Skip to main content

Advertisement

Expression of Amphiphysin I, an Autoantigen of Paraneoplastic Neurological Syndromes, in Breast Cancer

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Amphiphysin I is a 128 kD protein highly concentrated in nerve terminals, where it has a putative role in endocytosis. It is a dominant autoantigen in patients with stiff-man syndrome associated with breast cancer, as well as in other paraneoplastic autoimmune neurological disorders. To elucidate the connection between amphiphysin I autoimmunity and cancer, we investigated its expression in breast cancer tissue. We report that amphiphysin I was expressed as two isoforms of 128 and 108 kD in the breast cancer of a patient with anti-amphiphysin I antibodies and paraneoplastic sensory neuronopathy. Amphiphysin I was also detectable at variable levels in several other human breast cancer tissues and cell lines and at low levels in normal mammary tissue and a variety of other non-neuronal tissues. The predominant amphiphysin I isoform expressed outside the brain in humans is the 108 kD isoform which represents an alternatively spliced variant of neuronal amphiphysin I missing a 42 amino acid insert. Our study suggests a link between amphiphysin I expression in cancer and amphiphysin I autoimmunity. The enhanced expression of amphiphysin I in some forms of cancer supports the hypothesis that amphiphysin family members may play a role in the biology of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lichte B, Veh RW, Meyer HE, Kilimann MW. (1992) Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J. 11: 2521–2530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. David C, McPherson PS, Mundigl O, De Camilli P. (1996) A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc. Natl. Acad. Sci. U.S.A. 93: 331–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shupliakov O, Low P, Grabs D, Gad H, Chen H, David C, Takei K, De Camilli P, Brodin L. (1997) Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions. Science 276: 259–263.

    Article  CAS  PubMed  Google Scholar 

  4. Cremona O, De Camilli P. (1997) Synaptic vesicle endocytosis. Curr. Opin. Neurobiol. 7: 323–330.

    Article  CAS  PubMed  Google Scholar 

  5. Mundigl O, Ochoa G, David C, Slepnev V, Kabanov A, De Camilli P. (1997) Amphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons. J. Neurosci. 18: 93–103.

    Article  Google Scholar 

  6. De Camilli P, Thomas A, Cofiell R, Folli F, Lichte B, Piccolo G, Meinck H, M, Austoni M, Fassetta G, Bottazzo G, Bates D, Cartlidge N, Solimena M, Kiliman MW. (1993) The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. J. Exp. Med. 178: 2219–2223.

    Article  Google Scholar 

  7. Folli F, Solimena M, Cofiell R, Austoni M, Tallini G, Fassetta G, Bates D, Cartlidge N, Bottazzo GF, Piccolo G, et al. (1993) Autoantibodies to a 128-kd synaptic protein in three women with the stiff-man syndrome and breast cancer. N. Engl. J. Med. 328: 546–551.

    Article  CAS  PubMed  Google Scholar 

  8. Dropcho EJ. (1996) Antiamphiphysin antibodies with small-cell lung carcinoma and paraneoplastic encephalomyelitis. Ann. Neurol. 39: 659–667.

    Article  CAS  PubMed  Google Scholar 

  9. Lennon VA, Manley HA, Kim K, Parisi JE, Kilimann MW, Benarroch EE. (1997) Amphiphysin autoantibodies: A paraneoplastic serological marker of breast and lung cancer-related encephalomyeloradiculoneuritides but not classical stiff-man syndrome. Neurology 48: A434.

    Article  Google Scholar 

  10. Posner JB, Dalmau JO. (1997) Paraneoplastic syndromes affecting the central nervous system. Annu. Rev. Med. 48: 157–166.

    Article  CAS  PubMed  Google Scholar 

  11. Darnell RB. (1996) Onconeural antigens and the paraneoplastic neurologic disorders: At the intersection of cancer, immunity, and the brain. Proc. Natl. Acad. Sci. U.S.A. 93: 4529–4536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crouzet M, Urdaci M, Dulau L, Aigle M. (1991) Yeast mutant affected for viability upon nutrient starvation: Characterization and cloning of the RVS161 gene. Yeast 7: 727–743.

