Skip to main content

Role of Id proteins in B lymphocyte activation: new insights from knockout mouse studies

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Id (inhibitor of differentiation) proteins play important roles in cell differentiation, cell cycle control, and apoptosis. They act as negative regulators of basic helix-loop-helix-type transcription factors, which positively regulate differentiation of various cell types. Id proteins work to block B lymphocyte (B cell) maturation at an early differentiation step, as demonstrated by gain-of-function studies. In recent years a series of gene-targeted mice lacking different Ids have been generated. Analyses of these gene-targeted mice provide information useful for understanding the physiological roles of Ids in B cell biology. Id3 is required for proper B cell functions and acts by controlling the cell cycle. Upon B cell activation, Id2 acts as a negative regulator to prevent potentially harmful effects brought about by excessive immunological reactions; one of its special roles is to maintain low serum concentrations of immunoglobulin E (IgE). The Id2 protein does this by antagonizing E2A and Pax5 activities, both of which are required for proper B cell activation. This review presents several new insights into B cell differentiation and activation programs and the physiological role of Id proteins in B cell activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AID :

Activation-induced cytidine deaminase

BCR :

B cell receptor

bHLH :

Basic helix-loop-helix transcription

BMP :

Morphogenic protein

CSR :

Class switch recombination

GLT :

Germline transcription

Id :

Inhibitor of differentiation

IL :

Interleukin

SHM :

Somatic hypermutation

STAT :

Signal transducer and activator of transcription

TGF :

Transforming growth factor

References

  1. Ruzinova MB, Benezra R (2003) Id proteins in development, cell cycle and cancer. Trends Cell Biol 13:410–418

    Article  CAS  PubMed  Google Scholar 

  2. Norton JD (2000) ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113:3897–3905

    Google Scholar 

  3. Yokota Y, Mori S (2002) Role of Id family proteins in growth control. J Cell Physiol 190:21–28

    Google Scholar 

  4. Sikder HA, Devlin MK, Dunlap S, Ryu B, Alani RM (2003) Id proteins in cell growth and tumorigenesis. Cancer Cell 3:525–530

    Article  CAS  PubMed  Google Scholar 

  5. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20:429–440

    CAS  PubMed  Google Scholar 

  6. Yates PR, Atherton GT, Deed RW, Norton JD, Sharrocks AD (1999) Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. EMBO J 18:968–976

    Article  CAS  PubMed  Google Scholar 

  7. Roberts EC, Deed RW, Inoue T, Norton JD, Sharrocks AD (2001) Id helix-loop-helix proteins antagonize pax transcription factor activity by inhibiting DNA binding. Mol Cell Biol 21:524–533

    Article  CAS  PubMed  Google Scholar 

  8. Zhuang Y, Soriano P, Weintraub H (1994) The helix-loop-helix gene E2A is required for B cell formation. Cell 79:875–884

    Article  CAS  PubMed  Google Scholar 

  9. Bain G, Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, Krop I, Schlissel MS, Feeney AJ, van Roon M, et al (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79:885–892

    Article  CAS  PubMed  Google Scholar 

  10. Urbanek P, Wang ZQ, Fetka I, Wagner EF, Busslinger M (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79:901–912

    Article  CAS  PubMed  Google Scholar 

  11. Sun XH (1994) Constitutive expression of the Id1 gene impairs mouse B cell development. Cell 79:893–900

    Article  CAS  PubMed  Google Scholar 

  12. Lyden D (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization. Nature 401:670–677

    CAS  Google Scholar 

  13. Hacker DV (2003) Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4:380–386

    Article  CAS  PubMed  Google Scholar 

  14. Yokota Y, Mansouri A, Mori A, Sugawara S, Adachi S, Nishikawa S, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706

    Article  CAS  PubMed  Google Scholar 

  15. Kusunoki T, Sugai M, Katakai T, Omatsu Y, Iyoda T, Inaba K, Nakahata T, Shimizu A, Yokota Y (2003) TH2 dominance and defective development of a CD8+ dendritic cell subset in Id2-deficient mice. J Allergy Clin Immunol 111:136–142

