Abstract
Human immunodeficiency virus-1 (HIV-1) Tat protein is one of the most important regulatory proteins for viral gene expression in the host cell and can modulate different cellular processes. In addition, Tat is secreted by the infected cell and can be internalized by neighboring cells; therefore, it affects both infected and uninfected cells. Tat can modulate cellular processes by interacting with different cellular structures and signaling pathways. In the nucleus, Tat might be localized either in the nucleoplasm or the nucleolus depending on its concentration. Here we review the distinct functions of Tat in the nucleoplasm and the nucleolus in connection with viral infection and HIV-induced oncogenesis.
Similar content being viewed by others
Abbreviations
- BL:
-
Burkitt lymphoma
- HIV-1:
-
Human immunodeficiency virus 1
- LTR:
-
Long terminal repeat
- NLS:
-
Nuclear localization signal
- NoLS:
-
Nucleolar localization signal
- TAR:
-
Trans-activation responsive region
References
Van Lint C, Bouchat S, Marcello A (2013) HIV-1 transcription and latency: an update. Retrovirology 10:67. doi:10.1186/1742-4690-10-67
Mbonye U, Karn J (2014) Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology 454–455:328–339. doi:10.1016/j.virol.2014.02.008
Romani B, Engelbrecht S, Glashoff RH (2010) Functions of Tat: the versatile protein of human immunodeficiency virus type 1. J Gen Virol 91:1–12. doi:10.1099/vir.0.016303-0
Poggi A (2004) Migration of V 1 and V 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat. Blood 103:2205–2213. doi:10.1182/blood-2003-08-2928
Westendorp MO, Frank R, Ochsenbauer C et al (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375:497–500. doi:10.1038/375497a0
Xiao H, Neuveut C, Tiffany HL et al (2000) Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci USA 97:11466–11471. doi:10.1073/pnas.97.21.11466
Ensoli B, Barillari G, Salahuddin SZ et al (1990) Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 345:84–86. doi:10.1038/345084a0
Ensoli B, Buonaguro L, Barillari G et al (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67:277–287
Mediouni S, Darque A, Baillat G et al (2012) Antiretroviral therapy does not block the secretion of the human immunodeficiency virus tat protein. Infect Disord Drug Targets 12:81–86
Ferrari A, Pellegrini V, Arcangeli C et al (2003) Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther 8:284–294
Debaisieux S, Rayne F, Yezid H, Beaumelle B (2012) The ins and outs of HIV-1 Tat. Traffic 13:355–363. doi:10.1111/j.1600-0854.2011.01286.x
Albini A, Barillari G, Benelli R et al (1995) Angiogenic properties of human immunodeficiency virus type 1 Tat protein. Proc Natl Acad Sci U S A 92:4838–4842
Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res 17:3551–3561
Ruben S, Perkins A, Purcell R et al (1989) Structural and functional characterization of human immunodeficiency virus tat protein. J Virol 63:1–8
Coiras M, Camafeita E, Ureña T et al (2006) Modifications in the human T cell proteome induced by intracellular HIV-1 Tat protein expression. Proteomics 6(Suppl 1):S63–S73. doi:10.1002/pmic.200500437
Stauber RH, Pavlakis GN (1998) Intracellular trafficking and interactions of the HIV-1 Tat protein. Virology 252:126–136
Lazzi S, Bellan C, De Falco G et al (2002) Expression of RB2/p130 tumor-suppressor gene in AIDS-related non-Hodgkin’s lymphomas: implications for disease pathogenesis. Hum Pathol 33:723–731
Egelé C, Barbier P, Didier P et al (2008) Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat. Retrovirology 5:62. doi:10.1186/1742-4690-5-62
