Abstract
More than 20 syndromes among the significant and increasing number of degenerative diseases of neuronal tissues are known to be associated with diabetes mellitus, increased insulin resistance and obesity, disturbed insulin sensitivity, and excessive or impaired insulin secretion. This review briefly presents such syndromes, including Alzheimer disease, ataxia-telangiectasia, Down syndrome/trisomy 21, Friedreich ataxia, Huntington disease, several disorders of mitochondria, myotonic dystrophy, Parkinson disease, Prader-Willi syndrome, Werner syndrome, Wolfram syndrome, mitochondrial disorders affecting oxidative phosphorylation, and vitamin B1 deficiency/inherited thiamine-responsive megaloblastic anemia syndrome as well as their respective relationship to malignancies, cancer, and aging and the nature of their inheritance (including triplet repeat expansions), genetic loci, and corresponding functional biochemistry. Discussed in further detail are disturbances of glucose metabolism including impaired glucose tolerance and both insulin-dependent and non-insulin-dependent diabetes caused by neurodegeneration in humans and mice, sometimes accompanied by degeneration of pancreatic beta-cells. Concordant mouse models obtained by targeted disruption (knock-out), knock-in, or transgenic overexpression of the respective transgene are also described. Preliminary conclusions suggest that many of the diabetogenic neurodegenerative disorders are related to alterations in oxidative phosphorylation (OXPHOS) and mitochondrial nutrient metabolism, which coincide with aberrant protein precipitation in the majority of affected individuals.
Similar content being viewed by others
References
McKusick VA, et al (2004) Online Mendelian inheritance in man (OMIM). McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, National Center for Biotechnology Information, National Library of Medicine, Bethesda (http://www.ncbi.nlm.nih.gov/omim/)
Werner CWO (1904) Über Katarakt in Verbindung mit Sklerodermie. Schmidt & Klaunig, Kiel
Field JB, Loube SD (1960) Observations concerning the diabetes mellitus associated with Werner’s syndrome. Metabolism 9:118–124
Müller H (1990) Recessively inherited deficiencies predisposing to cancer. Anticancer Res 10:513–518
Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787
Reaven GM, Bernstein R, Davis B, Olefsky JM (1976) Nonketotic diabetes mellitus: insulin deficiency or insulin resistance? Am J Med 60:80–88
Ashcroft FM, Proks P, Smith PA, Ammala C, Bokvist K, Rorsman P (1994) Stimulus-secretion coupling in pancreatic beta cells. J Cell Biochem 55:54–65
Kahn CR (1994) Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43:1066–1084
Schwartz MW, Kahn SE (1999) Insulin resistance and obesity. Nature 402:860–861
Clark A, Jones LC, de Koning E, Hansen BC, Matthews DR (2001) Decreased insulin secretion in type 2 diabetes: a problem of cellular mass or function? Diabetes 50 [Suppl 1]:S169–S171
Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110
Ashcroft F, Rorsman P (2004) Type 2 diabetes mellitus: not quite exciting enough? Hum Mol Genet 13 [Suppl 1]:R21–31
Alberti KGM.M, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. I. diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet Med 15:539–553
Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950
Yechoor VK, Patti ME, Saccone R, Kahn CR (2002) Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice. Proc Natl Acad Sci USA 99:10587–10592
Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471
Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142
Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671
Logan JIH, Harveyson KB, Wisdom GB, Hughes AE, Archbold GPR (1994) Hereditary caeruloplasmin deficiency, dementia and diabetes mellitus. Q J Med 87:663–670
Kohno S, Miyajima H, Takahashi Y, Suzuki H, Hishida A (2000) Defective electron transfer in complexes I and IV in patients with aceruloplasminemia. J Neurol Sci 182:57–60
Miyajima H, Kono S, Takahashi Y, Sugimoto M (2002) Increased lipid peroxidation and mitochondrial dysfunction in aceruloplasminemia brains. Blood Cells Mol Dis 29:433–438
Frerichs FT von (1861) Klinik der Leberkrankheiten. Vieweg & Sohn, Braunschweig
Westphal KFO (1883) Über eine dem Bilde der cerebrospinalen grauen Degeneration ähnliche Erkrankung des centralen Nervensystems ohne anatomischen Befund, nebst einigen Bemerkungen über paradoxe Contraktion. Arch Psychiatr Nervenkr 14:87–134, 767–769
Wilson SAK (1912) Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain 34:295–507
Trousseau A (1861–1862) Clinique médicale de l’Hôtel-Dieu de Paris. Baillière, Paris
Collin GBM, Marshall JD, Ikeda A, So WV, Russell-Eggitt I, Maffei P, Beck S, Boerkoel CF, Sicolo N, Martin M, et al (2002) Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome. Nat Genet 31:74–78
Hearn TR, Renforth GL, Spalluto C, Hanley NA, Piper K, Brickwood S, White C, Connolly V, Taylor JFN, Russell-Eggitt I, et al (2002) Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alstrom syndrome. Nat Genet 31:79–83
t’Hart LM, Maassen JA, Dekker JM, Heine RJ (2003) Lack of association between gene variants in the ALMS1 gene and type 2 diabetes mellitus. Diabetologia 46:1023–1024
Quiros-Tejeira RE, Vargas J, Ament ME (2001) Early-onset liver disease complicated with acute liver failure in Alstrom syndrome. Am J Med Genet 101:9–11
Louis-Bar M (1941) Sur un syndrome progressif comprenant des télangiectasies capillaires cutanées et conjonctivales symétriques, à disposition naevoïde et des troubles cérébelleux. Confin Neurol 4:32–42
Centerwall WR, Miller MM (1958) Ataxia, telangiectasia, and sinopulmonary infections; a syndrome of slowly progressive deterioration in childhood. AMA J Dis Child:385–396
Savitsky KB-S, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753
Kastan MB, Lim DS, Kim ST, Xu B, Canman C (2000) Multiple signaling pathways involving ATM. Cold Spring Harbor Symp Q Biol 65:521–526
Kastan MB, Lim DS (2000) The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1:179–186
Bar RS, Levis WR, Rechler MM, Harrison LC, Siebert C, Podskalny J, Roth J, Muggeo M (1978) Extreme insulin resistance in ataxia telangiectasia: defect in affinity of insulin receptors. N Engl J Med 298:1164–1171
Schalch DSM, McFarlin DE, Barlow MH (1970) An unusual form of diabetes mellitus in ataxia-telangiectasia. N Engl J Med 282:1396–1402
