Skip to main content

Advertisement

The lymph node pre-metastatic niche

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Lymph node metastases occur frequently during the progression of many types of cancer, and their presence often reflects poor prognosis. The drainage of tumor-derived factors such as antigens, growth factors, cytokines, and exosomes through the lymphatic system to the regional lymph nodes plays an important role in the pre-metastatic conditioning of the microenvironment in lymph nodes, making them receptive and supportive metastatic niches for disseminating tumor cells. Modified immunological responses and remodeling of the vasculature are the most studied tumor-induced pre-metastatic changes in the lymph node microenvironment that promote metastasis, although other metastasis-relevant alterations are also starting to be studied. Here, I review our current understanding of the lymph node pre-metastatic niche, how tumors condition this niche, and the relevance of this conditioning for our understanding of the process of metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Sleeman JP (2012) The metastatic niche and stromal progression. Cancer Metastasis Rev 31:429–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121:1298–1312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. von Andrian UH, Mempel TR (2003) Homing and cellular traffic in lymph nodes. Nat Rev Immunol 3:867–878

    Article  CAS  Google Scholar 

  5. Sleeman JP, Thiele W (2009) Tumor metastasis and the lymphatic vasculature. Int J Cancer 125:2747–2756

    Article  CAS  PubMed  Google Scholar 

  6. Sleeman JP, Nazarenko I, Thiele W (2011) Do all roads lead to Rome? Routes to metastasis development. Int J Cancer 128:2511–2526

    Article  CAS  PubMed  Google Scholar 

  7. Sleeman J, Schmid A, Thiele W (2009) Tumor lymphatics. Semin Cancer Biol 19:285–297

    Article  CAS  PubMed  Google Scholar 

  8. Weiss L (1980) The pathophysiology of metastasis within the lymphatic system. In: Weiss L, Gilbert HA, Ballon SC (eds) Lymphatic system metastasis. G.K. Hall & Co, Boston, pp 2–40

    Google Scholar 

  9. Wallace AC, Hollenberg NK (1965) The transplantability of tumours by intravenous and intralymphatic routes. Br J Cancer 19:338–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kurokawa Y (1970) Experiments on lymph node metastasis by intralymphatic inoculation of rat ascites tumor cells, with special reference to lodgement, passage, and growth of tumor cells in lymph nodes. Gann 61:461–471

    CAS  PubMed  Google Scholar 

  11. Preynat-Seauve O, Contassot E, Schuler P, Piguet V, French LE, Huard B (2007) Extralymphatic tumors prepare draining lymph nodes to invasion via a T-cell cross-tolerance process. Cancer Res 67:5009–5016

    Article  CAS  PubMed  Google Scholar 

  12. Cady B (2007) Regional lymph node metastases; a singular manifestation of the process of clinical metastases in cancer: contemporary animal research and clinical reports suggest unifying concepts. Ann Surg Oncol 14:1790–1800

    Article  PubMed  Google Scholar 

  13. Terrone C, Cracco C, Porpiglia F, Bollito E, Scoffone C, Poggio M, Berruti A, Ragni F, Cossu M, Scarpa RM et al (2006) Reassessing the current TNM lymph node staging for renal cell carcinoma. Eur Urol 49:324–331

    Article  PubMed  Google Scholar 

  14. Blazer DG 3rd, Sabel MS, Sondak VK (2003) Is there a role for sentinel lymph node biopsy in the management of sarcoma? Surg Oncol 12:201–206

    Article  PubMed  Google Scholar 

  15. FV B-H (1887) Lehrbuch der pathologischen Anatomie. Band 2 specielle pathologische Anatomie, 3rd Edn. FCW Vogel, Leipzig

  16. Willis R (1973) The spread of tumors in the human body, 3rd edn. Butterworth, London

    Google Scholar 

  17. Ioachim HL, Medeiros LJ (2008) In: Ioachim HL, Medeiros LJ (eds) Tumor-reactive lymphadenopathy. Ioachim’s Lymph Node Pathology Lippincott Williams & Wilkins, Philadelphia, pp 243–247

