Skip to main content

Advertisement

Functional roles of HIV-1 Tat protein in the nucleus

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus-1 (HIV-1) Tat protein is one of the most important regulatory proteins for viral gene expression in the host cell and can modulate different cellular processes. In addition, Tat is secreted by the infected cell and can be internalized by neighboring cells; therefore, it affects both infected and uninfected cells. Tat can modulate cellular processes by interacting with different cellular structures and signaling pathways. In the nucleus, Tat might be localized either in the nucleoplasm or the nucleolus depending on its concentration. Here we review the distinct functions of Tat in the nucleoplasm and the nucleolus in connection with viral infection and HIV-induced oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BL:

Burkitt lymphoma

HIV-1:

Human immunodeficiency virus 1

LTR:

Long terminal repeat

NLS:

Nuclear localization signal

NoLS:

Nucleolar localization signal

TAR:

Trans-activation responsive region

References

  1. Van Lint C, Bouchat S, Marcello A (2013) HIV-1 transcription and latency: an update. Retrovirology 10:67. doi:10.1186/1742-4690-10-67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mbonye U, Karn J (2014) Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology 454–455:328–339. doi:10.1016/j.virol.2014.02.008

    Article  PubMed  CAS  Google Scholar 

  3. Romani B, Engelbrecht S, Glashoff RH (2010) Functions of Tat: the versatile protein of human immunodeficiency virus type 1. J Gen Virol 91:1–12. doi:10.1099/vir.0.016303-0

    Article  CAS  PubMed  Google Scholar 

  4. Poggi A (2004) Migration of V 1 and V 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat. Blood 103:2205–2213. doi:10.1182/blood-2003-08-2928

    Article  CAS  PubMed  Google Scholar 

  5. Westendorp MO, Frank R, Ochsenbauer C et al (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375:497–500. doi:10.1038/375497a0

    Article  CAS  PubMed  Google Scholar 

  6. Xiao H, Neuveut C, Tiffany HL et al (2000) Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci USA 97:11466–11471. doi:10.1073/pnas.97.21.11466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ensoli B, Barillari G, Salahuddin SZ et al (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345:84–86. doi:10.1038/345084a0

    Article  CAS  PubMed  Google Scholar 

  8. Ensoli B, Buonaguro L, Barillari G et al (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67:277–287

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mediouni S, Darque A, Baillat G et al (2012) Antiretroviral therapy does not block the secretion of the human immunodeficiency virus tat protein. Infect Disord Drug Targets 12:81–86

    Article  CAS  PubMed  Google Scholar 

  10. Ferrari A, Pellegrini V, Arcangeli C et al (2003) Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 8:284–294

    Article  CAS  PubMed  Google Scholar 

  11. Debaisieux S, Rayne F, Yezid H, Beaumelle B (2012) The ins and outs of HIV-1 Tat. Traffic 13:355–363. doi:10.1111/j.1600-0854.2011.01286.x

    Article  CAS  PubMed  Google Scholar 

  12. Albini A, Barillari G, Benelli R et al (1995) Angiogenic properties of human immunodeficiency virus type 1 Tat protein. Proc Natl Acad Sci U S A 92:4838–4842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res 17:3551–3561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruben S, Perkins A, Purcell R et al (1989) Structural and functional characterization of human immunodeficiency virus tat protein. J Virol 63:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Coiras M, Camafeita E, Ureña T et al (2006) Modifications in the human T cell proteome induced by intracellular HIV-1 Tat protein expression. Proteomics 6(Suppl 1):S63–S73. doi:10.1002/pmic.200500437

    Article  PubMed  Google Scholar 

  16. Stauber RH, Pavlakis GN (1998) Intracellular trafficking and interactions of the HIV-1 Tat protein. Virology 252:126–136

    Article  CAS  PubMed  Google Scholar 

  17. Lazzi S, Bellan C, De Falco G et al (2002) Expression of RB2/p130 tumor-suppressor gene in AIDS-related non-Hodgkin’s lymphomas: implications for disease pathogenesis. Hum Pathol 33:723–731

    Article  CAS  PubMed  Google Scholar 

  18. Egelé C, Barbier P, Didier P et al (2008) Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat. Retrovirology 5:62. doi:10.1186/1742-4690-5-62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Péloponèse JM, Collette Y, Grégoire C et al (1999) Full peptide synthesis, purification, and characterization of six Tat variants. Differences observed between HIV-1 isolates from Africa and other continents. J Biol Chem 274:11473–11478