    Article  CAS  PubMed  Google Scholar 

  13. Bauer F, Urdaci M, Aigle M, Crouzet M. (1993) Alteration of a yeast SH3 protein leads to conditional viability with defects in cytoskeletal and budding patterns. Mol. Cell. Biol. 13: 5070–5084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. David C, Solimena M, De Camilli P. (1994) Autoimmunity in Stiff-Man syndrome with breast cancer is targeted to the C-terminal region of human amphiphysin, a protein similar to the yeast proteins, Rvs167 and Rvs161. FEBS Lett. 351: 73–79.

    Article  CAS  PubMed  Google Scholar 

  15. Sivadon P, Bauer F, Aigle M, Crouzet M. (1995) Actin cytoskeleton and budding pattern are altered in the yeast rvsl61 mutant: The Rvs161 protein shares common domains with the brain protein amphiphysin. Mol. Gen. Genet. 246: 485–495.

    Article  CAS  PubMed  Google Scholar 

  16. Sparks AB, Hoffman NJ, McConnell SJ, Fowlkes DM, Kay BK. (1996) Cloning of ligand targets: Systemic isolation of SH3 domain-containing proteins. Nature Biotech. 14: 741–744.

    Article  CAS  Google Scholar 

  17. Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC. (1996) BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nature Genet. 14: 69–77.

    Article  CAS  PubMed  Google Scholar 

  18. Leprince C, Romero R, Cussac D, Vayssiere B, Berger R, Tavitian A, Camonis JH. (1997) A new member of the amphiphysin family connecting endocytosis and signal transuction pathways. J. Biol. Chem. 272: 15101–15105.

    Article  CAS  PubMed  Google Scholar 

  19. Butler MH, David C, Ochoa GC, Freyberg Z, Daniell L, Grabs D, Cremona O, De Camilli P. (1997) Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/RVS family, is localized in the 39 cortical cytomatrix of axon initial segments and nodes of Ranvier in brain and around T-tubules in skeletal muscle. J. Cell Biol. 137: 1355–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsutsui K, Maeda Y, Tsutsui K, Seki S, Tokunaga A. (1997) cDNA cloning of a novel amphiphysin isoform and tissue-specific expression of its multiple splice variants. Biochem. Biophys. Res. Commun. 236: 178–83.

    Article  CAS  PubMed  Google Scholar 

  21. Wigge P, Kohler K, Vallis Y, Doyle CA, Owen D, Hunt SP, McMahon HT. (1997) Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell 8: 2003–2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramjaun AR, Micheva KD, Bouchelet I, McPherson PS. (1997) Identification and characterization of a nerve terminal-enriched amphiphysin isoform. J. Biol. Chem. 272: 16700–16706.

    Article  CAS  PubMed  Google Scholar 

  23. Kadlec L, Pendergast AM. (1997) The amphiphysin-like protein 1 (ALP1) interacts functionally with the cABL tyrosine kinase and may play a role in cytoskeletal regulation [In Process Citation]. Proc. Natl. Acad. Sci. U.S.A. 94: 12390–12395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McPherson PS, Garcia EP, Slepnev VI, David C, Zhang XM, Grabs D, Sossin WS, Bauerfeind R, Nemoto Y, De Camilli P. (1996) A presynaptic inositol-5-phosphatase. Nature 379: 353–357.

    Article  CAS  PubMed  Google Scholar 

  25. Grabs D, Slepnev VI, Songyang Z, David C, Lynch M, Cantley LC, De Camilli P. (1997) The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. J. Biol. Chem. 272: 13419–13425.

    Article  CAS  PubMed  Google Scholar 

  26. De Camilli P, Cameron R, Greengard P. (1983) Synapsin I (protein I) a nerve terminal specific phosphoprotein. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in froxen and plastic sections. J. Cell Biol. 96: 1337–1354.