    Google Scholar 

  18. Coronella-Wood JA, Hersh EM (2003) Naturally occurring B-cell responses to breast cancer. Cancer Immunol Immunother CII 52:715–738

    Article  PubMed  Google Scholar 

  19. Tachibana T, Yoshida K (1986) Role of the regional lymph node in cancer metastasis. Cancer Metastasis Rev 5:55–66

    Article  CAS  PubMed  Google Scholar 

  20. Kim R, Emi M, Tanabe K, Arihiro K (2006) Immunobiology of the sentinel lymph node and its potential role for antitumour immunity. Lancet Oncol 7:1006–1016

    Article  CAS  PubMed  Google Scholar 

  21. Cochran AJ, Huang RR, Lee J, Itakura E, Leong SP, Essner R (2006) Tumour-induced immune modulation of sentinel lymph nodes. Nat Rev Immunol 6:659–670

    Article  CAS  PubMed  Google Scholar 

  22. Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15:73–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gjerstorff MF, Andersen MH, Ditzel HJ (2015) Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 6:15772–15787

    Article  PubMed Central  PubMed  Google Scholar 

  24. Alvarez D, Vollmann EH, von Andrian UH (2008) Mechanisms and consequences of dendritic cell migration. Immunity 29:325–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Asano K, Nabeyama A, Miyake Y, Qiu CH, Kurita A, Tomura M, Kanagawa O, Fujii S, Tanaka M (2011) CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 34:85–95

    Article  CAS  PubMed  Google Scholar 

  26. Heesters BA, Myers RC, Carroll MC (2014) Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol 14:495–504

    Article  CAS  PubMed  Google Scholar 

  27. Li Q, Teitz-Tennenbaum S, Donald EJ, Li M, Chang AE (2009) In vivo sensitized and in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy. J Immunol 183:3195–3203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Moalli F, Proulx ST, Schwendener R, Detmar M, Schlapbach C, Stein JV (2015) Intravital and whole-organ imaging reveals capture of melanoma-derived antigen by lymph node subcapsular macrophages leading to widespread deposition on follicular dendritic cells. Front Immunol 6:114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Wolkers MC, Stoetter G, Vyth-Dreese FA, Schumacher TN (2001) Redundancy of direct priming and cross-priming in tumor-specific CD8+ T cell responses. J Immunol 167:3577–3584

    Article  CAS  PubMed  Google Scholar 

  30. Lai YP, Jeng CJ, Chen SC (2011) The roles of CD4+ T cells in tumor immunity. ISRN Immunol. doi:10.5402/2011/497397, 6 pages

    Google Scholar 

  31. Kim HJ, Cantor H (2014) The path to reactivation of antitumor immunity and checkpoint immunotherapy. Cancer Immunol Res 2:926–936

    Article  CAS  PubMed  Google Scholar 

  32. Straten P, Dahl C, Schrama D, Pedersen LO, Andersen MH, Seremet T, Brocker EB, Guldberg P, Becker JC (2006) Identification of identical TCRs in primary melanoma lesions and tumor free corresponding sentinel lymph nodes. Cancer Immunol Immunother CII 55:495–502

    Article  PubMed  CAS  Google Scholar 

  33. Chen S, Kawashima H, Lowe JB, Lanier LL, Fukuda M (2005) Suppression of tumor formation in lymph nodes by L-selectin-mediated natural killer cell recruitment. J Exp Med 202:1679–1689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ferlazzo G, Pack M, Thomas D, Paludan C, Schmid D, Strowig T, Bougras G, Muller WA, Moretta L, Munz C (2004) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci U S A 101:16606–16611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Farzad Z, Cochran AJ, McBride WH, Gray JD, Wong V, Morton DL (1990) Lymphocyte subset alterations in nodes regional to human melanoma. Cancer Res 50:3585–3588

    CAS  PubMed  Google Scholar 

  36. Yoon SR, Kim TD, Choi I (2015) Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med 47:e141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5:1260–1265