    Article  CAS  PubMed  Google Scholar 

  16. Fukuyama S, Hiroi T, Yokota Y, Rennert PD, Yanagita M, Kinoshita N, Terawaki S, Shikina T, Yamamoto M, Kurono Y, Kiyono H (2002) Initiation of NALT organogenesis is independent of the IL-7R, LTbetaR, and NIK signaling pathways but requires the Id2 gene and CD3 (–) CD4 (+) CD45 (+) cells. Immunity 17:31–40

    Article  CAS  PubMed  Google Scholar 

  17. Kee BL, Rivera RR, Murre C (2001) Id3 inhibits B lymphocyte progenitor growth and survival in response to TGF-beta. Nat Immunol 2:242–247

    Article  CAS  PubMed  Google Scholar 

  18. Ruzinova MB, Schoer RA, Gerald W, Egan JE, Pandolfi PP, Rafii S, Manova K, Mittal V, Benezra R, de Candia P, Solit DB, Giri D, Brogi E, Siegel PM, Olshen AB, Muller WJ, Rosen N (2003) Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors Id proteins in development, cell cycle and cancer. Cancer Cell 4:277–289

    Article  CAS  PubMed  Google Scholar 

  19. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  CAS  PubMed  Google Scholar 

  20. Martinsen BJ, Bronner-Fraser M (1998) Neural crest specification regulated by the helix-loop-helix repressor Id2. Science 281:988–991

    Article  CAS  PubMed  Google Scholar 

  21. Lasorella A, Noseda M, Beyna M, Yokota Y, Iavarone A (2000) Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407: 592–598

    Article  CAS  PubMed  Google Scholar 

  22. Mori S, Nishikawa SI, Yokota Y (2000) Lactation defect in mice lacking the helix-loop-helix inhibitor Id2. EMBO J 19:5772–5781

    Article  CAS  PubMed  Google Scholar 

  23. Quong MW, Harris DP, Swain SL, Murre C (1999) E2A activity is induced during B-cell activation to promote immunoglobulin class switch recombination. EMBO J 18:6307–6318

    Article  CAS  PubMed  Google Scholar 

  24. Lin KI, Angelin-Duclos C, Kuo TC, Calame K (2002) Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol Cell Biol 22:4771–4780

    Article  CAS  PubMed  Google Scholar 

  25. Kee BL, Quong MW, Murre C (2000) E2A proteins: essential regulators at multiple stages of B-cell development. Immunol Rev 175:138–149

    Article  CAS  PubMed  Google Scholar 

  26. Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    CAS  PubMed  Google Scholar 

  27. Yanagisawa M, Takizawa T, Ochiai W, Uemura A, Nakashima K, Taga T (2001) Fate alteration of neuroepithelial cells from neurogenesis to astrocytogenesis by bone morphogenetic proteins. Neurosci Res 41:391–396

    Article  CAS  PubMed  Google Scholar 

  28. Hollnagel A, Oehlmann V, Heymer J, Ruther U, Nordheim A (1999) Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 274:19838–19845

    Article  CAS  PubMed  Google Scholar 

  29. Korchynskyi O, ten Dijke P (2002) Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 277:4883–4891

    Article  CAS  PubMed  Google Scholar 

  30. Lopez-Rovira T, Chalaux E, Massague J, Rosa JL, Ventura F (2002) Direct binding of Smad1 and Smad4 to two distinct motifs mediates bone morphogenetic protein-specific transcriptional activation of Id1 gene. J Biol Chem 277:3176–3185

    Article  CAS  PubMed  Google Scholar 

  31. Kang Y, Chen CR, Massague J (2003) A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11:915–926

    Article  CAS  PubMed  Google Scholar 

  32. Sugai M, Gonda H, Kusunoki T, Katakai T, Yokota Y, Shimizu A (2003) Essential role of Id2 in negative regulation of IgE class switching. Nat Immunol 4:25–30

    Article  CAS  PubMed  Google Scholar 

  33. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21:1743–1753

    Article  CAS  PubMed  Google Scholar 

  34. Pan L, Sato S, Frederick JP, Sun XH, Zhuang Y (1999) Impaired immune responses and B-cell proliferation in mice lacking the Id3 gene. Mol Cell Biol 19:5969–5980