Péloponèse JM, Collette Y, Grégoire C et al (1999) Full peptide synthesis, purification, and characterization of six Tat variants. Differences observed between HIV-1 isolates from Africa and other continents. J Biol Chem 274:11473–11478
Bayer P, Kraft M, Ejchart A et al (1995) Structural studies of HIV-1 Tat protein. J Mol Biol 247:529–535. doi:10.1006/jmbi.1995.0158
Grégoire C, Péloponèse JM, Esquieu D et al (2001) Homonuclear (1)H-NMR assignment and structural characterization of human immunodeficiency virus type 1 Tat Mal protein. Biopolymers 62:324–335. doi:10.1002/bip.10000
Péloponèse JM, Grégoire C, Opi S et al (2000) 1H-13C nuclear magnetic resonance assignment and structural characterization of HIV-1 Tat protein. C R Acad Sci III 323:883–894
Watkins JD, Campbell GR, Halimi H, Loret EP (2008) Homonuclear 1H NMR and circular dichroism study of the HIV-1 Tat Eli variant. Retrovirology 5:83. doi:10.1186/1742-4690-5-83
Foucault M, Mayol K, Receveur-Bréchot V et al (2010) UV and X-ray structural studies of a 101-residue long Tat protein from a HIV-1 primary isolate and of its mutated, detoxified, vaccine candidate. Proteins 78:1441–1456. doi:10.1002/prot.22661
Hudson L, Liu J, Nath A et al (2000) Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J Neurovirol 6:145–155
Del Valle L, Croul S, Morgello S et al (2000) Detection of HIV-1 Tat and JCV capsid protein, VP1, in AIDS brain with progressive multifocal leukoencephalopathy. J Neurovirol 6:221–228
Nath A, Psooy K, Martin C et al (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70:1475–1480
Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288. doi:10.1006/exnr.1998.6958
Haughey NJ, Holden CP, Nath A, Geiger JD (1999) Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. J Neurochem 73:1363–1374
Haughey NJ, Nath A, Mattson MP et al (2001) HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. J Neurochem 78:457–467
Sabatier JM, Vives E, Mabrouk K et al (1991) Evidence for neurotoxic activity of tat from human immunodeficiency virus type 1. J Virol 65:961–967
Nath A, Hauser KF, Wojna V et al (2002) Molecular basis for interactions of HIV and drugs of abuse. J Acquir Immune Defic Syndr 31(Suppl 2):S62–S69
Tryoen-Tóth P, Chasserot-Golaz S, Tu A et al (2013) HIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate. J Cell Sci 126:454–463. doi:10.1242/jcs.111658
Davis LI (1995) The nuclear pore complex. Annu Rev Biochem 64:865–896. doi:10.1146/annurev.bi.64.070195.004245
Peters R (1983) Nuclear envelope permeability measured by fluorescence microphotolysis of single liver cell nuclei. J Biol Chem 258:11427–11429
Fulcher AJ, Jans DA (2003) The HIV-1 Tat transactivator protein: a therapeutic target? IUBMB Life 55:669–680. doi:10.1080/15216540310001643440
Hauber J, Malim MH, Cullen BR (1989) Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J Virol 63:1181–1187
Meredith LW, Sivakumaran H, Major L et al (2009) Potent inhibition of HIV-1 replication by a Tat mutant. PLoS One 4:e7769. doi:10.1371/journal.pone.0007769
Li YP (1997) Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 71:4098–4102
Pearson L, Garcia J, Wu F et al (1990) A transdominant tat mutant that inhibits tat-induced gene expression from the human immunodeficiency virus long terminal repeat. Proc Natl Acad Sci USA 87:5079–5083
Orsini MJ, Debouck CM (1996) Inhibition of human immunodeficiency virus type 1 and type 2 Tat function by transdominant Tat protein localized to both the nucleus and cytoplasm. J Virol 70:8055–8063