    Article  CAS  PubMed  Google Scholar 

  38. Song L, Asgharzadeh S, Salo J, Engell K, Wu HW, Sposto R, Ara T, Silverman AM, DeClerck YA, Seeger RC et al (2009) Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest 119:1524–1536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zhang W, Zhang C, Li W, Deng J, Herrmann A, Priceman SJ, Liang W, Shen S, Pal SK, Hoon DS et al (2015) CD8+ T-cell immunosurveillance constrains lymphoid premetastatic myeloid cell accumulation. Eur J Immunol 45:71–81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Melief CJ (2008) Cancer immunotherapy by dendritic cells. Immunity 29:372–383

    Article  CAS  PubMed  Google Scholar 

  42. Otto B, Koenig AM, Tolstonog GV, Jeschke A, Klaetschke K, Vashist YK, Wicklein D, Wagener C, Izbicki JR, Streichert T (2014) Molecular changes in pre-metastatic lymph nodes of esophageal cancer patients. PLoS ONE 9:e102552

    Article  PubMed Central  PubMed  Google Scholar 

  43. Mansfield AS, Holtan SG, Grotz TE, Allred JB, Jakub JW, Erickson LA, Markovic SN (2011) Regional immunity in melanoma: immunosuppressive changes precede nodal metastasis. Mod Pathol Off J U S Can Acad Pathol Inc 24:487–494

    CAS  Google Scholar 

  44. Lana AM, Wen DR, Cochran AJ (2001) The morphology, immunophenotype and distribution of paracortical dendritic leucocytes in lymph nodes regional to cutaneous melanoma. Melanoma Res 11:401–410

    Article  CAS  PubMed  Google Scholar 

  45. Matsuura K, Yamaguchi Y, Ueno H, Osaki A, Arihiro K, Toge T (2006) Maturation of dendritic cells and T-cell responses in sentinel lymph nodes from patients with breast carcinoma. Cancer 106:1227–1236

    Article  CAS  PubMed  Google Scholar 

  46. Cochran AJ, Wen DR, Farzad Z, Stene MA, McBride W, Lana AM, Hoon DS, Morton DL (1989) Immunosuppression by melanoma cells as a factor in the generation of metastatic disease. Anticancer Res 9:859–864

    CAS  PubMed  Google Scholar 

  47. Huang RR, Wen DR, Guo J, Giuliano AE, Nguyen M, Offodile R, Stern S, Turner R, Cochran AJ (2000) Selective modulation of paracortical dendritic cells and T-lymphocytes in breast cancer sentinel lymph nodes. Breast J 6:225–232

    Article  PubMed  Google Scholar 

  48. Reiss CK, Volenec FJ, Humphrey M, Singla O, Humphrey LJ (1983) The role of the regional lymph node in breast cancer: a comparison between nodal and systemic reactivity. J Surg Oncol 22:249–253

    Article  CAS  PubMed  Google Scholar 

  49. Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP (2005) Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med 2:e284

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Go Y, Tanaka H, Tokumoto M, Sakurai K, Toyokawa T, Kubo N, Muguruma K, Maeda K, Ohira M, Hirakawa K (2015) Tumor-associated macrophages extend along lymphatic flow in the pre-metastatic lymph nodes of human gastric cancer. Ann Surg Oncol. doi:10.1245/s10434-015-4458-7

    Google Scholar 

  51. Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C, Shen S, Priceman SJ, Kujawski M, Pal SK et al (2012) S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21:642–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Wu LJ, Li HX, Luo XT, Lu RZ, Ma YF, Wang R, Zhang J, Yang DQ, Yu H, Liu J (2014) STAT3 activation in tumor cell-free lymph nodes predicts a poor prognosis for gastric cancer. Int J Clin Exp Pathol 7:1140–1146

    PubMed Central  PubMed  Google Scholar 

  53. Mannino MH, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y (2015) The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. doi:10.1016/j.canlet.2015.07.009

    PubMed  Google Scholar 

  54. Itakura E, Huang RR, Wen DR, Paul E, Wunsch PH, Cochran AJ (2011) IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod Pathol Off J U S Can Acad Pathol Inc 24:801–809

