatment efficacy could, in theory, be determined within weeks of using BTMs. However, such predictive value is limited by the large biological variability of these biochemical markers, even though newer automated methods have reduced their analytical variability. Consequently, widespread adoption as a means of predicting treatment efficacy in fracture prevention for individual patients cannot yet be recommended. BTMs may be useful for monitoring adherence to antiresorptive therapy and may aid in identifying patients for whom antiresorptive therapy is most appropriate. Thus, although BTMs are currently confined to clinical research applications, further improvement in assay precision may extend their diagnostic value in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group.. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  2. ACOG practice bulletin (2004) Clinical management guidelines for obstetrician-gynecologists. Obstet Gynecol 103:203–216 (Number 50, January 2003)

    Google Scholar 

  3. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    Article  PubMed  Google Scholar 

  4. Burr DB (2003) Introduction—bone turnover and fracture risk. J Musculoskelet Neuronal Interact 3:408–409

    PubMed  CAS  Google Scholar 

  5. Siris ES, Chen YT, Abbott TA et al (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164:1108–1112

    Article  PubMed  Google Scholar 

  6. Kanis JA, Johnell O, Oden A et al (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  PubMed  CAS  Google Scholar 

  7. Garnero P, Sornay-Rendu E, Chapuy MC et al (1996) Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 11:337–349

    PubMed  CAS  Google Scholar 

  8. Riggs BL, Melton LJ 3rd (2002) Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 17:11–14

    Article  PubMed  Google Scholar 

  9. Heaney RP (2003) Remodeling and skeletal fragility. Osteoporos Int 14(suppl 5):S12–S15

    Google Scholar 

  10. Cummings SR, Karpf DB, Harris F et al (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112:281–289

    Article  PubMed  CAS  Google Scholar 

  11. Claudon A, Vergnaud P, Valverde C et al (2008) New automated multiplex assay for bone turnover markers in osteoporosis. Clin Chem 54:1554–1563

    Article  PubMed  CAS  Google Scholar 

  12. Garnero P, Vergnaud P, Hoyle N (2008) Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin Chem 54:188–196

    Article  PubMed  CAS  Google Scholar 

  13. Schmidt-Gayk H, Spanuth E, Kötting J et al (2004) Performance evaluation of automated assays for beta-CrossLaps, N-MID-Osteocalcin and intact parathyroid hormone (BIOROSE Multicenter Study). Clin Chem Lab Med 42:90–95

    Article  PubMed  CAS  Google Scholar 

  14. Cremers S, Garnero P (2006) Biochemical markers of bone turnover in the clinical development of drugs for osteoporosis and metastatic bone disease: potential uses and pitfalls. Drugs 66:2031–2058

    Article  PubMed  CAS  Google Scholar 

  15. Abe Y, Ishikawa H, Fukao A (2008) Higher efficacy of urinary bone resorption marker measurements in assessing response to treatment for osteoporosis in postmenopausal women. Tohoku J Exp Med 214:51–59

    Article  PubMed  CAS  Google Scholar 

  16. Clemens JD, Herrick MV, Singer FR et al (1997) Evidence that serum NTx (collagen-type I N-telopeptides) can act as an immunochemical marker of bone resorption. Clin Chem 43:2058–2063

    PubMed  CAS  Google Scholar 

  17. Hanson DA, Weis MA, Bollen AM et al (1992) A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res 7:1251–1258

    PubMed  CAS  Google Scholar 

  18. Risteli J, Risteli L (1999) Products of bone collagen metabolism. In: Seibel M, Robins S, Bilezikian J (eds) Dynamics of bone and cartilage metabolism. Academic, San Diego, California, pp 275–288

    Google Scholar 

  19. Risteli J, Elomaa I, Niemi S et al (1993) Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. Clin Chem 39:635–640

    PubMed  CAS  Google Scholar 

  20. Garnero P, Borel O, Delmas PD (2001) Evaluation of a fully automated serum assay for C-terminal cross-linking telopeptide of type I collagen in osteoporosis. Clin Chem 47:694–702