Siomi H, Shida H, Maki M, Hatanaka M (1990) Effects of a highly basic region of human immunodeficiency virus Tat protein on nucleolar localization. J Virol 64:1803–1807
Lange A, Mills RE, Lange CJ et al (2007) Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 282:5101–5105. doi:10.1074/jbc.R600026200
Twyffels L, Gueydan C, Kruys V (2014) Transportin-1 and Transportin-2: protein nuclear import and beyond. FEBS Lett 588:1857–1868. doi:10.1016/j.febslet.2014.04.023
Subramanian T, Kuppuswamy M, Venkatesh L et al (1990) Functional substitution of the basic domain of the HIV-1 trans-activator, Tat, with the basic domain of the functionally heterologous Rev. Virology 176:178–183
Sturzu A, Klose U, Echner H et al (2009) Novel cell nucleus directed fluorescent tetraazacyclododecane-tetra-acetic acid compounds. Med Chem 5:93–102
Efthymiadis A, Briggs LJ, Jans DA (1998) The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem 273:1623–1628
Truant R, Cullen BR (1999) The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 19:1210–1217
Cardarelli F, Serresi M, Bizzarri R et al (2007) In vivo study of HIV-1 Tat arginine-rich motif unveils its transport properties. Mol Ther 15:1313–1322. doi:10.1038/sj.mt.6300172
Cardarelli F, Serresi M, Albanese A et al (2011) Quantitative analysis of Tat peptide binding to import carriers reveals unconventional nuclear transport properties. J Biol Chem 286:12292–12299. doi:10.1074/jbc.M110.203083
Cardarelli F, Serresi M, Bizzarri R, Beltram F (2008) Tuning the transport properties of HIV-1 Tat arginine-rich motif in living cells. Traffic 9:528–539. doi:10.1111/j.1600-0854.2007.00696.x
Calnan BJ, Biancalana S, Hudson D, Frankel AD (1991) Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev 5:201–210
Calnan BJ, Tidor B, Biancalana S et al (1991) Arginine-mediated RNA recognition: the arginine fork. Science 252:1167–1171
Delling U, Roy S, Sumner-Smith M et al (1991) The number of positively charged amino acids in the basic domain of Tat is critical for trans-activation and complex formation with TAR RNA. Proc Natl Acad Sci USA 88:6234–6238
Weeks KM, Crothers DM (1991) RNA recognition by Tat-derived peptides: interaction in the major groove? Cell 66:577–588
Tao J, Frankel AD (1993) Electrostatic interactions modulate the RNA-binding and transactivation specificities of the human immunodeficiency virus and simian immunodeficiency virus Tat proteins. Proc Natl Acad Sci USA 90:1571–1575
Cordingley MG, LaFemina RL, Callahan PL et al (1990) Sequence-specific interaction of Tat protein and Tat peptides with the transactivation-responsive sequence element of human immunodeficiency virus type 1 in vitro. Proc Natl Acad Sci USA 87:8985–8989
Edwards TE, Robinson BH, Sigurdsson ST (2005) Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation. Chem Biol 12:329–337. doi:10.1016/j.chembiol.2005.01.012
Bouwman RD, Palser A, Parry CM et al (2014) Human immunodeficiency virus Tat associates with a specific set of cellular RNAs. Retrovirology 11:53. doi:10.1186/1742-4690-11-53
Fineberg K, Fineberg T, Graessmann A et al (2003) Inhibition of nuclear import mediated by the Rev-arginine rich motif by RNA molecules. Biochemistry 42:2625–2633. doi:10.1021/bi0206199
Musinova YR, Sheval EV (2015) The accumulation of the basic domain of HIV-1 Tat protein in the nuclei and the nucleoli is different from the accumulation of full-length Tat protein. Biopolym Cell 31:154–158. doi:10.7124/bc.0008DB
Ibarra A, Hetzer MW (2015) Nuclear pore proteins and the control of genome functions. Genes Dev 29:337–349. doi:10.1101/gad.256495.114