    CAS  Google Scholar 

  55. Ito M, Minamiya Y, Kawai H, Saito S, Saito H, Nakagawa T, Imai K, Hirokawa M, Ogawa J (2006) Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J Immunol 176:5637–5643

    Article  CAS  PubMed  Google Scholar 

  56. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166

    CAS  PubMed  Google Scholar 

  57. Kusmartsev S, Gabrilovich DI (2002) Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother CII 51:293–298

    Article  CAS  PubMed  Google Scholar 

  58. Munn DH (2011) Indoleamine 2,3-dioxygenase, Tregs and cancer. Curr Med Chem 18:2240–2246

    Article  CAS  PubMed  Google Scholar 

  59. Ogawa F, Amano H, Eshima K, Ito Y, Matsui Y, Hosono K, Kitasato H, Iyoda A, Iwabuchi K, Kumagai Y et al (2014) Prostanoid induces premetastatic niche in regional lymph nodes. J Clin Invest 124:4882–4894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Farnsworth RH, Lackmann M, Achen MG, Stacker SA (2014) Vascular remodeling in cancer. Oncogene 33:3496–3505

    Article  CAS  PubMed  Google Scholar 

  61. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Harrell MI, Iritani BM, Ruddell A (2007) Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 170:774–786

    Article  PubMed Central  PubMed  Google Scholar 

  64. Ruddell A, Kelly-Spratt KS, Furuya M, Parghi SS, Kemp CJ (2008) p19/Arf and p53 suppress sentinel lymph node lymphangiogenesis and carcinoma metastasis. Oncogene 27:3145–3155

    Article  CAS  PubMed  Google Scholar 

  65. Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev J, Tsarfaty I, Hudson E, Jackson DG, Petillo D et al (2006) Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66:10365–10376

    Article  CAS  PubMed  Google Scholar 

  66. Van den Eynden GG, Van der Auwera I, Van Laere SJ, Huygelen V, Colpaert CG, van Dam P, Dirix LY, Vermeulen PB, Van Marck EA (2006) Induction of lymphangiogenesis in and around axillary lymph node metastases of patients with breast cancer. Br J Cancer 95:1362–1366

    Article  PubMed Central  PubMed  Google Scholar 

  67. Chung MK, Do IG, Jung E, Son YI, Jeong HS, Baek CH (2012) Lymphatic vessels and high endothelial venules are increased in the sentinel lymph nodes of patients with oral squamous cell carcinoma before the arrival of tumor cells. Ann Surg Oncol 19:1595–1601

    Article  PubMed  Google Scholar 

  68. Quagliata L, Klusmeier S, Cremers N, Pytowski B, Harvey A, Pettis RJ, Thiele W, Sleeman JP (2014) Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model. Clin Exp Metastasis 31:351–365

    Article  CAS  PubMed  Google Scholar 

  69. Liersch R, Hirakawa S, Berdel WE, Mesters RM, Detmar M (2012) Induced lymphatic sinus hyperplasia in sentinel lymph nodes by VEGF-C as the earliest premetastatic indicator. Int J Oncol 41:2073–2078

    PubMed Central  PubMed  Google Scholar 

  70. Mayorca-Guiliani AE, Yano H, Nakashiro K, Hamakawa H, Tanaka J (2012) Premetastatic vasculogenesis in oral squamous cell carcinoma xenograft-draining lymph nodes. Oral Oncol 48:663–670

    Article  PubMed  Google Scholar 

  71. Lee E, Fertig EJ, Jin K, Sukumar S, Pandey NB, Popel AS (2014) Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun 5:4715

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Farnsworth RH, Karnezis T, Shayan R, Matsumoto M, Nowell CJ, Achen MG, Stacker SA (2011) A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth. Cancer Res 71:6547–6557

    Article  CAS  PubMed  Google Scholar 

  73. Cochran AJ, Huang RR, Su A, Itakura E, Wen DR (2015) Is sentinel node susceptibility to metastases related to nodal immune modulation? Cancer J 21:39–46