    Article  PubMed  Google Scholar 

  20. Bayer P, Kraft M, Ejchart A et al (1995) Structural studies of HIV-1 Tat protein. J Mol Biol 247:529–535. doi:10.1006/jmbi.1995.0158

    CAS  PubMed  Google Scholar 

  21. Grégoire C, Péloponèse JM, Esquieu D et al (2001) Homonuclear (1)H-NMR assignment and structural characterization of human immunodeficiency virus type 1 Tat Mal protein. Biopolymers 62:324–335. doi:10.1002/bip.10000

    Article  PubMed  Google Scholar 

  22. Péloponèse JM, Grégoire C, Opi S et al (2000) 1H-13C nuclear magnetic resonance assignment and structural characterization of HIV-1 Tat protein. C R Acad Sci III 323:883–894

    Article  PubMed  Google Scholar 

  23. Watkins JD, Campbell GR, Halimi H, Loret EP (2008) Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant. Retrovirology 5:83. doi:10.1186/1742-4690-5-83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Foucault M, Mayol K, Receveur-Bréchot V et al (2010) UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate. Proteins 78:1441–1456. doi:10.1002/prot.22661

    CAS  PubMed  Google Scholar 

  25. Hudson L, Liu J, Nath A et al (2000) Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J Neurovirol 6:145–155

    Article  CAS  PubMed  Google Scholar 

  26. Del Valle L, Croul S, Morgello S et al (2000) Detection of HIV-1 Tat and JCV capsid protein, VP1, in AIDS brain with progressive multifocal leukoencephalopathy. J Neurovirol 6:221–228

    Article  PubMed  Google Scholar 

  27. Nath A, Psooy K, Martin C et al (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70:1475–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288. doi:10.1006/exnr.1998.6958

    Article  CAS  PubMed  Google Scholar 

  29. Haughey NJ, Holden CP, Nath A, Geiger JD (1999) Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. J Neurochem 73:1363–1374

    Article  CAS  PubMed  Google Scholar 

  30. Haughey NJ, Nath A, Mattson MP et al (2001) HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. J Neurochem 78:457–467

    Article  CAS  PubMed  Google Scholar 

  31. Sabatier JM, Vives E, Mabrouk K et al (1991) Evidence for neurotoxic activity of tat from human immunodeficiency virus type 1. J Virol 65:961–967

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nath A, Hauser KF, Wojna V et al (2002) Molecular basis for interactions of HIV and drugs of abuse. J Acquir Immune Defic Syndr 31(Suppl 2):S62–S69

    Article  CAS  PubMed  Google Scholar 

  33. Tryoen-Tóth P, Chasserot-Golaz S, Tu A et al (2013) HIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate. J Cell Sci 126:454–463. doi:10.1242/jcs.111658

    Article  PubMed  CAS  Google Scholar 

  34. Davis LI (1995) The nuclear pore complex. Annu Rev Biochem 64:865–896. doi:10.1146/annurev.bi.64.070195.004245

    Article  CAS  PubMed  Google Scholar 

  35. Peters R (1983) Nuclear envelope permeability measured by fluorescence microphotolysis of single liver cell nuclei. J Biol Chem 258:11427–11429

    CAS  PubMed  Google Scholar 

  36. Fulcher AJ, Jans DA (2003) The HIV-1 Tat transactivator protein: a therapeutic target? IUBMB Life 55:669–680. doi:10.1080/15216540310001643440

    Article  CAS  PubMed  Google Scholar 

  37. Hauber J, Malim MH, Cullen BR (1989) Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J Virol 63:1181–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Meredith LW, Sivakumaran H, Major L et al (2009) Potent inhibition of HIV-1 replication by a Tat mutant. PLoS One 4:e7769. doi:10.1371/journal.pone.0007769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Li YP (1997) Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 71:4098–4102

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pearson L, Garcia J, Wu F et al (1990) A transdominant tat mutant that inhibits tat-induced gene expression from the human immunodeficiency virus long terminal repeat. Proc Natl Acad Sci USA 87:5079–5083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Orsini MJ, Debouck CM (1996) Inhibition of human immunodeficiency virus type 1 and type 2 Tat function by transdominant Tat protein localized to both the nucleus and cytoplasm. J Virol 70:8055–8063

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Siomi H, Shida H, Maki M, Hatanaka M (1990) Effects of a highly basic region of human immunodeficiency virus Tat protein on nucleolar localization. J Virol 64:1803–1807