Shimi T, Butin-Israeli V, Goldman RD (2012) The functions of the nuclear envelope in mediating the molecular crosstalk between the nucleus and the cytoplasm. Curr Opin Cell Biol 24:71–78. doi:10.1016/j.ceb.2011.11.007
Sheval EV, Musinova YR (2014) Structural plasticity of the nuclear envelope and the endoplasmic reticulum. Biopolym Cell 30:335–342. doi:10.7124/bc.0008AF
Gustin KE, Sarnow P (2001) Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J 20:240–249. doi:10.1093/emboj/20.1.240
Belov GA, Lidsky PV, Mikitas OV et al (2004) Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J Virol 78:10166–10177. doi:10.1128/JVI.78.18.10166-10177.2004
Gustin KE, Sarnow P (2002) Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus. J Virol 76:8787–8796
Lidsky PV, Hato S, Bardina MV et al (2006) Nucleocytoplasmic traffic disorder induced by cardioviruses. J Virol 80:2705–2717. doi:10.1128/JVI.80.6.2705
Bardina MV, Lidsky PV, Sheval EV et al (2009) Mengovirus-induced rearrangement of the nuclear pore complex: hijacking cellular phosphorylation machinery. J Virol 83:3150–3161. doi:10.1128/JVI.01456-08
Porter FW, Palmenberg AC (2009) Leader-induced phosphorylation of nucleoporins correlates with nuclear trafficking inhibition by cardioviruses. J Virol 83:1941–1951. doi:10.1128/JVI.01752-08
Porter FW, Brown B, Palmenberg AC (2010) Nucleoporin phosphorylation triggered by the encephalomyocarditis virus leader protein is mediated by mitogen-activated protein kinases. J Virol 84:12538–12548. doi:10.1128/JVI.01484-09
Porter FW, Bochkov YA, Albee AJ et al (2006) A picornavirus protein interacts with Ran-GTPase and disrupts nucleocytoplasmic transport. Proc Natl Acad Sci USA 103:12417–12422. doi:10.1073/pnas.0605375103
Monette A, Ajamian L, López-Lastra M, Mouland AJ (2009) Human immunodeficiency virus type 1 (HIV-1) induces the cytoplasmic retention of heterogeneous nuclear ribonucleoprotein A1 by disrupting nuclear import: implications for HIV-1 gene expression. J Biol Chem 284:31350–31362. doi:10.1074/jbc.M109.048736
Monette A, Panté N, Mouland AJ (2011) HIV-1 remodels the nuclear pore complex. J Cell Biol 193:619–631. doi:10.1083/jcb.201008064
Gautier VW, Gu L, O’Donoghue N et al (2009) In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology 6:47. doi:10.1186/1742-4690-6-47
Kashanchi F, Piras G, Radonovich MF et al (1994) Direct interaction of human TFIID with the HIV-1 transactivator tat. Nature 367:295–299. doi:10.1038/367295a0
Veschambre P, Roisin A, Jalinot P (1997) Biochemical and functional interaction of the human immunodeficiency virus type 1 Tat transactivator with the general transcription factor TFIIB. J Gen Virol 78(Pt 9):2235–2245
Jeang KT, Chun R, Lin NH et al (1993) In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J Virol 67:6224–6233
Yang Y, Dong B, Mittelstadt PR et al (2002) HIV Tat binds Egr proteins and enhances Egr-dependent transactivation of the Fas ligand promoter. J Biol Chem 277:19482–19487. doi:10.1074/jbc.M201687200
Weissman JD, Brown JA, Howcroft TK et al (1998) HIV-1 tat binds TAFII250 and represses TAFII250-dependent transcription of major histocompatibility class I genes. Proc Natl Acad Sci USA 95:11601–11606
Veschambre P, Simard P, Jalinot P (1995) Evidence for functional interaction between the HIV-1 Tat transactivator and the TATA box binding protein in vivo. J Mol Biol 250:169–180. doi:10.1006/jmbi.1995.0368
Rohr O, Lecestre D, Chasserot-Golaz S et al (2003) Recruitment of Tat to heterochromatin protein HP1 via interaction with CTIP2 inhibits human immunodeficiency virus type 1 replication in microglial cells. J Virol 77:5415–5427