    CAS  PubMed  Google Scholar 

  35. Florio M, Hernandez MC, Yang H, Shu HK, Cleveland JL, Israel MA (1998) Id2 promotes apoptosis by a novel mechanism independent of dimerization to basic helix-loop-helix factors. Mol Cell Biol 18:5435–5444

    CAS  PubMed  Google Scholar 

  36. Nakajima H, Kim YB, Terano H, Yoshida M, Horinouchi S (1998) FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 241:126–133

    Article  CAS  PubMed  Google Scholar 

  37. Norton JD, Deed RW, Craggs G, Sablitzky F (1998) Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol 8:58–65

    CAS  PubMed  Google Scholar 

  38. Iavarone A, Garg P, Lasorella A, Hsu J, Israel MA (1994) The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev 8:1270–1284

    CAS  PubMed  Google Scholar 

  39. Desprez PY, Hara E, Bissell MJ, Campisi J (1995) Suppression of mammary epithelial cell differentiation by the helix-loop-helix protein Id-1. Mol Cell Biol 15:3398–3404

    CAS  PubMed  Google Scholar 

  40. Atherton GT, Travers H, Deed R, Norton JD (1996) Regulation of cell differentiation in C2C12 myoblasts by the Id3 helix-loop-helix protein. Cell Growth Differ 7:1059–1066

    CAS  PubMed  Google Scholar 

  41. Jen Y, Manova K, Benezra R (1996) Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev Dyn 207:235–252

    Article  CAS  PubMed  Google Scholar 

  42. Hammar SP, Mottet NK (1971) Tetrazolium salt and electron-microscopic studies of cellular degeneration and necrosis in the interdigital areas of the developing chick limb. J Cell Sci 8:229–251

    Google Scholar 

  43. Quong MW, Romanow WJ, Murre C (2002) E protein function in lymphocyte development. Annu Rev Immunol 20:301–322

    Article  CAS  PubMed  Google Scholar 

  44. Corry DB, Kheradmand F (1999) Induction and regulation of the IgE response. Nature 402 [Suppl B]:18–23

  45. Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, Smurthwaite L (2003) The biology of IGE and the basis of allergic disease. Annu Rev Immunol 21:579–628

    Article  CAS  PubMed  Google Scholar 

  46. Geha RS, Jabara HH, Brodeur SR (2003) The regulation of immunoglobulin E class-switch recombination. Nat Rev Immunol 3:721–732

    Article  CAS  PubMed  Google Scholar 

  47. Gorska MM, Alam R (2003) Signaling molecules as therapeutic targets in allergic diseases. J Allergy Clin Immunol 112:241–250

    Article  CAS  PubMed  Google Scholar 

  48. Geha RS, Jabara HH, Brodeur SR (2003) Allergy and hypersensitivity. Nature versus nurture in allergy and hypersensitivity The regulation of immunoglobulin E class-switch recombination. Curr Opin Immunol 15:603–608

    Article  CAS  PubMed  Google Scholar 

  49. Honjo T, Kinoshita K, Muramatsu M (2002) Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 20:165–196

    Article  CAS  PubMed  Google Scholar 

  50. Lundgren M, Larsson C, Femino A, Xu M, Stavnezer J, Severinson E (1994) Activation of the Ig germ-line gamma 1 promoter. Involvement of C/enhancer-binding protein transcription factors and their possible interaction with an NF-IL-4 site. J Immunol 153:2983–2995

    CAS  PubMed  Google Scholar 

  51. Delphin S, Stavnezer J (1995) Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline epsilon promoter: regulation by NF-IL-4, a C/EBP family member and NF-kappa B/p50. J Exp Med 181:181–192

    CAS  PubMed  Google Scholar 

  52. Lutzker S, Rothman P, Pollock R, Coffman R, Alt FW (1988) Mitogen- and IL-4-regulated expression of germ-line Ig gamma 2b transcripts: evidence for directed heavy chain class switching. Cell 53:177–184

    CAS  PubMed  Google Scholar 

  53. Zhang K, Mills FC, Saxon A (1994) Switch circles from IL-4-directed epsilon class switching from human B lymphocytes. Evidence for direct, sequential, and multiple step sequential switch from mu to epsilon Ig heavy chain gene. J Immunol 152:3427–3435