    PubMed  CAS  Google Scholar 

  21. Fledelius C, Johnsen AH, Cloos PA et al (1997) Characterization of urinary degradation products derived from type I collagen. Identification of a beta-isomerized Asp-Gly sequence within the C-terminal telopeptide (alpha1) region. J Biol Chem 272:9755–9763

    Article  PubMed  CAS  Google Scholar 

  22. Garnero P, Gineyts E, Schaffer AV et al (1998) Measurement of urinary excretion of nonisomerized and beta-isomerized forms of type I collagen breakdown products to monitor the effects of the bisphosphonate zoledronate in Paget’s disease. Arthritis Rheum 41:354–360

    Article  PubMed  CAS  Google Scholar 

  23. Garnero P, Cloos P, Sornay-Rendu E et al (2002) Type I collagen racemization and isomerization and the risk of fracture in postmenopausal women: the OFELY prospective study. J Bone Miner Res 17:826–833

    Article  PubMed  CAS  Google Scholar 

  24. Srivastava AK, Vliet EL, Lewiecki EM et al (2005) Clinical use of serum and urine bone markers in the management of osteoporosis. Curr Med Res Opin 21:1015–1026

    Article  PubMed  CAS  Google Scholar 

  25. Gunja-Smith Z, Boucek RJ (1981) Collagen cross-linking compounds in human urine. Biochem J 197:759–762

    PubMed  CAS  Google Scholar 

  26. Seibel MJ (2005) Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 26:97–122

    PubMed  Google Scholar 

  27. Kraenzlin ME, Kraenzlin CA, Meier C et al (2008) Automated HPLC assay for urinary collagen cross-links: effect of age, menopause, and metabolic bone diseases. Clin Chem 54:1546–1553

    Article  PubMed  CAS  Google Scholar 

  28. Halleen JM, Alatalo SL, Janckila AJ et al (2001) Serum tartrate-resistant acid phosphatase 5b is a specific and sensitive marker of bone resorption. Clin Chem 47:597–600

    PubMed  CAS  Google Scholar 

  29. Hannon R, Blumsohn A, Naylor K et al (1998) Response of biochemical markers of bone turnover to hormone replacement therapy: impact of biological variability. J Bone Miner Res 13:1124–1133

    Article  PubMed  CAS  Google Scholar 

  30. Prestwood KM, Pilbeam CC, Burleson JA et al (1994) The short-term effects of conjugated estrogen on bone turnover in older women. J Clin Endocrinol Metab 79:366–371

    Article  PubMed  CAS  Google Scholar 

  31. Eyre D (1992) New biomarkers of bone resorption. J Clin Endocrinol Metab 74:470A–470C

    Article  PubMed  CAS  Google Scholar 

  32. Delmas PD (1990) Biochemical markers of bone turnover for the clinical assessment of metabolic bone disease. Endocrinol Metab Clin North Am 19:1–18

    PubMed  CAS  Google Scholar 

  33. Moro L, Pozzi Mucelli RS et al (1988) Urinary beta-1-galactosyl-0-hydroxylysine (GH) as a marker of collagen turnover of bone. Calcif Tissue Int 42:87–90

    Article  PubMed  CAS  Google Scholar 

  34. Price PA (1987) Vitamin K-dependent proteins. In: Cohn DV (ed) Calcium regulation and bone metabolism basic and clinical aspects. Amsterdam, Elsevier Science, The Netherlands, pp 419–425

    Google Scholar 

  35. Dickson IR (1993) Bone. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders. Wiley-Liss, New York, pp 249–285

    Google Scholar 

  36. Price PA (1985) Vitamin K-dependent formation of bone Gla protein (osteocalcin) and its function. Vitam Horm 42:65–108

    Article  PubMed  CAS  Google Scholar 

  37. Riggs BL, Tsai KS, Mann KG (1986) Effect of acute increases in bone matrix degradation on circulating levels of bone-Gla protein. J Bone Miner Res 1:539–542

    PubMed  CAS  Google Scholar 

  38. Garnero P, Grimaux M, Seguin P et al (1994) Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J Bone Miner Res 9:255–264

    PubMed  CAS  Google Scholar 

  39. Taylor AK, Linkhart S, Mohan S et al (1990) Multiple osteocalcin fragments in human urine and serum as detected by a midmolecule osteocalcin radioimmunoassay. J Clin Endocrinol Metab 7:467–472