Weinberger LS, Burnett JC, Toettcher JE et al (2005) Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell 122:169–182. doi:10.1016/j.cell.2005.06.006
Molle D, Maiuri P, Boireau S et al (2007) A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites. Retrovirology 4:36. doi:10.1186/1742-4690-4-36
He N, Liu M, Hsu J et al (2010) HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription. Mol Cell 38:428–438. doi:10.1016/j.molcel.2010.04.013
Sobhian B, Laguette N, Yatim A et al (2010) HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 38:439–451. doi:10.1016/j.molcel.2010.04.012
Deng L, de la Fuente C, Fu P et al (2000) Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 277:278–295. doi:10.1006/viro.2000.0593
Pumfery A, Deng L, Maddukuri A et al (2003) Chromatin remodeling and modification during HIV-1 Tat-activated transcription. Curr HIV Res 1:343–362
Benkirane M, Chun RF, Xiao H et al (1998) Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J Biol Chem 273:24898–24905
Marzio G, Tyagi M, Gutierrez MI, Giacca M (1998) HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci USA 95:13519–13524
Deng L, Wang D, de la Fuente C et al (2001) Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA. Virology 289:312–326. doi:10.1006/viro.2001.1129
Kiernan RE, Vanhulle C, Schiltz L et al (1999) HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18:6106–6118. doi:10.1093/emboj/18.21.6106
Ott M, Schnölzer M, Garnica J et al (1999) Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr Biol 9:1489–1492
Brès V, Tagami H, Péloponèse J-M et al (2002) Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. EMBO J 21:6811–6819
Easley R, Carpio L, Dannenberg L et al (2010) Transcription through the HIV-1 nucleosomes: effects of the PBAF complex in Tat activated transcription. Virology 405:322–333. doi:10.1016/j.virol.2010.06.009
Agbottah E, Deng L, Dannenberg LO et al (2006) Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription. Retrovirology 3:48. doi:10.1186/1742-4690-3-48
Mahmoudi T, Parra M, Vries RGJ et al (2006) The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J Biol Chem 281:19960–19968. doi:10.1074/jbc.M603336200
Van Duyne R, Guendel I, Narayanan A et al (2011) Varying modulation of HIV-1 LTR activity by Baf complexes. J Mol Biol 411:581–596. doi:10.1016/j.jmb.2011.06.001
Tréand C, du Chéné I, Brès V et al (2006) Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. EMBO J 25:1690–1699. doi:10.1038/sj.emboj.7601074
Rafati H, Parra M, Hakre S et al (2011) Repressive LTR nucleosome positioning by the BAF complex is required for HIV latency. PLoS Biol 9:e1001206. doi:10.1371/journal.pbio.1001206
De la Fuente C, Santiago F, Deng L et al (2002) Gene expression profile of HIV-1 Tat expressing cells: a close interplay between proliferative and differentiation signals. BMC Biochem 3:14
Gibellini D, Re MC, La Placa M, Zauli G (2002) Differentially expressed genes in HIV-1 tat-expressing CD4(+) T-cell line. Virus Res 90:337–345
Marban C, Su T, Ferrari R et al (2011) Genome-wide binding map of the HIV-1 Tat protein to the human genome. PLoS One 6:e26894. doi:10.1371/journal.pone.0026894
Dhamija N, Choudhary D, Ladha JS et al (2015) Tat predominantly associates with host promoter elements in HIV-1-infected T-cells-regulatory basis of transcriptional repression of c-Rel. FEBS J 282:595–610. doi:10.1111/febs.13168
Dandekar DH, Ganesh KN, Mitra D (2004) HIV-1 Tat directly binds to NF B enhancer sequence: role in viral and cellular gene expression. Nucleic Acids Res 32:1270–1278. doi:10.1093/nar/gkh289