    CAS  PubMed  Google Scholar 

  54. Kuhn R, Rajewsky K, Muller W (1991) Generation and analysis of interleukin-4 deficient mice. Science 254:707–710

    CAS  PubMed  Google Scholar 

  55. Kopf M, Le Gros G, Bachmann M, Lamers MC, Bluethmann H, Kohler G (1993) Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362:245–248

    CAS  PubMed  Google Scholar 

  56. Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S, Nakanishi K, Yoshida N, Kishimoto T, Akira S (1996) Essential role of Stat6 in IL-4 signalling. Nature 380:627–630

    CAS  PubMed  Google Scholar 

  57. Shimoda K, van Deursen J, Sangster MY, Sarawar SR, Carson SR, Tripp RA, Chu C, Quelle FW, Nosaka T, Vignali DA, Doherty PC, Grosveld G, Paul WE, Ihle JN (1996) Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380:630–633

    CAS  PubMed  Google Scholar 

  58. Snapper CM, Finkelman FD, Paul WE (1988) Differential regulation of IgG1 and IgE synthesis by interleukin 4. J Exp Med 167:183–196

    Google Scholar 

  59. Jung S, Siebenkotten G, Radbruch A (1994) Frequency of immunoglobulin E class switching is autonomously determined and independent of prior switching to other classes. J Exp Med 179:2023–2026

    CAS  PubMed  Google Scholar 

  60. Purkerson JM, Isakson PC (1994) Independent regulation of DNA recombination and immunoglobulin (Ig) secretion during isotype switching to IgG1 and IgE. J Exp Med 179:1877–1883

    CAS  PubMed  Google Scholar 

  61. Bottaro A, Lansford R, Xu L, Zhang J, Rothman P, Alt FW (1994) S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. EMBO J 13:665–674

    CAS  PubMed  Google Scholar 

  62. Lee CG, Kinoshita K, Arudchandran A, Cerritelli SM, Crouch RJ, Honjo T (2001) Quantitative regulation of class switch recombination by switch region transcription. J Exp Med 194:365–374

    Article  CAS  PubMed  Google Scholar 

  63. Nambu Y, Sugai M, Gonda H, Lee CG, Katakai T, Agata Y, Yokota Y, Shimizu A (2003) Transcription-c oupled events associating with immunoglobulin switch region chromatin. Science 302:2137–2140

    Article  CAS  PubMed  Google Scholar 

  64. Peters A, Storb U (1996) Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4:57–65

    CAS  PubMed  Google Scholar 

  65. Storb U, Stavnezer J (2002) Immunoglobulin genes: generating diversity with AID and UNG. Curr Biol 12:R725–R727

    Article  CAS  PubMed  Google Scholar 

  66. Michael N, Shen HM, Longerich S, Kim N, Longacre A, Storb U (2003) The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription. Immunity 19:235–242

    Article  CAS  PubMed  Google Scholar 

  67. Deenick EK, Hasbold J, Hodgkin PD (1999) Switching to IgG3, IgG2b, and IgA is division linked and independent, revealing a stochastic framework for describing differentiation. J Immunol 163:4707–4714

    CAS  PubMed  Google Scholar 

  68. Hodgkin PD, Lee JH, Lyons AB (1996) B cell differentiation and isotype switching is related to division cycle number. J Exp Med 184:277–281

    CAS  PubMed  Google Scholar 

  69. Gonda H, Sugai M, Nambu Y, Katakai T, Agata Y, Mori KJ, Yokota Y, Shimizu A (2003) The balance between Pax5 and Id2 activities is the key to AID gene expression. J Exp Med 198:1427–1437

    Article  CAS  PubMed  Google Scholar 

  70. Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T (1999) Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274:18470–18476

    Article  CAS  PubMed  Google Scholar 

  71. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    CAS  PubMed  Google Scholar 

  72. Sayegh CE, Quong MW, Agata Y, Murre C (2003) E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat Immunol 4:586–593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. T. Katakai and T. Kusunoki for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Sugai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugai, M., Gonda, H., Nambu, Y. et al. Role of Id proteins in B lymphocyte activation: new insights from knockout mouse studies. J Mol Med 82, 592–599 (2004). https://doi.org/10.1007/s00109-004-0562-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0562-z

Keywords