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lange A, Mills RE, Lange CJ et al (2007) Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282:5101–5105. doi:10.1074/jbc.R600026200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Twyffels L, Gueydan C, Kruys V (2014) Transportin-1 and Transportin-2: protein nuclear import and beyond. FEBS Lett 588:1857–1868. doi:10.1016/j.febslet.2014.04.023

    Article  CAS  PubMed  Google Scholar 

  45. Subramanian T, Kuppuswamy M, Venkatesh L et al (1990) Functional substitution of the basic domain of the HIV-1 trans-activator, Tat, with the basic domain of the functionally heterologous Rev. Virology 176:178–183

    Article  CAS  PubMed  Google Scholar 

  46. Sturzu A, Klose U, Echner H et al (2009) Novel cell nucleus directed fluorescent tetraazacyclododecane-tetra-acetic acid compounds. Med Chem 5:93–102

    Article  CAS  PubMed  Google Scholar 

  47. Efthymiadis A, Briggs LJ, Jans DA (1998) The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem 273:1623–1628

    Article  CAS  PubMed  Google Scholar 

  48. Truant R, Cullen BR (1999) The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 19:1210–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cardarelli F, Serresi M, Bizzarri R et al (2007) In vivo study of HIV-1 Tat arginine-rich motif unveils its transport properties. Mol Ther 15:1313–1322. doi:10.1038/sj.mt.6300172

    Article  CAS  PubMed  Google Scholar 

  50. Cardarelli F, Serresi M, Albanese A et al (2011) Quantitative analysis of Tat peptide binding to import carriers reveals unconventional nuclear transport properties. J Biol Chem 286:12292–12299. doi:10.1074/jbc.M110.203083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cardarelli F, Serresi M, Bizzarri R, Beltram F (2008) Tuning the transport properties of HIV-1 Tat arginine-rich motif in living cells. Traffic 9:528–539. doi:10.1111/j.1600-0854.2007.00696.x

    Article  CAS  PubMed  Google Scholar 

  52. Calnan BJ, Biancalana S, Hudson D, Frankel AD (1991) Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev 5:201–210

    Article  CAS  PubMed  Google Scholar 

  53. Calnan BJ, Tidor B, Biancalana S et al (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–1171

    Article  CAS  PubMed  Google Scholar 

  54. Delling U, Roy S, Sumner-Smith M et al (1991) The number of positively charged amino acids in the basic domain of Tat is critical for trans-activation and complex formation with TAR RNA. Proc Natl Acad Sci USA 88:6234–6238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weeks KM, Crothers DM (1991) RNA recognition by Tat-derived peptides: interaction in the major groove? Cell 66:577–588

    Article  CAS  PubMed  Google Scholar 

  56. Tao J, Frankel AD (1993) Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat proteins. Proc Natl Acad Sci USA 90:1571–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cordingley MG, LaFemina RL, Callahan PL et al (1990) Sequence-specific interaction of Tat protein and Tat peptides with the transactivation-responsive sequence element of human immunodeficiency virus type 1 in vitro. Proc Natl Acad Sci USA 87:8985–8989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Edwards TE, Robinson BH, Sigurdsson ST (2005) Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation. Chem Biol 12:329–337. doi:10.1016/j.chembiol.2005.01.012

    Article  CAS  PubMed  Google Scholar 

  59. Bouwman RD, Palser A, Parry CM et al (2014) Human immunodeficiency virus Tat associates with a specific set of cellular RNAs. Retrovirology 11:53. doi:10.1186/1742-4690-11-53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Fineberg K, Fineberg T, Graessmann A et al (2003) Inhibition of nuclear import mediated by the Rev-arginine rich motif by RNA molecules. Biochemistry 42:2625–2633. doi:10.1021/bi0206199

    Article  CAS  PubMed  Google Scholar 

  61. Musinova YR, Sheval EV (2015) The accumulation of the basic domain of HIV-1 Tat protein in the nuclei and the nucleoli is different from the accumulation of full-length Tat protein. Biopolym Cell 31:154–158. doi:10.7124/bc.0008DB

    Article  Google Scholar 

  62. Ibarra A, Hetzer MW (2015) Nuclear pore proteins and the control of genome functions. Genes Dev 29:337–349. doi:10.1101/gad.256495.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shimi T, Butin-Israeli V, Goldman RD (2012) The functions of the nuclear envelope in mediating the molecular crosstalk between the nucleus and the cytoplasm. Curr Opin Cell Biol 24:71–78. doi:10.1016/j.ceb.2011.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sheval EV, Musinova YR (2014) Structural plasticity of the nuclear envelope and the endoplasmic reticulum. Biopolym Cell 30:335–342. doi:10.7124/bc.0008AF