Kim N, Kukkonen S, Gupta S, Aldovini A (2010) Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4 + T cells. PLoS Pathog 6:e1001103. doi:10.1371/journal.ppat.1001103
Nunnari G, Smith JA, Daniel R (2008) HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier? J Exp Clin Cancer Res 27:3. doi:10.1186/1756-9966-27-3
Carbone A, Cesarman E, Spina M et al (2009) HIV-associated lymphomas and gamma-herpesviruses. Blood 113:1213–1224. doi:10.1182/blood-2008-09-180315
Grogg KL, Miller RF, Dogan A (2007) HIV infection and lymphoma. J Clin Pathol 60:1365–1372. doi:10.1136/jcp.2007.051953
Tsfasman TM, Klibi M, Pichugin AM et al (2012) HIV: implication in Burkitt lymphoma. Biopolym Cell 28:285–287. doi:10.7124/bc.00005B
Gloghini A, Dolcetti R, Carbone A (2013) Lymphomas occurring specifically in HIV-infected patients: from pathogenesis to pathology. Semin Cancer Biol 23:457–467. doi:10.1016/j.semcancer.2013.08.004
Sheval EV, Churakova JV, Dudnik OA, Vorobjev IA (2004) Examination of the proliferative activity of tumor cells in human lymphoid neoplasms using a morphometric approach. Cancer 102:174–185. doi:10.1002/cncr.20341
De Paoli P, Carbone A (2015) Microenvironmental abnormalities induced by viral cooperation: impact on lymphomagenesis. Semin Cancer Biol. doi:10.1016/j.semcancer.2015.03.009
Kundu RK, Sangiorgi F, Wu LY et al (1999) Expression of the human immunodeficiency virus-Tat gene in lymphoid tissues of transgenic mice is associated with B-cell lymphoma. Blood 94:275–282
Smith JR, Henderson WW, Rosenbaum JT et al (2008) Cultured human endothelial cells expressing HIV-1 Vpu and Tat support the expansion of malignant B cells from primary central nervous system lymphoma. Br J Ophthalmol 92:297–299. doi:10.1136/bjo.2007.119461
Altavilla G, Trabanelli C, Merlin M et al (1999) Morphological, histochemical, immunohistochemical, and ultrastructural characterization of tumors and dysplastic and non-neoplastic lesions arising in BK virus/tat transgenic mice. Am J Pathol 154:1231–1244. doi:10.1016/S0002-9440(10)65375-8
Corallini A, Altavilla G, Pozzi L et al (1993) Systemic expression of HIV-1 tat gene in transgenic mice induces endothelial proliferation and tumors of different histotypes. Cancer Res 53:5569–5575
Huynh D, Vincan E, Mantamadiotis T et al (2007) Oncogenic properties of HIV-Tat in colorectal cancer cells. Curr HIV Res 5:403–409
Altavilla G, Caputo A, Trabanelli C et al (2004) Prevalence of liver tumours in HIV-1 tat-transgenic mice treated with urethane. Eur J Cancer 40:275–283
Vogel J, Hinrichs SH, Napolitano LA et al (1991) Liver cancer in transgenic mice carrying the human immunodeficiency virus tat gene. Cancer Res 51:6686–6690
Prakash O (2000) Human Kaposi’s sarcoma cell-mediated tumorigenesis in human immunodeficiency type 1 tat-expressing transgenic mice. J Natl Cancer Inst 92:721–728. doi:10.1093/jnci/92.9.721
Lefevre EA, Krzysiek R, Loret EP et al (1999) Cutting edge: HIV-1 Tat protein differentially modulates the B cell response of naive, memory, and germinal center B cells. J Immunol 163:1119–1122
Cinti C, Leoncini L, Nyongo A et al (2000) Genetic alterations of the retinoblastoma-related gene RB2/p130 identify different pathogenetic mechanisms in and among Burkitt’s lymphoma subtypes. Am J Pathol 156:751–760
Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227. doi:10.1038/sj.onc.1209615
De Falco G, Bellan C, Lazzi S et al (2003) Interaction between HIV-1 Tat and pRb2/p130: a possible mechanism in the pathogenesis of AIDS-related neoplasms. Oncogene 22:6214–6219. doi:10.1038/sj.onc.1206637