    Article  CAS  PubMed  Google Scholar 

  74. Yeung TM, Buskens C, Wang LM, Mortensen NJ, Bodmer WF (2013) Myofibroblast activation in colorectal cancer lymph node metastases. Br J Cancer 108:2106–2115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Kakkad SM, Solaiyappan M, Argani P, Sukumar S, Jacobs LK, Leibfritz D, Bhujwalla ZM, Glunde K (2012) Collagen I fiber density increases in lymph node positive breast cancers: pilot study. J Biomed Opt 17:116017

    Article  PubMed Central  PubMed  Google Scholar 

  76. Tartour E, Pere H, Maillere B, Terme M, Merillon N, Taieb J, Sandoval F, Quintin-Colonna F, Lacerda K, Karadimou A et al (2011) Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 30:83–95

    Article  CAS  PubMed  Google Scholar 

  77. Nevala WK, Vachon CM, Leontovich AA, Scott CG, Thompson MA, Markovic SN, Melanoma Study Group of the Mayo Clinic Cancer C (2009) Evidence of systemic Th2-driven chronic inflammation in patients with metastatic melanoma. Clin Cancer Res Off J Am Assoc Cancer Res 15:1931–1939

    Article  CAS  Google Scholar 

  78. Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 32:623–642

    Article  CAS  PubMed  Google Scholar 

  79. Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71:3792–3801

    Article  CAS  PubMed  Google Scholar 

  80. Jung T, Castellana D, Klingbeil P, Cuesta Hernandez I, Vitacolonna M, Orlicky DJ, Roffler SR, Brodt P, Zoller M (2009) CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia 11:1093–1105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Rana S, Malinowska K, Zoller M (2013) Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 15:281–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Schmid MC, Varner JA (2010) Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. J Oncol2010: 201026. doi:10.1155/2010/201026

  84. Layseca-Espinosa E, Korniotis S, Montandon R, Gras C, Bouillie M, Gonzalez-Amaro R, Dy M, Zavala F (2013) CCL22-producing CD8alpha- myeloid dendritic cells mediate regulatory T cell recruitment in response to G-CSF treatment. J Immunol 191:2266–2272

    Article  CAS  PubMed  Google Scholar 

  85. Tsujikawa T, Yaguchi T, Ohmura G, Ohta S, Kobayashi A, Kawamura N, Fujita T, Nakano H, Shimada T, Takahashi T et al (2013) Autocrine and paracrine loops between cancer cells and macrophages promote lymph node metastasis via CCR4/CCL22 in head and neck squamous cell carcinoma. Int J Cancer 132:2755–2766

    Article  CAS  PubMed  Google Scholar 

  86. Tewalt EF, Cohen JN, Rouhani SJ, Guidi CJ, Qiao H, Fahl SP, Conaway MR, Bender TP, Tung KS, Vella AT et al (2012) Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 120:4772–4782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1:191–199

    Article  CAS  PubMed  Google Scholar 

  88. Kim M, Koh YJ, Kim KE, Koh BI, Nam DH, Alitalo K, Kim I, Koh GY (2010) CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res 70:10411–10421

    Article  CAS  PubMed  Google Scholar 

  89. Hirakawa S (2009) From tumor lymphangiogenesis to lymphvascular niche. Cancer Sci 100:983–989

    Article  CAS  PubMed  Google Scholar 

  90. Garmy-Susini B, Avraamides CJ, Desgrosellier JS, Schmid MC, Foubert P, Ellies LG, Lowy AM, Blair SL, Vandenberg SR, Datnow B et al (2013) PI3Kalpha activates integrin alpha4beta1 to establish a metastatic niche in lymph nodes. Proc Natl Acad Sci U S A 110:9042–9047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122

    Article  CAS  PubMed  Google Scholar 

  92. Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K, Wu Y, Pytowski B, Skobe M (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66:2650–2657

    Article  CAS  PubMed  Google Scholar 

  93. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  CAS  PubMed  Google Scholar 