    Article  Google Scholar 

  65. Gustin KE, Sarnow P (2001) Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J 20:240–249. doi:10.1093/emboj/20.1.240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Belov GA, Lidsky PV, Mikitas OV et al (2004) Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J Virol 78:10166–10177. doi:10.1128/JVI.78.18.10166-10177.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gustin KE, Sarnow P (2002) Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus. J Virol 76:8787–8796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lidsky PV, Hato S, Bardina MV et al (2006) Nucleocytoplasmic traffic disorder induced by cardioviruses. J Virol 80:2705–2717. doi:10.1128/JVI.80.6.2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bardina MV, Lidsky PV, Sheval EV et al (2009) Mengovirus-induced rearrangement of the nuclear pore complex: hijacking cellular phosphorylation machinery. J Virol 83:3150–3161. doi:10.1128/JVI.01456-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Porter FW, Palmenberg AC (2009) Leader-induced phosphorylation of nucleoporins correlates with nuclear trafficking inhibition by cardioviruses. J Virol 83:1941–1951. doi:10.1128/JVI.01752-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Porter FW, Brown B, Palmenberg AC (2010) Nucleoporin phosphorylation triggered by the encephalomyocarditis virus leader protein is mediated by mitogen-activated protein kinases. J Virol 84:12538–12548. doi:10.1128/JVI.01484-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Porter FW, Bochkov YA, Albee AJ et al (2006) A picornavirus protein interacts with Ran-GTPase and disrupts nucleocytoplasmic transport. Proc Natl Acad Sci USA 103:12417–12422. doi:10.1073/pnas.0605375103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Monette A, Ajamian L, López-Lastra M, Mouland AJ (2009) Human immunodeficiency virus type 1 (HIV-1) induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear import: implications for HIV-1 gene expression. J Biol Chem 284:31350–31362. doi:10.1074/jbc.M109.048736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Monette A, Panté N, Mouland AJ (2011) HIV-1 remodels the nuclear pore complex. J Cell Biol 193:619–631. doi:10.1083/jcb.201008064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gautier VW, Gu L, O’Donoghue N et al (2009) In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology 6:47. doi:10.1186/1742-4690-6-47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kashanchi F, Piras G, Radonovich MF et al (1994) Direct interaction of human TFIID with the HIV-1 transactivator tat. Nature 367:295–299. doi:10.1038/367295a0

    Article  CAS  PubMed  Google Scholar 

  77. Veschambre P, Roisin A, Jalinot P (1997) Biochemical and functional interaction of the human immunodeficiency virus type 1 Tat transactivator with the general transcription factor TFIIB. J Gen Virol 78(Pt 9):2235–2245

    Article  CAS  PubMed  Google Scholar 

  78. Jeang KT, Chun R, Lin NH et al (1993) In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J Virol 67:6224–6233

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang Y, Dong B, Mittelstadt PR et al (2002) HIV Tat binds Egr proteins and enhances Egr-dependent transactivation of the Fas ligand promoter. J Biol Chem 277:19482–19487. doi:10.1074/jbc.M201687200

    Article  CAS  PubMed  Google Scholar 

  80. Weissman JD, Brown JA, Howcroft TK et al (1998) HIV-1 tat binds TAFII250 and represses TAFII250-dependent transcription of major histocompatibility class I genes. Proc Natl Acad Sci USA 95:11601–11606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Veschambre P, Simard P, Jalinot P (1995) Evidence for functional interaction between the HIV-1 Tat transactivator and the TATA box binding protein in vivo. J Mol Biol 250:169–180. doi:10.1006/jmbi.1995.0368

    Article  CAS  PubMed  Google Scholar 

  82. Rohr O, Lecestre D, Chasserot-Golaz S et al (2003) Recruitment of Tat to heterochromatin protein HP1 via interaction with CTIP2 inhibits human immunodeficiency virus type 1 replication in microglial cells. J Virol 77:5415–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weinberger LS, Burnett JC, Toettcher JE et al (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:169–182. doi:10.1016/j.cell.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  84. Molle D, Maiuri P, Boireau S et al (2007) A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites. Retrovirology 4:36. doi:10.1186/1742-4690-4-36

    Article  PubMed  PubMed Central  Google Scholar 

  85. He N, Liu M, Hsu J et al (2010) HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell 38:428–438. doi:10.1016/j.molcel.2010.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sobhian B, Laguette N, Yatim A et al (2010) HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 38:439–451. doi:10.1016/j.molcel.2010.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Deng L, de la Fuente C, Fu P et al (2000) Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 277:278–295. doi:10.1006/viro.2000.0593