Brégnard C, Benkirane M, Laguette N (2014) DNA damage repair machinery and HIV escape from innate immune sensing. Front Microbiol 5:176. doi:10.3389/fmicb.2014.00176
Chipitsyna G, Slonina D, Siddiqui K et al (2004) HIV-1 Tat increases cell survival in response to cisplatin by stimulating Rad51 gene expression. Oncogene 23:2664–2671. doi:10.1038/sj.onc.1207417
Sun Y, Huang Y-C, Xu Q-Z et al (2006) HIV-1 Tat depresses DNA-PK (CS) expression and DNA repair, and sensitizes cells to ionizing radiation. Int J Radiat Oncol Biol Phys 65:842–850. doi:10.1016/j.ijrobp.2006.02.040
Srivastava DK, Tendler CL, Milani D et al (2001) The HIV-1 transactivator protein Tat is a potent inducer of the human DNA repair enzyme beta-polymerase. AIDS 15:433–440
Hernandez-Verdun D, Roussel P, Thiry M et al (2010) The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA 1:415–431. doi:10.1002/wrna.39
Cisterna B, Biggiogera M (2010) Ribosome biogenesis: from structure to dynamics. Int Rev Cell Mol Biol 284:67–111. doi:10.1016/S1937-6448(10)84002-X
Boisvert F-M, van Koningsbruggen S, Navascués J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585. doi:10.1038/nrm2184
Boulon S, Westman BJ, Hutten S et al (2010) The nucleolus under stress. Mol Cell 40:216–227. doi:10.1016/j.molcel.2010.09.024
Grummt I (2013) The nucleolus—guardian of cellular homeostasis and genome integrity. Chromosoma 122:487–497. doi:10.1007/s00412-013-0430-0
Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a000638
Salvetti A, Greco A (2014) Viruses and the nucleolus: the fatal attraction. Biochim Biophys Acta 1842:840–847. doi:10.1016/j.bbadis.2013.12.010
Rawlinson SM, Moseley GW (2015) The nucleolar interface of RNA viruses. Cell Microbiol. doi:10.1111/cmi.12465
Musinova YR, Kananykhina EY, Potashnikova DM et al (2015) A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli. Biochim Biophys Acta 1853:101–110. doi:10.1016/j.bbamcr.2014.10.007
Dang CV, Lee WM (1989) Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J Biol Chem 264:18019–18023
Borer RA, Lehner CF, Eppenberger HM, Nigg EA (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56:379–390
Valdez BC, Perlaky L, Henning D et al (1994) Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. J Biol Chem 269:23776–23783
Szebeni A, Herrera JE, Olson MO (1995) Interaction of nucleolar protein B23 with peptides related to nuclear localization signals. Biochemistry 34:8037–8042
Miyazaki Y, Nosaka T, Hatanaka M (1996) The post-transcriptional regulator Rev of HIV: implications for its interaction with the nucleolar protein B23. Biochimie 78:1081–1086
Li YP, Busch RK, Valdez BC, Busch H (1996) C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur J Biochem 237:153–158
Meder VS, Boeglin M, de Murcia G, Schreiber V (2005) PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci 118:211–222. doi:10.1242/jcs.01606
Wang Y, Chen B, Li Y et al (2011) PNRC accumulates in the nucleolus by interaction with B23/nucleophosmin via its nucleolar localization sequence. Biochim Biophys Acta—Mol Cell Res 1813:109–119. doi:10.1016/j.bbamcr.2010.09.017
Endo A, Kitamura N, Komada M (2009) Nucleophosmin/B23 regulates ubiquitin dynamics in nucleoli by recruiting deubiquitylating enzyme USP36. J Biol Chem 284:27918–27923. doi:10.1074/jbc.M109.037218
Fankhauser C, Izaurralde E, Adachi Y et al (1991) Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 11:2567–2575
Adachi Y, Copeland TD, Hatanaka M, Oroszlan S (1993) Nucleolar targeting signal of Rex protein of human T-cell leukemia virus type I specifically binds to nucleolar shuttle protein B-23. J Biol Chem 268:13930–13934