    Article  Google Scholar 

  40. Low MG (1987) Biochemistry of the glycosyl–phosphatidylinositol membrane protein anchors. Biochem J 244:1–13

    PubMed  CAS  Google Scholar 

  41. Harris H (1990) The human alkaline phosphatases: what we know and what we don’t know. Clin Chim Acta 186:133–150

    Article  PubMed  CAS  Google Scholar 

  42. Green S, Anstiss CL, Fishman WH (1971) Automated differential isoenzyme analysis. II. The fractionation of serum alkaline phosphatases into “liver”, “intestinal” and “other” components. Enzymologia 41:9–26

    PubMed  CAS  Google Scholar 

  43. Farley JR, Chesnut CH 3rd, Baylink DJ (1981) Improved method for quantitative determination in serum of alkaline phosphatase of skeletal origin. Clin Chem 27:2002–2007

    PubMed  CAS  Google Scholar 

  44. Liu SH, Yang RS, al-Shaikh R et al (1995) Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res 318:265–278

    PubMed  Google Scholar 

  45. Woo SLY, An KN, Arnoczky SP et al (1994) Anatomy, biology and biomechanics of tendon, ligament and meniscus. In: Simon SR (ed) Orthopaedic basic science. American Academy of Orthopaedic Surgeons, Chicago, pp 45–88

    Google Scholar 

  46. Smedsrod B, Melkko J, Risteli L et al (1990) Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J 271:345–350

    PubMed  CAS  Google Scholar 

  47. Lüftner D, Jozereau D, Schildhauer S et al (2005) PINP as serum marker of metastatic spread to the bone in breast cancer patients. Anticancer Res 25:1491–1499

    PubMed  Google Scholar 

  48. Toivonen J, Tähtelä R, Laitinen K et al (1998) Markers of bone turnover in patients with differentiated thyroid cancer with and following withdrawal of thyroxine suppressive therapy. Eur J Endocrinol 138:667–673

    Article  PubMed  CAS  Google Scholar 

  49. Crofton PM, Wade JC, Taylor MR et al (1997) Serum concentrations of carboxyl-terminal propeptide of type I procollagen, amino-terminal propeptide of type III procollagen, cross-linked carboxyl-terminal telopeptide of type I collagen, and their interrelationships in schoolchildren. Clin Chem 43:1577–1581

    PubMed  CAS  Google Scholar 

  50. Garnero P, Sornay-Rendu E, Claustrat B et al (2000) Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY Study. J Bone Miner Res 15:1526–1536

    Article  PubMed  CAS  Google Scholar 

  51. Garnero P, Hausherr E, Chapuy MC et al (1996) Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 11:1531–1538

    Article  PubMed  CAS  Google Scholar 

  52. van Daele PL, Seibel MJ, Burger H et al (1996) Case-control analysis of bone resorption markers, disability, and hip fracture risk: the Rotterdam Study. BMJ 312:482–483

    PubMed  Google Scholar 

  53. Ross PD, Kress BC, Parson RE et al (2000) Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos Int 11:76–82

    Article  PubMed  CAS  Google Scholar 

  54. Bauer DC, Sklarin PM, Stone KL et al (1999) Biochemical markers of bone turnover and prediction of hip bone loss in older women: the study of osteoporotic fractures. J Bone Miner Res 14:1404–1410

    Article  PubMed  CAS  Google Scholar 

  55. Eastell R, Barton I, Hannon RA et al (2003) Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res 18:1051–1056

    Article  PubMed  CAS  Google Scholar 

  56. Eastell R, Hannon RA, Garnero P et al (2007) Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate: review of statistical analysis. J Bone Miner Res 22:1656–1660

    Article  PubMed  Google Scholar 

  57. Reginster JY, Adami S, Lakatos P et al (2006) Efficacy and tolerability of once-monthly oral ibandronate in postmenopausal osteoporosis: 2-year results from the MOBILE Study. Ann Rheum Dis 65:654–661

    Article  PubMed  CAS  Google Scholar 

  58. Recker R, Stakkestad JA, Chesnut CH 3rd et al (2004) Insufficiently dosed intravenous ibandronate injections are associated with suboptimal antifracture efficacy in postmenopausal osteoporosis. Bone 34:890–899