Morrell D, Chase CL, Kupper LL, Swift M (1986) Diabetes mellitus in ataxia-telangiectasia, Fanconi anemia, xeroderma pigmentosum, common variable immune deficiency, and severe combined immune deficiency families. Diabetes 35:143–147
Robinson S, Kessling A (1992) Diabetes secondary to genetic disorders. Baillieres Clin Endocrinol Metab 6:867–898
Blevins LS Jr, Gebhart SS (1996) Insulin-resistant diabetes mellitus in a black woman with ataxia-telangiectasia. South Med J 89:619–621
Swift M, Reitnauer PJ, Morrell D, Chase CL (1987) Breast and other cancers in families with ataxia-telangiectasia. N Engl J Med 316:1289–1294
Pippard EC, Hall AJ, Barker DJ, Bridges BA (1988) Cancer in homozygotes and heterozygotes of ataxia-telangiectasia and xeroderma pigmentosum in Britain. Cancer Res 48:2929–2932
Swift M, Morrell D, Massey RB, Chase CL (1991) Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325:1831–1836
Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, et al (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86:159–171
Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J, Leder P (1996) Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci USA 93:13084–13089
Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D (1996) Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10:2411–2422
Alzheimer A (1907) Ueber eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiat Med 64
Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13:72–78
Eckert A, Keil U, Marques CA, Bonert A, Frey C, Schüssel K, Müller WE (2003) Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochem Pharmacol 66:1627–1634
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249
Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ, et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–1472
Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, Rimmler JB, Locke PA, Conneally PM, Schmader KE, et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7:180–184
Bertram L, Tanzi RE (2004) Alzheimer’s disease: one disorder, too many genes? Hum Mol Genet 13 [Suppl 1]:R135–R141
Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G, Ratovitsky T, Davenport F, Nordstedt C, Seeger M, et al (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17:181–190
Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376:775–778
Opie EL (1901) The relation of diabetes mellitus to lesions of the pancreas: hyaline degeneration of the islands of Langerhans. J Exp Med 5:527–540
Mosselman S, Hoppener JW, Zandberg J, van Mansfeld AD, Geurts van Kessel AH, Lips CJ, Jansz HS (1988) Islet amyloid polypeptide: identification and chromosomal localization of the human gene. FEBS Lett 239:227–232
Hoppener JW, Ahren B, Lips CJ (2000) Islet amyloid and type 2 diabetes mellitus. N Engl J Med 343:411–419
Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481
Razay G, Wilcock GK (1994) Hyperinsulinaemia and Alzheimer’s disease. Age Ageing 23:396–399
Leibson CL, Rocca WA, Hanson VA, Cha R, Kokmen E, O’Brien PC, Palumbo PJ (1997) Risk of dementia among persons with diabetes mellitus: a population-based cohort study. Am J Epidemiol 145:301–308
Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM (1999) Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53:1937–1942
Stolk RP, Breteler MM, Ott A, Pols HA, Lamberts SW, Grobbee DE, Hofman A (1997) Insulin and cognitive function in an elderly population. The Rotterdam Study. Diabetes Care 20:792–795
Watson GS, Peskind ER, Asthana S, Purganan K, Wait C, Chapman D, Schwartz MW, Plymate S, Craft S (2003) Insulin increases CSF Abeta42 levels in normal older adults. Neurology 60:1899–1903
Wolozin B (2004) Cholesterol and the biology of Alzheimer’s disease. Neuron 41:7–10
Janson J, Soeller WC, Roche PC, Nelson RT, Torchia AJ, Kreutter DK, Butler PC (1996) Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci USA 93:7283–7288
Verchere CB, D’Alessio DA, Palmiter RD, Weir GC, Bonner-Weir S, Baskin DG, Kahn SE (1996) Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci USA 93:3492–3496
Ahren B, Oosterwijk C, Lips CJ, Hoppener JW (1998) Transgenic overexpression of human islet amyloid polypeptide inhibits insulin secretion and glucose elimination after gastric glucose gavage in mice. Diabetologia 41:1374–1380
Hoppener JW, Oosterwijk C, Nieuwenhuis MG, Posthuma G, Thijssen JH, Vroom TM, Ahren B, Lips CJ (1999) Extensive islet amyloid formation is induced by development of type II diabetes mellitus and contributes to its progression: pathogenesis of diabetes in a mouse model. Diabetologia 42:427–434
Gebre-Medhin S, Mulder H, Pekny M, Westermark G, Tornell J, Westermark P, Sundler F, Ahren B, Betsholtz C (1998) Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem Biophys Res Commun 250:271–277
Farris WM, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, Eckman CB, Tanzi RE, Selkoe DJ, Guenette S (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA 100:4162–4167
Bardet G (1920) Sur un syndrome d’obésité infantile avec polydactylie et rétinite pigmentaire (contribution à l’étude des formes cliniques de l’obésité hypophysaire). Paris
Biedl A (1922) Ein Geschwisterpaar mit adiposo-genitaler dystrophie. Dtsch Med Wochenschr 48:1630
Katsanis N (2004) The oligogenic properties of Bardet-Biedl syndrome. Hum Mol Genet 13 [Suppl 1]:R65–R71
Green JSP, Parfrey PS, Harnett JD, Farid NR, Cramer BC, Johnson G, Heath O, McManamon PJ, O’Leary E, Pryse-Phillips W (1989) The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N Engl J Med 321:1002–1009
Ammann F (1970) Investigations cliniques et génétiques sur le syndrome de Bardet-Biedl en Suisse. J Genet Hum 18 [Suppl]:1–31
Croft JBS, and Swift M (1990) Obesity, hypertension, and renal disease in relatives of Bardet-Biedl syndrome sibs. Am J Med Genet 36:37–42
Melberg A, Hetta J, Dahl N, Nennesmo I, Bengtsson M, Wibom R, Grant C, Gustavson KH, Lundberg PO (1995) Autosomal dominant cerebellar ataxia deafness and narcolepsy. J Neurol Sci 134:119–129
Melberg A, Dahl N, Hetta J, Valind S, Nennesmo I, Lundberg PO, Raininko R (1999) Neuroimaging study in autosomal dominant cerebellar ataxia, deafness, and narcolepsy. Neurology 53:2190–2192
Lejeune J, Gautier M, Turpin R (1959) Etude des chromosomes somatiques de neuf enfants mongoliens. C R Acad Sci 248:1721–1722
Down JLH (1866) Observations on an ethnic classification of idiots. London Hosp Clin Lecture Rep 3:259