  94. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, Sotiropoulou PA, Loges S, Lapouge G, Candi A et al (2011) A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478:399–403

    Article  CAS  PubMed  Google Scholar 

  95. Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME, Wicha MS, Nor JE (2010) Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 70:9969–9978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Lee JH, Torisu-Itakara H, Cochran AJ, Kadison A, Huynh Y, Morton DL, Essner R (2005) Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin Cancer Res Off J Am Assoc Cancer Res 11:107–112

    CAS  Google Scholar 

  97. Mohos A, Sebestyen T, Liszkay G, Plotar V, Horvath S, Gaudi I, Ladanyi A (2013) Immune cell profile of sentinel lymph nodes in patients with malignant melanoma—FOXP3+ cell density in cases with positive sentinel node status is associated with unfavorable clinical outcome. J Transl Med 11:43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Deng L, Zhang H, Luan Y, Zhang J, Xing Q, Dong S, Wu X, Liu M, Wang S (2010) Accumulation of foxp3+ T regulatory cells in draining lymph nodes correlates with disease progression and immune suppression in colorectal cancer patients. Clin Cancer Res Off J Am Assoc Cancer Res 16:4105–4112

    Article  CAS  Google Scholar 

  99. Ma MW, Medicherla RC, Qian M, Vega-Saenz de Miera E, Friedman EB, Berman RS, Shapiro RL, Pavlick AC, Ott PA, Bhardwaj N et al (2012) Immune response in melanoma: an in-depth analysis of the primary tumor and corresponding sentinel lymph node. Mod Pathol Off J U S Can Acad Pathol Inc 25:1000–1010

    CAS  Google Scholar 

  100. Sleeman JP, Christofori G, Fodde R, Collard JG, Berx G, Decraene C, Ruegg C (2012) Concepts of metastasis in flux: the stromal progression model. Semin Cancer Biol 22:174–186

    Article  CAS  PubMed  Google Scholar 

  101. Virchow R (1863) Die krankhaften Geschwülste, 1st edn. August Hirschwald, Berlin

    Google Scholar 

  102. Virchow R (1858) Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre, 1st edn. August Hirschwald, Berlin

    Google Scholar 

  103. Farzad Z, McBride WH, Ogbechi H, Asnong-Holthoff C, Morton DL, Cochran AJ (1997) Lymphocytes from lymph nodes at different distances from human melanoma vary in their capacity to inhibit/enhance tumor cell growth in vitro. Melanoma Res 7(Suppl 2):S59–S65

    CAS  PubMed  Google Scholar 

  104. Botella-Estrada R, Dasi F, Ramos D, Nagore E, Herrero MJ, Gimenez J, Fuster C, Sanmartin O, Guillen C, Alino S (2005) Cytokine expression and dendritic cell density in melanoma sentinel nodes. Melanoma Res 15:99–106

    Article  CAS  PubMed  Google Scholar 

  105. Leong SP, Peng M, Zhou YM, Vaquerano JE, Chang JW (2002) Cytokine profiles of sentinel lymph nodes draining the primary melanoma. Ann Surg Oncol 9:82–87

    Article  PubMed  Google Scholar 

  106. Alb M, Sie C, Adam C, Chen S, Becker JC, Schrama D (2012) Cellular and cytokine-dependent immunosuppressive mechanisms of grm1-transgenic murine melanoma. Cancer Immunol Immunother CII 61:2239–2249

    Article  CAS  PubMed  Google Scholar 

  107. Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz MA (2014) Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35:814–824

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JPS is the “Franz-Volhard-Stipftungsprofessur für Mikrovaskuläre Biologie und Pathobiologie” funded by the Klinikum Mannheim gGmbH. This work was supported in part by a grant from the Deutsche Forschungsgemeinschaft under the auspices of Research Training Group/Graduiertenkolleg 2099 “Hallmarks of Skin Cancer.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Sleeman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sleeman, J.P. The lymph node pre-metastatic niche. J Mol Med 93, 1173–1184 (2015). https://doi.org/10.1007/s00109-015-1351-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1351-6

Keywords