    Article  CAS  PubMed  Google Scholar 

  88. Pumfery A, Deng L, Maddukuri A et al (2003) Chromatin remodeling and modification during HIV-1 Tat-activated transcription. Curr HIV Res 1:343–362

    Article  CAS  PubMed  Google Scholar 

  89. Benkirane M, Chun RF, Xiao H et al (1998) Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J Biol Chem 273:24898–24905

    Article  CAS  PubMed  Google Scholar 

  90. Marzio G, Tyagi M, Gutierrez MI, Giacca M (1998) HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci USA 95:13519–13524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Deng L, Wang D, de la Fuente C et al (2001) Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA. Virology 289:312–326. doi:10.1006/viro.2001.1129

    Article  CAS  PubMed  Google Scholar 

  92. Kiernan RE, Vanhulle C, Schiltz L et al (1999) HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18:6106–6118. doi:10.1093/emboj/18.21.6106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ott M, Schnölzer M, Garnica J et al (1999) Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr Biol 9:1489–1492

    Article  CAS  PubMed  Google Scholar 

  94. Brès V, Tagami H, Péloponèse J-M et al (2002) Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. EMBO J 21:6811–6819

    Article  PubMed  PubMed Central  Google Scholar 

  95. Easley R, Carpio L, Dannenberg L et al (2010) Transcription through the HIV-1 nucleosomes: effects of the PBAF complex in Tat activated transcription. Virology 405:322–333. doi:10.1016/j.virol.2010.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Agbottah E, Deng L, Dannenberg LO et al (2006) Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription. Retrovirology 3:48. doi:10.1186/1742-4690-3-48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Mahmoudi T, Parra M, Vries RGJ et al (2006) The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J Biol Chem 281:19960–19968. doi:10.1074/jbc.M603336200

    Article  CAS  PubMed  Google Scholar 

  98. Van Duyne R, Guendel I, Narayanan A et al (2011) Varying modulation of HIV-1 LTR activity by Baf complexes. J Mol Biol 411:581–596. doi:10.1016/j.jmb.2011.06.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Tréand C, du Chéné I, Brès V et al (2006) Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. EMBO J 25:1690–1699. doi:10.1038/sj.emboj.7601074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Rafati H, Parra M, Hakre S et al (2011) Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency. PLoS Biol 9:e1001206. doi:10.1371/journal.pbio.1001206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. De la Fuente C, Santiago F, Deng L et al (2002) Gene expression profile of HIV-1 Tat expressing cells: a close interplay between proliferative and differentiation signals. BMC Biochem 3:14

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gibellini D, Re MC, La Placa M, Zauli G (2002) Differentially expressed genes in HIV-1 tat-expressing CD4(+) T-cell line. Virus Res 90:337–345

    Article  CAS  PubMed  Google Scholar 

  103. Marban C, Su T, Ferrari R et al (2011) Genome-wide binding map of the HIV-1 Tat protein to the human genome. PLoS One 6:e26894. doi:10.1371/journal.pone.0026894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dhamija N, Choudhary D, Ladha JS et al (2015) Tat predominantly associates with host promoter elements in HIV-1-infected T-cells-regulatory basis of transcriptional repression of c-Rel. FEBS J 282:595–610. doi:10.1111/febs.13168

    Article  CAS  PubMed  Google Scholar 

  105. Dandekar DH, Ganesh KN, Mitra D (2004) HIV-1 Tat directly binds to NF B enhancer sequence: role in viral and cellular gene expression. Nucleic Acids Res 32:1270–1278. doi:10.1093/nar/gkh289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim N, Kukkonen S, Gupta S, Aldovini A (2010) Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4 + T cells. PLoS Pathog 6:e1001103. doi:10.1371/journal.ppat.1001103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Nunnari G, Smith JA, Daniel R (2008) HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier? J Exp Clin Cancer Res 27:3. doi:10.1186/1756-9966-27-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Carbone A, Cesarman E, Spina M et al (2009) HIV-associated lymphomas and gamma-herpesviruses. Blood 113:1213–1224. doi:10.1182/blood-2008-09-180315

    Article  CAS  PubMed  Google Scholar 

  109. Grogg KL, Miller RF, Dogan A (2007) HIV infection and lymphoma. J Clin Pathol 60:1365–1372. doi:10.1136/jcp.2007.051953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tsfasman TM, Klibi M, Pichugin AM et al (2012) HIV: implication in Burkitt lymphoma. Biopolym Cell 28:285–287. doi:10.7124/bc.00005B