Burch PR, Milunsky A (1969) Early-onset diabetes mellitus in the general and Down’s syndrome populations. Genetics, aetiology, and pathogenesis. Lancet I:554–558
Epstein CJ (1989) Down syndrome, trisomy 21. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) Metabolic basis of inherited disease. McGraw-Hill, New York, pp 291–326
Prince J, Jia S, Bave U, Anneren G, Oreland L (1994) Mitochondrial enzyme deficiencies in Down’s syndrome. J Neural Transm Park Dis Dement Sect 8:171–181
Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H, Yankner BA (2002) Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron 33:677–688
Arbuzova S, Hutchin T, Cuckle H (2002) Mitochondrial dysfunction and Down’s syndrome. Bioessays 24:681–684
Altafaj XD M, Baamonde C, Marti E, Visa J, Guimera J, Oset M, Gonzalez JR, Florez J, Fillat C, Estivill X (2001) Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Hum Mol Genet 10:1915–1923
Shinohara T, Tomizuka K, Miyabara S, Takehara S, Kazuki Y, Inoue J, Katoh M, Nakane H, Iino A, Ohguma A, et al (2001) Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down’s syndrome. Hum Mol Genet 10:1163–1175
Feigenbaum AB, Bergeron C, Richardson R, Wherret J, Robinson B, Weksberg R (1994) Premature atherosclerosis with photomyoclonic epilepsy, deafness, diabetes mellitus, nephropathy, and neurodegenerative disorder in two brothers: a new syndrome? Am J Med Genet 49:118–124
Friedreich N (1863) Ueber degenerative Atrophie der spinalen Hinterstränge. Virchows Arch Pathol Anat 26:391–419
Boyer SH, Chisholm AW, McKusick VA (1962) Cardiac aspects of Friedreich’s ataxia. Circulation 25:493–505
Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427
Koutnikova H, Campuzano V, Foury F, Dolle P, Cazzalini O, Koenig M (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 16:345–351
Ohshima K, Kang S, Larson JE, Wells RD (1996) Cloning, characterization, and properties of seven triplet repeat DNA sequences. J Biol Chem 271:16773–16783
Ohshima K, Montermini L, Wells RD, Pandolfo M (1998) Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem 273:14588–14595
Bidichandani SI, Ashizawa T, Patel PI (1998) The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62:111–121
Parniewski P, Bacolla A, Jaworski A, Wells RD (1999) Nucleotide excision repair affects the stability of long transcribed (CTG*CAG) tracts in an orientation-dependent manner in Escherichia coli. Nucleic Acids Res 27:616–623
Sakamoto N, Chastain PD, Parniewski P, Ohshima K, Pandolfo M, Griffith JD, and Wells RD (1999) Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich’s ataxia. Mol Cell 3:465–475
Koutnikova H, Campuzano V, Koenig M (1998) Maturation of wild-type and mutated frataxin by the mitochondrial processing peptidase. Hum Mol Genet 7:1485–1489
Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S, Trottier Y, Kish SJ, Faucheux B, Trouillas P, et al (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6:1771–1780
Mühlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R (2002) The yeast frataxin homologue Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet 11:2025–2036
Mühlenhoff U, Gerber J, Richhardt N, Lill R (2003) Components involved in assembly and dislocation of iron-sulfur clusters on the scaffold protein Isu1p. EMBO J 22:4815–4825
Gerber J, Muhlenhoff U, Lill R (2003) An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep 4:906–911
Ristow M, Pfister MF, Yee AJ, Schubert M, Michael L, Zhang CY, Ueki K, Michael MD, 2nd, Lowell BB, Kahn CR (2000) Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. Proc Natl Acad Sci USA 97:12239–12243
Adinolfi S, Trifuoggi M, Politou AS, Martin S, Pastore A (2002) A structural approach to understand the iron-binding properties of phylogenetically different frataxins. Hum Mol Genet 11:1865–1877
Dhe-Paganon S, Shigeta R, Chi YI, Ristow M, Shoelson SE (2000) Crystal structure of human frataxin. J Biol Chem 275:30753–30756
Branda SS, Yang Z, Chew A, Isaya G (1999) Mitochondrial intermediate peptidase and the yeast frataxin homolog together maintain mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum Mol Genet 8:1099–1110
Isaya G, Adamec J, Rusnak F, Owen WG, Naylor S, Benson LM (1999) Frataxin is an iron storage protein. Am J Hum Genet 65 [Suppl]:A167
Radisky DC, Babcock MC, Kaplan J (1999) The yeast frataxin homologue mediates mitochondrial iron efflux. Evidence for a mitochondrial iron cycle. J Biol Chem 274:4497–4499
Adamec J, Rusnak F, Owen WG, Naylor S, Benson LM, Gacy AM, Isaya G (2000) Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia. Am J Hum Genet 67:549–562
Gordon N (2000) Friedreich’s ataxia and iron metabolism. Brain Dev 22:465–468
Gakh O, Adamec J, Gacy AM, Twesten RD, Owen WG, Isaya G (2002) Physical evidence that yeast frataxin is an iron storage protein. Biochemistry 41:6798–6804
Schulz JB, Dehmer T, Schöls L, Mende H, Hardt C, Vorgerd M, Burk K, Matson W, Dichgans J, Beal MF, et al (2000) Oxidative stress in patients with friedreich ataxia. Neurology 55:1719–1721
Emond M, Lepage G, Vanasse M, Pandolfo M (2000) Increased levels of plasma malondialdehyde in friedreich ataxia. Neurology 55:1752–1753
Cossee M, Puccio H, Gansmuller A, Koutnikova H, Dierich A, LeMeur M, Fischbeck K, Dolle P, Koenig M (2000) Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 9:1219–1226
Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27:181–186
Wong A, Yang J, Cavadini P, Gellera C, Lonnerdal B, Taroni F, Cortopassi G (1999) The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet 8:425–430
Chantrel-Groussard K, Geromel V, Puccio H, Koenig M, Munnich A, Rötig A, Rustin P (2001) Disabled early recruitment of antioxidant defenses in Friedreich’s ataxia. Hum Mol Genet 10:2061–2067
Shoichet SA, Bäumer AT, Stamenkovic D, Sauer H, Pfeiffer AF, Kahn CR, Müller-Wieland D, Richter C, Ristow M (2002) Frataxin promotes antioxidant defense in a thiol-dependent manner resulting in diminished malignant transformation in vitro. Hum Mol Genet 11:815–821
Barr H, Page R, Taylor W (1986) Primary small bowel ganglioneuroblastoma and Friedreich’s ataxia. J R Soc Med 79:612–613
Ackroyd R, Shorthouse AJ, Stephenson TJ (1996) Gastric carcinoma in siblings with Friedreich’s ataxia. Eur J Surg Oncol 22:301–303
Kidd A, Coleman R, Whiteford M, Barron LH, Simpson SA, Haites NE (2001) Breast cancer in two sisters with Friedreich’s ataxia. Eur J Surg Oncol 27:512–514