    Article  PubMed  CAS  Google Scholar 

  59. Bauer DC, Garnero P, Hochberg MC, for the Fracture Intervention Research Group et al (2006) Pretreatment levels of bone turnover and the antifracture efficacy of alendronate: the fracture intervention trial. J Bone Miner Res 21:292–299

    Article  PubMed  CAS  Google Scholar 

  60. Black DM, Delmas PD, Eastell R et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  PubMed  CAS  Google Scholar 

  61. Weinstein RS, Parfitt AM, Marcus R et al (2003) Effects of raloxifene, hormone replacement therapy, and placebo on bone turnover in postmenopausal women. Osteoporos Int 14:814–822

    Article  PubMed  CAS  Google Scholar 

  62. Bone HG, Bolognese MA, Yuen CK et al (2008) Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab 93:2149–2157

    Article  PubMed  CAS  Google Scholar 

  63. Anastasilakis AD, Goulis DG, Polyzos SA, et al (2009) No difference between strontium ranelate and calcium/vitamin D on bone turnover markers in women with established osteoporosis previously treated with teriparatide: a randomized controlled trial. Clin Endocrinol (Oxf). doi:10.1111/j.1365-2265.2008.03342.x

  64. Hochberg MC, Greenspan S, Wasnich RD et al (2002) Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 87:1586–1592

    Article  PubMed  CAS  Google Scholar 

  65. Raisz L, Smith JA, Trahiotis M et al (2000) Short-term risedronate treatment in postmenopausal women: effects on biochemical markers of bone turnover. Osteoporos Int 11:615–620

    Article  PubMed  CAS  Google Scholar 

  66. Braga de Castro Machado A, Hannon R, Eastell R (1999) Monitoring alendronate therapy for osteoporosis. J Bone Miner Res 14:602–608

    Article  PubMed  CAS  Google Scholar 

  67. Aoshima H, Kushida K, Takahashi M et al (1998) Circadian variation of urinary type I collagen crosslinked C-telopeptide and free and peptide-bound forms of pyridinium crosslinks. Bone 22:73–78

    Article  PubMed  CAS  Google Scholar 

  68. Borderie D, Roux C, Toussaint B et al (2001) Variability in urinary excretion of bone resorption markers: limitations of a single determination in clinical practice. Clin Biochem 34:571–577

    Article  PubMed  CAS  Google Scholar 

  69. Ju HS, Leung S, Brown B et al (1997) Comparison of analytical performance and biological variability of three bone resorption assays. Clin Chem 43:1570–1576

    PubMed  CAS  Google Scholar 

  70. Gluer C (1999) Monitoring skeletal changes by radiologic techniques. J Bone Miner Res 14:1952–1962

    Article  PubMed  CAS  Google Scholar 

  71. Shepherd JA, Morgan SL, Lu Y (2008) Comparing BMD results between two similar DXA systems using the generalized least significant changes. J Clin Densitom 11:237–242

    Article  PubMed  Google Scholar 

  72. Bauer DC, Garnero P, Bilezikian JP et al (2006) Short-term changes in bone turnover markers and bone mineral density response to parathyroid hormone in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 91:1370–1375

    Article  PubMed  CAS  Google Scholar 

  73. Raehl CL, Bond CA, Woods TJ et al (2006) Screening tests for intended medication adherence among the elderly. Ann Pharmacother 40:888–893

    Article  PubMed  Google Scholar 

  74. McHorney CA, Schousboe JT, Cline RR et al (2007) The impact of osteoporosis medication beliefs and side-effect experiences on non-adherence to oral bisphosphonates.. Curr Med Res Opin 23:3137–3152 (Erratum in: Curr Med Res Opin. 2008;24:707)

    Article  PubMed  CAS  Google Scholar 

  75. Caro JJ, Ishak KJ, Huybrechts KF et al (2004) The impact of compliance with osteoporosis therapy on fracture rates in actual practice. Osteoporos Int 15:1003–1008