    Article  CAS  Google Scholar 

  111. Gloghini A, Dolcetti R, Carbone A (2013) Lymphomas occurring specifically in HIV-infected patients: from pathogenesis to pathology. Semin Cancer Biol 23:457–467. doi:10.1016/j.semcancer.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  112. Sheval EV, Churakova JV, Dudnik OA, Vorobjev IA (2004) Examination of the proliferative activity of tumor cells in human lymphoid neoplasms using a morphometric approach. Cancer 102:174–185. doi:10.1002/cncr.20341

    Article  PubMed  Google Scholar 

  113. De Paoli P, Carbone A (2015) Microenvironmental abnormalities induced by viral cooperation: impact on lymphomagenesis. Semin Cancer Biol. doi:10.1016/j.semcancer.2015.03.009

    PubMed  Google Scholar 

  114. Kundu RK, Sangiorgi F, Wu LY et al (1999) Expression of the human immunodeficiency virus-Tat gene in lymphoid tissues of transgenic mice is associated with B-cell lymphoma. Blood 94:275–282

    CAS  PubMed  Google Scholar 

  115. Smith JR, Henderson WW, Rosenbaum JT et al (2008) Cultured human endothelial cells expressing HIV-1 Vpu and Tat support the expansion of malignant B cells from primary central nervous system lymphoma. Br J Ophthalmol 92:297–299. doi:10.1136/bjo.2007.119461

    Article  CAS  PubMed  Google Scholar 

  116. Altavilla G, Trabanelli C, Merlin M et al (1999) Morphological, histochemical, immunohistochemical, and ultrastructural characterization of tumors and dysplastic and non-neoplastic lesions arising in BK virus/tat transgenic mice. Am J Pathol 154:1231–1244. doi:10.1016/S0002-9440(10)65375-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Corallini A, Altavilla G, Pozzi L et al (1993) Systemic expression of HIV-1 tat gene in transgenic mice induces endothelial proliferation and tumors of different histotypes. Cancer Res 53:5569–5575

    CAS  PubMed  Google Scholar 

  118. Huynh D, Vincan E, Mantamadiotis T et al (2007) Oncogenic properties of HIV-Tat in colorectal cancer cells. Curr HIV Res 5:403–409

    Article  CAS  PubMed  Google Scholar 

  119. Altavilla G, Caputo A, Trabanelli C et al (2004) Prevalence of liver tumours in HIV-1 tat-transgenic mice treated with urethane. Eur J Cancer 40:275–283

    Article  CAS  PubMed  Google Scholar 

  120. Vogel J, Hinrichs SH, Napolitano LA et al (1991) Liver cancer in transgenic mice carrying the human immunodeficiency virus tat gene. Cancer Res 51:6686–6690

    CAS  PubMed  Google Scholar 

  121. Prakash O (2000) Human Kaposi’s sarcoma cell-mediated tumorigenesis in human immunodeficiency type 1 tat-expressing transgenic mice. J Natl Cancer Inst 92:721–728. doi:10.1093/jnci/92.9.721

    Article  CAS  PubMed  Google Scholar 

  122. Lefevre EA, Krzysiek R, Loret EP et al (1999) Cutting edge: HIV-1 Tat protein differentially modulates the B cell response of naive, memory, and germinal center B cells. J Immunol 163:1119–1122

    CAS  PubMed  Google Scholar 

  123. Cinti C, Leoncini L, Nyongo A et al (2000) Genetic alterations of the retinoblastoma-related gene RB2/p130 identify different pathogenetic mechanisms in and among Burkitt’s lymphoma subtypes. Am J Pathol 156:751–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227. doi:10.1038/sj.onc.1209615

    Article  CAS  PubMed  Google Scholar 

  125. De Falco G, Bellan C, Lazzi S et al (2003) Interaction between HIV-1 Tat and pRb2/p130: a possible mechanism in the pathogenesis of AIDS-related neoplasms. Oncogene 22:6214–6219. doi:10.1038/sj.onc.1206637

    Article  PubMed  CAS  Google Scholar 

  126. Brégnard C, Benkirane M, Laguette N (2014) DNA damage repair machinery and HIV escape from innate immune sensing. Front Microbiol 5:176. doi:10.3389/fmicb.2014.00176