Hewer RL, Robinson N (1968) Diabetes mellitus in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry 31:226–231
Hewer RL (1968) Study of fatal cases of Friedreich’s ataxia. BMJ 3:649–652
Finocchiaro G, Baio G, Micossi P, Pozza G, di Donato S (1988) Glucose metabolism alterations in Friedreich’s ataxia. Neurology 38:1292–1296
Khan RJ, Andermann E, Fantus IG (1986) Glucose intolerance in Friedreich’s ataxia: association with insulin resistance and decreased insulin binding. Metabolism 35:1017–1023
Hebinck J, Hardt C, Schöls L, Vorgerd M, Briedigkeit L, Kahn CR, Ristow M (2000) Heterozygous expansion of the GAA tract of the X25/frataxin gene is associated with insulin resistance in humans. Diabetes 49:1604–1607
Ristow M, Giannakidou E, Hebinck J, Busch K, Vorgerd M, Kotzka J, Knebel B, Müller-Berghaus J, Epplen C, Pfeiffer A, et al (1998) An association between NIDDM and a GAA trinucleotide repeat polymorphism in the X25/frataxin (Friedreich’s ataxia) gene. Diabetes 47:851–854
Dupont S, Dubois D, Vionnet N, Boitard C, Caillat-Zucman S, Timsit J, Froguel P (1998) No association between the Friedreich’s ataxia gene and NIDDM in the French population. Diabetes 47:1654–1656
Dalgaard LT, Hansen T, Urhammer SA, Clausen JO, Eiberg H, Pedersen O (1999) Intermediate expansions of a GAA repeat in the frataxin gene are not associated with type 2 diabetes or altered glucose-induced beta-cell function in Danish Caucasians. Diabetes 48:914–917
t’Hart LM, Ruige JB, Dekker JM, Stehouwer CD, Maassen JA, Heine RJ (1999) Altered beta-cell characteristics in impaired glucose tolerant carriers of a GAA trinucleotide repeat polymorphism in the frataxin gene. Diabetes 48:924–926
Lynn S, Hattersley AT, McCarthy MI, Frayling TM, Turnbull DM, Walker M (2000) Intermediate expansions of a X25/frataxin gene GAA repeat and type II diabetes: assessment using parent-offspring trios. Diabetologia 43:384–385
Shadrina MI, Miloserdova OV, Slominskii PA, Balabolkin MI, Limborskaya SA (2002) Association of polymorphic trinucleotide repeats (GAA)n of the frataxin gene with diabetes mellitus type 2 in the Moscow population. Mol Biol (Mosk) 36:37–39
Hanis CL, Boerwinkle E, Chakraborty R, Ellsworth DL, Concannon P, Stirling B, Morrison VA, Wapelhorst B, Spielman RS, Gogolin-Ewens KJ, et al (1996) A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet 13:161–166
Pratley RE, Thompson DB, Prochazka M, Baier L, Mott D, Ravussin E, Sakul H, Ehm MG, Burns DK, Foroud T, et al (1998) An autosomal genomic scan for loci linked to prediabetic phenotypes in Pima Indians. J Clin Invest 101:1757–1764
Luo TH, Zhao Y, Li G, Yuan WT, Zhao JJ, Chen JL, Huang W, Luo M (2001) A genome-wide search for type II diabetes susceptibility genes in Chinese Hans. Diabetologia 44:501–506
Lindgren CM, Mahtani MM, Widen E, McCarthy MI, Daly MJ, Kirby A, Reeve MP, Kruglyak L, Parker A, Meyer J, et al (2002) Genomewide search for type 2 diabetes mellitus susceptibility loci in Finnish families: the Botnia study. Am J Hum Genet 70:509–516
Ristow M, Mulder H, Pomplun D, Schulz TJ, Müller-Schmehl K, Krause A, Fex M, Puccio H, Müller J, Isken F, et al (2003) Frataxin-deficiency in pancreatic islets causes diabetes due to loss of beta-cell mass. J Clin Invest 112:527–534
Herrmann C Jr, Aguilar MJ, Sacks OW (1964) Hereditary photomyoclonus associated with diabetes mellitus, deafness, nephropathy, and cerebral dysfunction. Neurology 14:212–222
Huntington G (1872) On chorea. Med Surg Reporter 26:317–321
Mazziotta JC, Phelps ME, Pahl JJ, Huang SC, Baxter LR, Riege WH, Hoffman JM, Kuhl DE, Lanto AB, Wapenski JA, et al (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 316:357–362
Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983
Djousse L, Knowlton B, Hayden M, Almqvist EW, Brinkman R, Ross C, Margolis R, Rosenblatt A, Durr A, Dode C, et al (2003) Interaction of normal and expanded CAG repeat sizes influences age at onset of Huntington disease. Am J Med Genet 119A:279–282
Dyer RB, McMurray CT (2001) Mutant protein in Huntington disease is resistant to proteolysis in affected brain. Nat Genet 29:270–278
Arenas J, Campos Y, Ribacoba R, Martin MA, Rubio JC, Ablanedo P, Cabello A (1998) Complex I defect in muscle from patients with Huntington’s disease. Ann Neurol 43:397–400
Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse model of Huntington’s disease. J Neurochem 79:1246–1249
Schapira AH (2002) Primary and secondary defects of the mitochondrial respiratory chain. J Inherit Metab Dis 25:207–214
Podolsky S, Leopold NA, Sax DS (1972) Increased frequency of diabetes mellitus in patients with Huntington’s chorea. Lancet I:1356–1358
Farrer LA (1985) Diabetes mellitus in Huntington disease. Clin Genet 27:62–67
Podolsky S, Leopold NA (1977) Abnormal glucose tolerance and arginine tolerance tests in Huntington’s disease. Gerontology 23:55–63
Pratley RE, Salbe AD, Ravussin E, Caviness JN (2000) Higher sedentary energy expenditure in patients with Huntington’s disease. Ann Neurol 47:64–70
Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506
Hurlbert MS, Zhou W, Wasmeier C, Kaddis FG, Hutton JC, Freed CR (1999) Mice transgenic for an expanded CAG repeat in the Huntington’s disease gene develop diabetes. Diabetes 48:649–651
Jenkins BG, Klivenyi P, Kustermann E, Andreassen OA, Ferrante RJ, Rosen BR, Beal MF (2000) Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington’s disease mice. J Neurochem 74:2108–2119
Andreassen OA, Dedeoglu A, Stanojevic V, Hughes DB, Browne SE, Leech CA, Ferrante RJ, Habener JF, Beal MF, Thomas MK (2002) Huntington’s disease of the endocrine pancreas: insulin deficiency and diabetes mellitus due to impaired insulin gene expression. Neurobiol Dis 11:410–424
Miller TW, Shirley TL, Wolfgang WJ, Kang X, Messer A (2003) DNA vaccination against mutant huntingtin ameliorates the HDR6/2 diabetic phenotype. Mol Ther 7:572–579
Fain JN, Del Mar NA, Meade CA, Reiner A, Goldowitz D (2001) Abnormalities in the functioning of adipocytes from R6/2 mice that are transgenic for the Huntington’s disease mutation. Hum Mol Genet 10:145–152
Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19:3248–3257
Kearns TPS, Sayre GP (1958) Retinitis pigmentosa, external ophthalmoplegia, and complete heart block: unusual syndrome with histologic study in one of two cases. Arch Ophthalmol 60:280–289
Poulton J, O’Rahilly S, Morten KJ, Clark A (1995) Mitochondrial DNA, diabetes and pancreatic pathology in Kearns-Sayre syndrome. Diabetologia 38:868–871