    Article  PubMed  Google Scholar 

  76. Cramer JA, Amonkar MM, Hebborn A et al (2005) Compliance and persistence with bisphosphonate dosing regimens among women with postmenopausal osteoporosis. Curr Med Res Opin 21:1453–1460

    Article  PubMed  CAS  Google Scholar 

  77. Solomon DH, Avorn J, Katz JN et al (2005) Compliance with osteoporosis medications. Arch Intern Med 165:2414–2419

    Article  PubMed  Google Scholar 

  78. Cooper A, Drake J, Brankin E (2006) Treatment persistence with once monthly ibandronate and patient support vs once-weekly alendronate: results from the PERSIST Study. Int J Clin Pract 60:896–905

    Article  PubMed  CAS  Google Scholar 

  79. Seibel MJ (2006) Biochemical markers of bone turnover part II: clinical applications in the management of osteoporosis. Clin Biochem Rev 27:123–138

    PubMed  Google Scholar 

  80. Russell RG, Rogers MJ (1999) Bisphosphonates: from the laboratory to the clinic and back again. Bone 25:97–106

    Article  PubMed  CAS  Google Scholar 

  81. Clowes JA, Peel NF, Eastell R (2004) The impact of monitoring on adherence and persistence with antiresorptive treatment for postmenopausal osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab 89:1117–1123

    Article  PubMed  CAS  Google Scholar 

  82. Delmas PD, Vrijens B, Roux C et al (2003) A reinforcement message based on bone turnover markers response influences long-term persistence with risedronate in osteoporosis: the IMPACT Study. J Bone Miner Res 18(suppl 2):S374

    Google Scholar 

  83. Civitelli R, Gonnelli S, Zacchei F et al (1988) Bone turnover in postmenopausal osteoporosis. Effect of calcitonin treatment. J Clin Invest 82:1268–1274

    Article  PubMed  CAS  Google Scholar 

  84. Chesnut CH III, Bell NH, Clark GS et al (1997) Hormone replacement therapy in postmenopausal women: urinary N-telopeptide of type I collagen monitors therapeutic effect and predicts response of bone mineral density. Am J Med 102:29–37

    Article  PubMed  CAS  Google Scholar 

  85. Uebelhart D, Schlemmer A, Johansen JS et al (1991) Effect of menopause and hormone replacement therapy on the urinary excretion of pyridinium cross-links. J Clin Endocrinol Metab 72:367–373

    Article  PubMed  CAS  Google Scholar 

  86. Ettinger B, Black DM, Mitlak BH et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282:637–645

    Article  PubMed  CAS  Google Scholar 

  87. Harris ST, Watts NB, Genant HK et al (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA 282:1344–1352

    Article  PubMed  CAS  Google Scholar 

  88. Schaffler MB, Choi K, Milgrom C (1995) Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525

    Article  PubMed  CAS  Google Scholar 

  89. Mashiba T, Hirano T, Turner CH et al (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620

    Article  PubMed  CAS  Google Scholar 

  90. Bouxsein ML (2003) Bone quality: where do we go from here? Osteoporos Int 14(suppl 5):118–127

    Article  Google Scholar 

  91. Visekruna M, Wilson D, McKiernan FE (2008) Severely suppressed bone turnover and atypical skeletal fragility. J Clin Endocrinol Metab 93:2948–2952

    Article  PubMed  CAS  Google Scholar 

  92. Neviaser AS, Lane JM, Lenart BA et al (2008) Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma 22:346–350

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Editing assistance was provided by Insight Medical Communications, which was financially supported by Roche Laboratories. Roche Laboratories did not participate in the preparation or writing of the manuscript nor did they provide direct financial support to the authors for the purpose of writing this manuscript.

Conflicts of interest

Roberto Civitelli, MD, Honoraria/Speaker Bureau: Novartis, Roche, GSK, Amgen, Research Grant Support: Eli-Lilly, Hoffman-La Roche, Stock ownership: Eli-Lilly, Wyeth, Merck, Amgen, Reina Armamento-Villareal, MD, none, Nicola Napoli, MD, none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Civitelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Civitelli, R., Armamento-Villareal, R. & Napoli, N. Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos Int 20, 843–851 (2009). https://doi.org/10.1007/s00198-009-0838-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-0838-9

Keywords