    PubMed  PubMed Central  Google Scholar 

  127. Chipitsyna G, Slonina D, Siddiqui K et al (2004) HIV-1 Tat increases cell survival in response to cisplatin by stimulating Rad51 gene expression. Oncogene 23:2664–2671. doi:10.1038/sj.onc.1207417

    Article  CAS  PubMed  Google Scholar 

  128. Sun Y, Huang Y-C, Xu Q-Z et al (2006) HIV-1 Tat depresses DNA-PK (CS) expression and DNA repair, and sensitizes cells to ionizing radiation. Int J Radiat Oncol Biol Phys 65:842–850. doi:10.1016/j.ijrobp.2006.02.040

    Article  CAS  PubMed  Google Scholar 

  129. Srivastava DK, Tendler CL, Milani D et al (2001) The HIV-1 transactivator protein Tat is a potent inducer of the human DNA repair enzyme beta-polymerase. AIDS 15:433–440

    Article  CAS  PubMed  Google Scholar 

  130. Hernandez-Verdun D, Roussel P, Thiry M et al (2010) The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA 1:415–431. doi:10.1002/wrna.39

    Article  CAS  PubMed  Google Scholar 

  131. Cisterna B, Biggiogera M (2010) Ribosome biogenesis: from structure to dynamics. Int Rev Cell Mol Biol 284:67–111. doi:10.1016/S1937-6448(10)84002-X

    Article  CAS  PubMed  Google Scholar 

  132. Boisvert F-M, van Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585. doi:10.1038/nrm2184

    Article  CAS  PubMed  Google Scholar 

  133. Boulon S, Westman BJ, Hutten S et al (2010) The nucleolus under stress. Mol Cell 40:216–227. doi:10.1016/j.molcel.2010.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Grummt I (2013) The nucleolus—guardian of cellular homeostasis and genome integrity. Chromosoma 122:487–497. doi:10.1007/s00412-013-0430-0

    Article  CAS  PubMed  Google Scholar 

  135. Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a000638

    Google Scholar 

  136. Salvetti A, Greco A (2014) Viruses and the nucleolus: the fatal attraction. Biochim Biophys Acta 1842:840–847. doi:10.1016/j.bbadis.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  137. Rawlinson SM, Moseley GW (2015) The nucleolar interface of RNA viruses. Cell Microbiol. doi:10.1111/cmi.12465

    PubMed  Google Scholar 

  138. Musinova YR, Kananykhina EY, Potashnikova DM et al (2015) A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli. Biochim Biophys Acta 1853:101–110. doi:10.1016/j.bbamcr.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  139. Dang CV, Lee WM (1989) Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J Biol Chem 264:18019–18023

    CAS  PubMed  Google Scholar 

  140. Borer RA, Lehner CF, Eppenberger HM, Nigg EA (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56:379–390

    Article  CAS  PubMed  Google Scholar 

  141. Valdez BC, Perlaky L, Henning D et al (1994) Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. J Biol Chem 269:23776–23783

    CAS  PubMed  Google Scholar 

  142. Szebeni A, Herrera JE, Olson MO (1995) Interaction of nucleolar protein B23 with peptides related to nuclear localization signals. Biochemistry 34:8037–8042

    Article  CAS  PubMed  Google Scholar 

  143. Miyazaki Y, Nosaka T, Hatanaka M (1996) The post-transcriptional regulator Rev of HIV: implications for its interaction with the nucleolar protein B23. Biochimie 78:1081–1086

    Article  CAS  PubMed  Google Scholar 

  144. Li YP, Busch RK, Valdez BC, Busch H (1996) C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur J Biochem 237:153–158

    Article  CAS  PubMed  Google Scholar 

  145. Meder VS, Boeglin M, de Murcia G, Schreiber V (2005) PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci 118:211–222. doi:10.1242/jcs.01606

    Article  CAS  PubMed  Google Scholar 

  146. Wang Y, Chen B, Li Y et al (2011) PNRC accumulates in the nucleolus by interaction with B23/nucleophosmin via its nucleolar localization sequence. Biochim Biophys Acta—Mol Cell Res 1813:109–119. doi:10.1016/j.bbamcr.2010.09.017

    Article  CAS  Google Scholar 

  147. Endo A, Kitamura N, Komada M (2009) Nucleophosmin/B23 regulates ubiquitin dynamics in nucleoli by recruiting deubiquitylating enzyme USP36. J Biol Chem 284:27918–27923. doi:10.1074/jbc.M109.037218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fankhauser C, Izaurralde E, Adachi Y et al (1991) Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 11:2567–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Adachi Y, Copeland TD, Hatanaka M, Oroszlan S (1993) Nucleolar targeting signal of Rex protein of human T-cell leukemia virus type I specifically binds to nucleolar shuttle protein B-23. J Biol Chem 268:13930–13934