Piccolo G, Aschei M, Ricordi A, Banfi P, Lo Curto F, Fratino P (1989) Normal insulin receptors in mitochondrial myopathies with ophthalmoplegia. J Neurol Sci 94:163–172
Iannaccone ST, Griggs RC, Markesbery WR, Joynt RJ (1974) Familial progressive external ophthalmoplegia and ragged-red fibers. Neurology 24:1033–1038
McKenzie M, Trounce IA, Cassar CA, Pinkert CA (2004) Production of homoplasmic xenomitochondrial mice. Proc Natl Acad Sci USA 101:1685–1690
Klinefelter HF, Reifenstein EC, et al (1942) Syndrome characterized by gynaecomastia, aspermatogenesis without A-Leydigism and increased excretion of follicle-stimulating hormone. J Clin Endocrinol Metab 2:615–627
Gomez-Acebo J, Parrilla R, Abrisqueta JA, Pozuelo V (1968) Fine structure of spermatogenesis in Klinefelter’s syndrome. J Clin Endocrinol Metab 28:1287–1294
Oikawa H, Tun Z, Young DR, Ozawa H, Yamazaki K, Tanaka E, Honda K (2002) The specific mitochondrial DNA polymorphism found in Klinefelter’s syndrome. Biochem Biophys Res Commun 297:341–345
Jackson IM, Buchanan KD, McKiddie MT, Prentice CR (1966) Carbohydrate metabolism in Klinefelter’s syndrome. J Endocrinol 35:169–172
Zuppinger K, Engel E, Forbes AP, Mantooth L, Claffey J (1967) Klinefelter’s syndrome, a clinical and cytogenetic study in twenty-four cases. Acta Endocrinol (Copenh) 54 [Suppl 113]:5
Burch PR (1969) Klinefelter’s syndrome, dizygotic twinning and diabetes mellitus. Nature 221:175–177
Hanna MG, Nelson I, Sweeney MG, Cooper JM, Watkins PJ, Morgan-Hughes JA, Harding AE (1995) Congenital encephalomyopathy and adult-onset myopathy and diabetes mellitus: different phenotypic associations of a new heteroplasmic mtDNA tRNA glutamic acid mutation. Am J Hum Genet 56:1026–1033
Hao H, Bonilla E, Manfredi G, DiMauro S, Moraes CT (1995) Segregation patterns of a novel mutation in the mitochondrial tRNA glutamic acid gene associated with myopathy and diabetes mellitus. Am J Hum Genet 56:1017–1025
Goto Y, Nonaka I, Horai S (1990) A mutation in the tRNA (Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348:651–653
Kobayashi Y, Momoi MY, Tominaga K, Momoi T, Nihei K, Yanagisawa M, Kagawa Y, Ohta S (1990) A point mutation in the mitochondrial tRNA (Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun 173:816–822
Kressmann F (1976) Association diabète et surdité: à propos d’une famille atteinte de cette double tare. Thesis, University of Bordeaux II
Ballinger SW, Shoffner JM, Hedaya EV, Trounce I, Polak MA, Koontz DA, Wallace DC (1992) Maternally transmitted diabetes and deafness associated with a 10.4\kb mitochondrial DNA deletion. Nat Genet 1:11–15
Ouweland JM van den, Lemkes HH, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PA, van de Kamp JJ, Maassen JA (1992) Mutation in mitochondrial tRNA (Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet 1:368–371
Reardon W, Ross RJ, Sweeney MG, Luxon LM, Pembrey ME, Harding AE, Trembath RC (1992) Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA. Lancet 340:1376–1379
Manouvrier S, Rötig A, Hannebique G, Gheerbrandt J.-D, Royer-Legrain G, Munnich A, Parent M, Grunfeld JP, Largilliere C, Lombes A, et al (1995) Point mutation of the mitochondrial tRNA (leu) gene (A 3243 G) in maternally inherited hypertrophic cardiomyopathy, diabetes mellitus, renal failure, and sensorineural deafness. J Med Genet 32:654–656
Alcolado JC, Alcolado R (1991) Importance of maternal history of non-insulin dependent diabetic patients. BMJ 302:1178–1180
Gerbitz KD, van den Ouweland JM, Maassen JA, Jaksch M (1995) Mitochondrial diabetes mellitus: a review. Biochim Biophys Acta 1271:253–260
Suzuki S, Hinokio Y, Hirai S, Onoda M, Matsumoto M, Ohtomo M, Kawasaki H, Satoh Y, Akai H, Abe K, et al (1994) Pancreatic beta-cell secretory defect associated with mitochondrial point mutation of the tRNA (LEU (UUR)) gene: a study in seven families with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS). Diabetologia 37:818–825
Velho G, Byrne MM, Clement K, Sturis J, Pueyo ME, Blanche H, Vionnet N, Fiet J, Passa P, Robert JJ, et al (1996) Clinical phenotypes, insulin secretion, and insulin sensitivity in kindreds with maternally inherited diabetes and deafness due to mitochondrial tRNALeu (UUR) gene mutation. Diabetes 45:478–487
Tanaka M, Ino H, Ohno K, Hattori K, Sato W, Ozawa T, Tanaka T, Itoyama S (1990) Mitochondrial mutation in fatal infantile cardiomyopathy. Lancet 336:1452
Taniike M, Fukushima H, Yanagihara I, Tsukamoto H, Tanaka J, Fujimura H, Nagai T, Sano T, Yamaoka K, Inui K, et al (1992) Mitochondrial tRNA (Ile) mutation in fatal cardiomyopathy. Biochem Biophys Res Commun 186:47–53
Merante F, Myint T, Tein I, Benson L, Robinson BH (1996) An additional mitochondrial tRNA (Ile) point mutation (A-to-G at nucleotide 4295) causing hypertrophic cardiomyopathy. Hum Mutat 8:216–222
Corona P, Lamantea E, Greco M, Carrara F, Agostino A, Guidetti D, Dotti MT, Mariotti C, Zeviani M (2002) Novel heteroplasmic mtDNA mutation in a family with heterogeneous clinical presentations. Ann Neurol 51:118–122
Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA (Lys) mutation. Cell 61:931–937
Yoneda M, Tanno Y, Horai S, Ozawa T, Miyatake T, Tsuji S (1990) A common mitochondrial DNA mutation in the t-RNA (Lys) of patients with myoclonus epilepsy associated with ragged-red fibers. Biochem Int 21:789–796
Shoffner JM, Wallace DC (1992) Mitochondrial genetics: principles and practice. Am J Hum Genet 51:1179–1186
Kameoka K, Isotani H, Tanaka K, Kitaoka H, Ohsawa N (1998) Impaired insulin secretion in Japanese diabetic subjects with an A-to-G mutation at nucleotide 8296 of the mitochondrial DNA in tRNA (Lys). Diabetes Care 21:2034–2035
Kameoka K, Isotani H, Tanaka K, Azukari K, Fujimura Y, Shiota Y, Sasaki E, Majima M, Furukawa K, Haginomori S, et al (1998) Novel mitochondrial DNA mutation in tRNA (Lys) (8296A->G) associated with diabetes. Biochem Biophys Res Commun 245:523–527
Lynn S, Wardell T, Johnson MA, Chinnery PF, Daly ME, Walker M, Turnbull DM (1998) Mitochondrial diabetes: investigation and identification of a novel mutation. Diabetes 47:1800–1802
Curschmann H (1905) Über partielle Myotonie unter dem Bilde einer Beschäftigungsneurose und Lähmung. Berl Klin Wochenschr 42:1175–1185
Steinert HHW (1909) Über das klinische und anatomische Bilde des Muskelschwunds des Myotoniker. Dtsch Z Nervenheilkd 37:58–104
Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 68:799–808
Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, et al (1992) Erratum: molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 69:385
Carango P, Noble JE, Marks HG, Funanage VL (1993) Absence of myotonic dystrophy protein kinase (DMPK) mRNA as a result of a triplet repeat expansion in myotonic dystrophy. Genomics 18:340–348
Ven PF van der, Jansen G, van Kuppevelt TH, Perryman MB, Lupa M, Dunne PW, ter Laak HJ, Jap PH, Veerkamp JH, Epstein HF, et al (1993) Myotonic dystrophy kinase is a component of neuromuscular junctions. Hum Mol Genet 2:1889–1894
Tsilfidis C, MacKenzie AE, Mettler G, Barcelo J, Korneluk RG (1992) Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nat Genet 1:192–195
Charlet BN, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53
Jamal GA, Weir AI, Hansen S, Ballantyne JP (1986) Myotonic dystrophy. A reassessment by conventional and more recently introduced neurophysiological techniques. Brain 109:1279–1296
Spaans F, Jennekens FG, Mirandolle JF, Bijlsma JB, de Gast GC (1986) Myotonic dystrophy associated with hereditary motor and sensory neuropathy. Brain 109:1149–1168
Censori B, Provinciali L, Danni M, Chiaramoni L, Maricotti M, Foschi N, Del Pesce M, Salvolini U (1994) Brain involvement in myotonic dystrophy: MRI features and their relationship to clinical and cognitive conditions. Acta Neurol Scand 90:211–217
Kemp GJ, Taylor DJ, Thompson CH, Hands LJ, Rajagopalan B, Styles P, Radda GK (1993) Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. NMR Biomed 6:302–310
Barnes PR, Kemp GJ, Taylor DJ, Radda GK (1997) Skeletal muscle metabolism in myotonic dystrophy A 31P magnetic resonance spectroscopy study. Brain 120:1699–1711
Barbosa J, Nuttall FQ, Kennedy W, Goetz F (1974) Plasma insulin in patients with myotonic dystrophy and their relatives. Medicine (Baltimore) 53:307–323
Reddy S, Smith DB, Rich MM, Leferovich JM, Reilly P, Davis BM, Tran K, Rayburn H, Bronson R, Cros D, et al (1996) Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet 13:325–335
Jansen G, Groenen PJ, Bachner D, Jap PH, Coerwinkel M, Oerlemans F, van den Broek W, Gohlsch B, Pette D, Plomp JJ, et al (1996) Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat Genet 13:316–324
Westphal CC (1877) Eigenthümliche mit Einschafen verbundene Anfälle. Arch Psychiat Nervenk 7:681–683
Adie W (1926) Idiopathic narcolepsy: a disease sui generis: with remarks on the mechanism of sleep. Brain 49:257–306
Roberts HJ (1963) The syndrome of narcolepsy and diabetogenic (functional) hyperinsulinism. Observations on 190 patients, with emphasis upon its relationship to obesity, diabetes mellitus and cerebral dysrhythmias. J Fla Med Assoc 50:355–366
Honda Y, Doi Y, Ninomiya R, Ninomiya C (1986) Increased frequency of non-insulin-dependent diabetes mellitus among narcoleptic patients. Sleep 9:254–259
Schuld A, Hebebrand J, Geller F, Pollmacher T (2000) Increased body-mass index in patients with narcolepsy. Lancet 355:1274–1275
Schuld A, Blum WF, Uhr M, Haack M, Kraus T, Holsboer F, Pollmacher T (2000) Reduced leptin levels in human narcolepsy. Neuroendocrinology 72:195–198
Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M, Cornford M, Siegel JM (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474
De Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, 2nd et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327
Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376
Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39–40
Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991–997
Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, et al (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:701–713
Siebold C, Hansen BE, Wyer JR, Harlos K, Esnouf RE, Svejgaard A, Bell JI, Strominger JL, Jones EY, Fugger L (2004) Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. Proc Natl Acad Sci USA 101:1999–2004
Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451
Kayaba Y, Nakamura A, Kasuya Y, Ohuchi T, Yanagisawa M, Komuro I, Fukuda Y, Kuwaki T (2003) Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Regul Integr Comp Physiol 285:R581–R593
Heine L (1925) Über das familiäre Auftreten von Pseudoglioma congenitum bei zwei Brüdern und Amotio retinae acq. bei Vater und Sohn ünd über Pseudogliom mit Nekrose der Uvea und Retina beim Sohn eines Vaters mit Iritis. Z Augenheilkd 56:155–164
Norrie G (1927) Causes of blindness in children: twenty-five years’ experience of Danish Institutes for the blind. Acta Ophthalmol 5:357–386
Warburg M (1961) Norrie’s disease: a new hereditary bilateral pseudotumour of the retina. Acta Ophthalmol 39:757–772
Warburg M (1963) Norrie’s disease (atrofia bulborum hereditaria). Acta Ophthalmol 41:134–146
Berger W, Meindl A, van de Pol TJ, Cremers FP, Ropers HH, Doerner C, Monaco A, Bergen AA, Lebo R, Warburg M, et al (1992) Isolation of a candidate gene for Norrie disease by positional cloning. Nat Genet 1:199–203
Berger W, Meindl A, van de Pol TJ, Cremers FP, Ropers HH, Doerner C, Monaco A, Bergen AA, Lebo R, Warburg M, et al (1992) Erratum: isolation of a candidate gene for Norrie disease by positional cloning. Nat Genet 2:84
Chen ZY, Hendriks RW, Jobling MA, Powell JF, Breakefield XO, Sims KB, Craig IW (1992) Isolation and characterization of a candidate gene for Norrie disease. Nat Genet 1:204–208
Berger W, van de Pol D, Bachner D, Oerlemans F, Winkens H, Hameister H, Wieringa B, Hendriks W, Ropers HH (1996) An animal model for Norrie disease (ND): gene targeting of the mouse ND gene. Hum Mol Genet 5:51–59
Parkinson J (1817) An essay on the shaking palsy. Sherwood, Neely & Jones, London
Nussbaum RL, Polymeropoulos MH (1997) Genetics of Parkinson’s disease. Hum Mol Genet 6:1687–1691
Warner TT, Schapira AH (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 53 [Suppl 3]:S16–S23
Chung KK, Dawson VL, Dawson TM (2003) New insights into Parkinson’s disease. J Neurol 250 [Suppl 3]:III15–III24
Gowers WR (1900) A manual of diseases of the nervous system, vol I. Blakiston’s Son, Philadelphia
Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Lyons K, Pahwa R, Stern MB, Colcher A, Hiner BC, et al (2001) Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA 286:2239–2244
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608