Marasco WA, Szilvay AM, Kalland KH et al (1994) Spatial association of HIV-1 tat protein and the nucleolar transport protein B23 in stably transfected Jurkat T-cells. Arch Virol 139:133–154
Jarboui MA, Bidoia C, Woods E et al (2012) Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus. PLoS One 7:e48702. doi:10.1371/journal.pone.0048702
Michienzi A, Li S, Zaia JA, Rossi JJ (2002) A nucleolar TAR decoy inhibitor of HIV-1 replication. Proc Natl Acad Sci USA 99:14047–14052. doi:10.1073/pnas.212229599
Ponti D, Troiano M, Bellenchi GC et al (2008) The HIV Tat protein affects processing of ribosomal RNA precursor. BMC Cell Biol 9:32. doi:10.1186/1471-2121-9-32
Kukkonen S, Del Martinez-Viedma M, Kim N et al (2014) HIV-1 Tat second exon limits the extent of Tat-mediated modulation of interferon-stimulated genes in antigen presenting cells. Retrovirology 11:30. doi:10.1186/1742-4690-11-30
López-Huertas MR, Callejas S, Abia D et al (2010) Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res 38:3287–3307. doi:10.1093/nar/gkq037
Johnson TP, Patel K, Johnson KR et al (2013) Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci USA 110:13588–13593. doi:10.1073/pnas.1308673110
Vaqué JP, Martínez N, Batlle-López A et al (2014) B-cell lymphoma mutations: improving diagnostics and enabling targeted therapies. Haematologica 99:222–231. doi:10.3324/haematol.2013.096248
Gauffre A, Viron A, Barel M et al (1992) Nuclear localization of the Epstein-Barr virus/C3d receptor (CR2) in the human Burkitt B lymphoma cell, Raji. Mol Immunol 29:1113–1120. doi:10.1016/0161-5890(92)90044-X
Haque A, God JM (2010) Burkitt lymphoma: pathogenesis and immune evasion. J Oncol. doi:10.1155/2010/516047
Duyao MP, Kessler DJ, Spicer DB et al (1992) Transactivation of the c-myc promoter by human T cell leukemia virus type 1 tax is mediated by NF kappa B. J Biol Chem 267:16288–16291
Ji L, Arcinas M, Boxer LM (1994) NF-kappa B sites function as positive regulators of expression of the translocated c-myc allele in Burkitt’s lymphoma. Mol Cell Biol 14:7967–7974
Catz SD, Johnson JL (2001) Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20:7342–7351. doi:10.1038/sj.onc.1204926
Fiume G, Vecchio E, De Laurentiis A et al (2012) Human immunodeficiency virus-1 Tat activates NF-κB via physical interaction with IκB-α and p65. Nucleic Acids Res 40:3548–3562. doi:10.1093/nar/gkr1224
Scala G, Ruocco MR, Ambrosino C et al (1994) The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med 179:961–971
Shu F, Lv S, Qin Y et al (2007) Functional characterization of human PFTK1 as a cyclin-dependent kinase. Proc Natl Acad Sci USA 104:9248–9253. doi:10.1073/pnas.0703327104
Stern MH, Soulier J, Rosenzwajg M et al (1993) MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. Oncogene 8:2475–2483
Gritti C, Dastot H, Soulier J et al (1998) Transgenic mice for MTCP1 develop T-cell prolymphocytic leukemia. Blood 92:368–373
Acknowledgments
This work was supported by the Russian Science Foundation (project 14-15-00199).
Author information
Authors and Affiliations
Corresponding author
Additional information
Y. R. Musinova and E. V. Sheval contributed equally to this work.
Rights and permissions
About this article
Cite this article
Musinova, Y.R., Sheval, E.V., Dib, C. et al. Functional roles of HIV-1 Tat protein in the nucleus. Cell. Mol. Life Sci. 73, 589–601 (2016). https://doi.org/10.1007/s00018-015-2077-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-015-2077-x