    CAS  PubMed  Google Scholar 

  150. Marasco WA, Szilvay AM, Kalland KH et al (1994) Spatial association of HIV-1 tat protein and the nucleolar transport protein B23 in stably transfected Jurkat T-cells. Arch Virol 139:133–154

    Article  CAS  PubMed  Google Scholar 

  151. Jarboui MA, Bidoia C, Woods E et al (2012) Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus. PLoS One 7:e48702. doi:10.1371/journal.pone.0048702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Michienzi A, Li S, Zaia JA, Rossi JJ (2002) A nucleolar TAR decoy inhibitor of HIV-1 replication. Proc Natl Acad Sci USA 99:14047–14052. doi:10.1073/pnas.212229599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ponti D, Troiano M, Bellenchi GC et al (2008) The HIV Tat protein affects processing of ribosomal RNA precursor. BMC Cell Biol 9:32. doi:10.1186/1471-2121-9-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Kukkonen S, Del Martinez-Viedma M, Kim N et al (2014) HIV-1 Tat second exon limits the extent of Tat-mediated modulation of interferon-stimulated genes in antigen presenting cells. Retrovirology 11:30. doi:10.1186/1742-4690-11-30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. López-Huertas MR, Callejas S, Abia D et al (2010) Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res 38:3287–3307. doi:10.1093/nar/gkq037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Johnson TP, Patel K, Johnson KR et al (2013) Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci USA 110:13588–13593. doi:10.1073/pnas.1308673110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vaqué JP, Martínez N, Batlle-López A et al (2014) B-cell lymphoma mutations: improving diagnostics and enabling targeted therapies. Haematologica 99:222–231. doi:10.3324/haematol.2013.096248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Gauffre A, Viron A, Barel M et al (1992) Nuclear localization of the Epstein-Barr virus/C3d receptor (CR2) in the human Burkitt B lymphoma cell, Raji. Mol Immunol 29:1113–1120. doi:10.1016/0161-5890(92)90044-X

    Article  CAS  PubMed  Google Scholar 

  159. Haque A, God JM (2010) Burkitt lymphoma: pathogenesis and immune evasion. J Oncol. doi:10.1155/2010/516047

    PubMed  PubMed Central  Google Scholar 

  160. Duyao MP, Kessler DJ, Spicer DB et al (1992) Transactivation of the c-myc promoter by human T cell leukemia virus type 1 tax is mediated by NF kappa B. J Biol Chem 267:16288–16291

    CAS  PubMed  Google Scholar 

  161. Ji L, Arcinas M, Boxer LM (1994) NF-kappa B sites function as positive regulators of expression of the translocated c-myc allele in Burkitt’s lymphoma. Mol Cell Biol 14:7967–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Catz SD, Johnson JL (2001) Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20:7342–7351. doi:10.1038/sj.onc.1204926

    Article  CAS  PubMed  Google Scholar 

  163. Fiume G, Vecchio E, De Laurentiis A et al (2012) Human immunodeficiency virus-1 Tat activates NF-κB via physical interaction with IκB-α and p65. Nucleic Acids Res 40:3548–3562. doi:10.1093/nar/gkr1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Scala G, Ruocco MR, Ambrosino C et al (1994) The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med 179:961–971

    Article  CAS  PubMed  Google Scholar 

  165. Shu F, Lv S, Qin Y et al (2007) Functional characterization of human PFTK1 as a cyclin-dependent kinase. Proc Natl Acad Sci USA 104:9248–9253. doi:10.1073/pnas.0703327104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Stern MH, Soulier J, Rosenzwajg M et al (1993) MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. Oncogene 8:2475–2483

    CAS  PubMed  Google Scholar 

  167. Gritti C, Dastot H, Soulier J et al (1998) Transgenic mice for MTCP1 develop T-cell prolymphocytic leukemia. Blood 92:368–373

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation (project 14-15-00199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yegor S. Vassetzky.

Additional information

Y. R. Musinova and E. V. Sheval contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musinova, Y.R., Sheval, E.V., Dib, C. et al. Functional roles of HIV-1 Tat protein in the nucleus. Cell. Mol. Life Sci. 73, 589–601 (2016). https://doi.org/10.1007/s00018-015-2077-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2077-x

Keywords