Martin ER, Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Lyons K, Pahwa R, Stern MB, Colcher A, et al (2001) Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease. JAMA 286:2245–2250
Wu RM, Cheng CW, Chen KH, Lu SL, Shan DE, Ho YF, Chern HD (2001) The COMT L allele modifies the association between MAOB polymorphism and PD in Taiwanese. Neurology 56:375–382
Mattila KM, Rinne JO, Lehtimaki T, Roytta M, Ahonen JP, Hurme M (2002) Association of an interleukin 1B gene polymorphism (-511) with Parkinson’s disease in Finnish patients. J Med Genet 39:400–402
Chan DK, Lam MK, Wong R, Hung WT, Wilcken DE (2003) Strong association between N-acetyltransferase 2 genotype and PD in Hong Kong Chinese. Neurology 60:1002–1005
Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VM (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636–640
Shoffner JM, Watts RL, Juncos JL, Torroni A, Wallace DC (1991) Mitochondrial oxidative phosphorylation defects in Parkinson’s disease. Ann Neurol 30:332–339
Parker WD Jr, Swerdlow RH (1998) Mitochondrial dysfunction in idiopathic Parkinson disease. Am J Hum Genet 62:758–762
Walt JM van der, Nicodemus KK, Martin ER, Scott WK, Nance MA, Watts RL, Hubble JP, Haines JL, Koller WC, Lyons K, et al (2003) Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 72:804–811
Sandyk R (1993) The relationship between diabetes mellitus and Parkinson’s disease. Int J Neurosci 69:125–130
Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34:521–533
Down JLH (1887) Mental affections of childhood and youth. Churchill, London
Prader AL A, Willi H (1956) Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus und Oligophrenie nach myatonieartigem Zustand im Neugeborenenalter. Schweiz Med Wochenschr 86:1260–1261
DelParigi A, Tschöp M, Heiman ML, Salbe AD, Vozarova B, Sell SM, Bunt JC, Tataranni PA (2002) High circulating ghrelin: a potential cause for hyperphagia and obesity in prader-willi syndrome. J Clin Endocrinol Metab 87:5461–5464
Tschöp M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913
Butler JV, Whittington JE, Holland AJ, Boer H, Clarke D, Webb T (2002) Prevalence of, and risk factors for, physical ill-health in people with Prader-Willi syndrome: a population-based study. Dev Med Child Neurol 44:248–255
Hoybye C, Hilding A, Jacobsson H, Thoren M (2002) Metabolic profile and body composition in adults with Prader-Willi syndrome and severe obesity. J Clin Endocrinol Metab 87:3590–3597
Forssman H, Hagberg B (1964) Prader-Willi syndrome in boy of ten with prediabetes. Acta Paediatr 53:70–78
Sills IN, Rapaport R (1998) Non-insulin dependent diabetes mellitus in a prepubertal child with Prader-Willi syndrome. J Pediatr Endocrinol Metab 11:281–282
Schuster DP, Osei K, Zipf WB (1996) Characterization of alterations in glucose and insulin metabolism in Prader-Willi subjects. Metabolism 45:1514–1520
Yang T, Adamson TE, Resnick JL, Leff S, Wevrick R, Francke U, Jenkins NA, Copeland NG, Brannan CI (1998) A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nat Genet 19:25–31
Porter FS, Rogers LE, Sidbury JB Jr (1969) Thiamine-responsive megaloblastic anemia. J Pediatr 74:494–504
Viana MB, Carvalho RI (1978) Thiamine-responsive megaloblastic anemia, sensorineural deafness, and diabetes mellitus: a new syndrome? J Pediatr 93:235–238
Labay V, Raz T, Baron D, Mandel H, Williams H, Barrett T, Szargel R, McDonald L, Shalata A, Nosaka K, et al (1999) Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet 22:300–304
Tulp N (1739) Observationes Medicae. Wishoff, Leyden
Scharfe C, Hauschild M, Klopstock T, Janssen AJ, Heidemann PH, Meitinger T, Jaksch M (2000) A novel mutation in the thiamine responsive megaloblastic anaemia gene SLC19A2 in a patient with deficiency of respiratory chain complex I. J Med Genet 37:669–673
Oishi K, Hofmann S, Diaz GA, Brown T, Manwani D, Ng L, Young R, Vlassara H, Ioannou YA, Forrest D, et al (2002) Targeted disruption of Slc19a2, the gene encoding the high-affinity thiamin transporter Thtr-1, causes diabetes mellitus, sensorineural deafness and megaloblastosis in mice. Hum Mol Genet 11:2951–2960
Fleming JC, Tartaglini E, Kawatsuji R, Yao D, Fujiwara Y, Bednarski JJ, Fleming MD, Neufeld EJ (2003) Male infertility and thiamine-dependent erythroid hypoplasia in mice lacking thiamine transporter Slc19a2. Mol Genet Metab 80:234–241
Nakano KK, Dawson DM, Spence A (1972) Machado disease. A hereditary ataxia in Portuguese emigrants to Massachusetts. Neurology 22:49–55
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228
Schöls L, Amoiridis G, Langkafel M, Buttner T, Przuntek H, Riess O, Vieira-Saecker AM, Epplen JT (1995) Machado-Joseph disease mutations as the genetic basis of most spinocerebellar ataxias in Germany. J Neurol Neurosurg Psychiatry 59:449–450
Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, Kakizuka A (1996) Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat Genet 13:196–202
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62–69
Takiyama YSK, Namekawa M, Soutome M, Esumi E, Ogawa T, Ishikawa K, Mizusawa H, Nakano I, Nishizawa M (1998) A Japanese family with spinocerebellar ataxia type 6 which includes three individuals homozygous for an expanded CAG repeat in the SCA6/CACNL1A4 gene. J Neurol Sci 158:141–147
Morgagni GB (1768) Epistola anatomica medica
Shereshevskii NA (1925) In relation to the question of a connection between congenital abnormalities and endocrinopathies. Russian Endocrinological Society
Ullrich O (1930) Über typische Kombinationsbilder multipler Abartungen. Z Kinderheilkd 49:271
Turner HH (1938) A syndrome of infantilism, congenital webbed neck, and cubitus valgus. Endocrinology 23:566–574
Hortling H, Delachapelle A, Frisk M, Widholm O (1964) The syndromes of obesity and of delayed growth in adolescence. Acta Med Scand 175 [Suppl 412]:109–117
AvRuskin TW, Crigler JF Jr, Soeldner JS (1979) Turner’s syndrome and carbohydrate metabolism. I. Impaired insulin secretion after tolbutamide and glucagon stimulation tests: evidence of insulin deficiency. Am J Med Sci 277:145–152
Jackson IM, Buchanan KD, McKiddie MT, Prentice CR (1966) Carbohydrate metabolism and pituitary function in gonadal dysgenesis (Turner’s syndrome). J Endocrinol 34:289–298
Nielsen J, Johansen K, Yde H (1969) The frequency of diabetes mellitus in patients with Turner’s syndrome and pure gonadal dysgenesis. Blood glucose, plasma insulin and growth hormone level during an oral glucose tolerance test. Acta Endocrinol (Copenh) 62:251–269
Reichel W, Garcia-Bunuel R, Dilallo J (1971) Progeria and Werner’s syndrome as models for the study of normal human aging. J Am Geriatr Soc 19:369–375
Martin GM (1997) The Werner mutation: does it lead to a “public” or “private” mechanism of aging? Mol Med 3:356–358
Kakigi R, Endo C, Neshige R, Kohno H, Kuroda Y (1992) Accelerated aging of the brain in Werner’s syndrome. Neurology 42:922–924
Umehara F, Abe M, Nakagawa M, Izumo S, Arimura K, Matsumuro K, Osame M (1993) Werner’s syndrome associated with spastic paraparesis and peripheral neuropathy. Neurology 43:1252–1254
Just A, Canaple S, Joly H, Piussan C, Rosa A (1996) Complications neurologiques dans un cas de syndrome de Werner. Rev Neurol (Paris) 152:634–636
Malandrini A, Dotti MT, Villanova M, Battisti C, Federico A (2000) Neurological involvement in Werner’s syndrome: clinical and biopsy study of a familial case. Eur Neurol 44:187–189
Zackai AH, Weber D, Noth R (1974) Cardiac findings in Werner’s syndrome. Geriatrics 29:141–148
Tri TB, Combs DT (1978) Congestive cardiomyopathy in Werner’s syndrome. Lancet I:1052–1053
Alberti KG, Young JD, Hockaday TD (1974) Werner’s syndrome: metabolic observations. Proc R Soc Med 67:36–38
Yamada K, Ikegami H, Yoneda H, Miki T, Ogihara T (1999) All patients with Werner’s syndrome are insulin resistant, but only those who also have impaired insulin secretion develop overt diabetes. Diabetes Care 22:2094–2095
Izumino K, Sakamaki H, Ishibashi M, Takino H, Yamasaki H, Yamaguchi Y, Chikuba N, Matsumoto K, Akazawa S, Tokuyama K, et al (1997) Troglitazone ameliorates insulin resistance in patients with Werner’s syndrome. J Clin Endocrinol Metab 82:2391–2395
Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262
Chen L, Lee L, Kudlow BA, Dos Santos HG, Sletvold O, Shafeghati Y, Botha EG, Garg A, Hanson NB, Martin GM, et al (2003) LMNA mutations in atypical Werner’s syndrome. Lancet 362:440–445
Shackleton S, Lloyd DJ, Jackson SN, Evans R, Niermeijer MF, Singh BM, Schmidt H, Brabant G, Kumar S, Durrington PN, et al (2000) LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet 24:153–156
Speckman RA, Garg A, Du F, Bennett L, Veile R, Arioglu E, Taylor SI, Lovett M, Bowcock AM (2000) Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am J Hum Genet 66:1192–1198
Garg A (2004) Acquired and inherited lipodystrophies. N Engl J Med 350:1220–1234
Hegele RA, Cao H, Harris SB, Zinman B, Hanley AJ, Anderson CM (2000) Genetic variation in LMNA modulates plasma leptin and indices of obesity in aboriginal Canadians. Physiol Genomics 3:39–44
Hegele RA, Cao H, Huff MW, Anderson CM (2000) LMNA R482Q mutation in partial lipodystrophy associated with reduced plasma leptin concentration. J Clin Endocrinol Metab 85:3089–3093
Lombard DB, Beard C, Johnson B, Marciniak RA, Dausman J, Bronson R, Buhlmann JE, Lipman R, Curry R, Sharpe A, et al (2000) Mutations in the WRN gene in mice accelerate mortality in a p53-null background. Mol Cell Biol 20:3286–3291
Wolfram DJ, Wagener HP (1938) Diabetes mellitus and simple optic atrophy among siblings: report of four cases. Mayo Clin Proc 13:715–718
Swift RG, Perkins DO, Chase CL, Sadler DB, Swift M (1991) Psychiatric disorders in 36 families with Wolfram syndrome. Am J Psychiatry 148:775–779
Swift RG, Polymeropoulos MH, Torres R, Swift M (1998) Predisposition of Wolfram syndrome heterozygotes to psychiatric illness. Mol Psychiatry 3:86–91
Furlong RA, Ho LW, Rubinsztein JS, Michael A, Walsh C, Paykel ES, Rubinsztein DC (1999) A rare coding variant within the wolframin gene in bipolar and unipolar affective disorder cases. Neurosci Lett 277:123–126
Bezold R, Jaksch M, Kaufhold P, Gerbitz KD (1995) DIDMOAD or Wolfram syndrome. A mitochondrial-mediated disorder. Diabetes Care 18:583–584
Bezold R, Jaksch M, Kaufhold P, Obermaier-Kusser B, Gerbitz KD (1997) Analysis of the mitochondrial DNA from patients with Wolfram (DIDMOAD) syndrome. Mol Cell Biochem 174:209–213
Inoue HT, Tanizawa Y, Wasson J, Behn P. Kalidas K, Bernal-Mizrachi E, Meuckler M, Marshall H, Donis-Keller H, Crock P, Rogers D, Mikuni M, Kumashiro H, Higashi K, Sobue G, Oka Y, Permutt MA (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet:143–148
Strom TM, Hortnagel K, Gekeler F, Scharfe C, Rabl W, Gerbitz KD, Meitinger T (1998) Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet 7:2021–2028
Osman AA, Saito M, Makepeace C, Permutt MA, Schlesinger P, Mueckler M (2003) Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J Biol Chem 278:52755–52762
Woodhouse NJ, Sakati NA (1983) A syndrome of hypogonadism, alopecia, diabetes mellitus, mental retardation, deafness, and ECG abnormalities. J Med Genet 20:216–219
Gul D, Ozata M, Mergen H, Odabasi Z, Mergen M (2000) Woodhouse and Sakati syndrome (MIM 241080): report of a new patient. Clin Dysmorphol 9:123–125
Ristow M, Vorgerd M, Mohlig M, Schatz H, Pfeiffer A (1997) Deficiency of phosphofructo-1-kinase/muscle subtype in humans impairs insulin secretion and causes insulin resistance. J Clin Invest 100:2833–2841
Silva JP, Kohler M, Graff C, Oldfors A, Magnuson MA, Berggren PO, Larsson NG (2000) Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet 26:336–340
Winegrad AI (1972) Diabetic neuropathy. N Engl J Med 286:1261–1262
Harati Y (1996) Diabetes and the nervous system. Endocrinol Metab Clin North Am 25:325–359
Vinik AI, Park TS, Stansberry KB, Pittenger GL (2000) Diabetic neuropathies. Diabetologia 43:957–973
Enersen OD (2004) Whonamedit.com. Oslo (http://www.whonamedit.com)
Acknowledgements
The author thanks J.-C. von Kleist-Retzow, S.A. Shoichet, M. Vorgerd, and anonymous reviewers for critical comments on the manuscript, A. Duverger for help with French references, and R. Heidmann and D. Kollhof for excellent librarian support. The remarkable resources of http://www.Whonamedit.com regarding the historical contextualization of several syndromes are gratefully acknowledged [315]. The author is currently supported by Deutsche Diabetes Gesellschaft, Deutsche Forschungsgemeinschaft, Fritz-Thyssen-Stiftung, Wilhelm-Sander-Stiftung, and Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz/Leibniz-Gemeinschaft.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ristow, M. Neurodegenerative disorders associated with diabetes mellitus. J Mol Med 82, 510–529 (2004). https://doi.org/10.1007/s00109-004-0552-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00109-004-0552-1