    Article  PubMed  Google Scholar 

  27. Navone F, Jahn R, Di Gioia G, Stukenbrok H, Greengard P, De Camilli P. (1986) Protein p38: An integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J. Cell Biol. 103: 2511–2527.

    Article  CAS  PubMed  Google Scholar 

  28. Jahn R, Schiebler W, Ouimet C, Greengard P. (1985) A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc. Natl. Acad. Sci. U.S.A. 82: 4137–4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kohler G, Milstein C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.

    Article  CAS  PubMed  Google Scholar 

  30. Hackett AJ, Smith HS, Springer EL, Owens RB, Nelson-Rees WA, Riggs JL, Gardner MB. (1977) Two syngeneic cell lines from human breast tissue: the aneuploid mammary epithelial (Hs578T) and the diploid myoepithelial (Hs578Bst) cell lines. J. Natl. Cancer Inst. 58: 1795–806.

    Article  CAS  PubMed  Google Scholar 

  31. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299.

    Article  CAS  PubMed  Google Scholar 

  32. Bogue CW, Gross I, Vasavada H, Dynia DW, Wilson CM, Jacobs HC. (1994) Identification of Hox genes in newborn lung and effects of gestational age and retinoic acid on their expression. Am. J. Physiol. 266: L448–454.

    Article  CAS  PubMed  Google Scholar 

  33. Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  34. Towbin H, Staehelin T, Gordon J. (1979) Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. U.S.A. 76: 4350–4354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dalmau J, Graus F, Cheung NK, Rosenblum MK, Ho A, Canete A, Delattre JY, Thompson SJ, Posner JB. (1995) Major histocompatibility proteins, anti-Hu antibodies, and paraneoplastic encephalomyelitis in neuroblastoma and small cell lung cancer. Cancer 75: 99–109.

    Article  CAS  PubMed  Google Scholar 

  36. Wiedenmann B, Huttner WB. (1989) Synaptophysin and chromogranins/secretogranins—Widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch. B Cell. Pathol. Incl. Mol. Pathol. 58: 95–121.

    Article  CAS  PubMed  Google Scholar 

  37. Williams CL. (1997) Basic science of small cell lung cancer. Chest Surg. Clin. North Am. 7: 1–19.

    CAS  Google Scholar 

  38. Bauerfeind R, Takei K, De Camilli P. (1997) Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals. J. Biol. Chem. 272: 30984–30992.

    Article  CAS  PubMed  Google Scholar 

  39. Munn AL, Stevenson BJ, Geli MI, Riezman H. (1995) end5, end6, and end7: Mutations that cause actin derealization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell 6: 1721–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vieira AV, Lamaze C, Schmid SL. (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274: 2086–2089.

    Article  CAS  PubMed  Google Scholar 

  41. Pawson T. (1995) Protein modules and signalling networks. Nature 373: 573–580.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank D. Stern (Yale), A. Perkins (Yale), and K. Tsutsui (Okayama, Japan) for discussion and J. Honnorat (Lyon, France), J. C. Antoine (Saint-Etienne, France), P. Sillevis-Smitt (Rotterdam, The Netherlands), K. Schmierer (Berlin, Germany), and J. Dalmau (New York) for discussing their patients with us. We thank L. Gutierez and C. Howe (Yale) and C. R. Wenger (University of Texas Health Science Center at San Antonio) for help in obtaining human tissues. Some of the material used for this study was provided through the Yale Critical Technologies Service (Dr. C. Howe, Director), and through the National Breast Cancer Tissue Resource of the San Antonio SPORE (Specialized Program of Research Excellence). This work was supported in part by grants from the Human Frontier Science Program and NIH (CA46128 and NS36251) to P. D. C., by fellowships from Telethon and the Human Frontier Science Program to O. C., by a fellowship from the United States Army Medical Research and Development Command to C. D., by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan to K. T., and by NIH grant (P50 CA58183) to the National Breast Cancer Tissue Resource of the San Antonio SPORE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro De Camilli.

Additional information

Communicated by V. T. Marchesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floyd, S., Butler, M.H., Cremona, O. et al. Expression of Amphiphysin I, an Autoantigen of Paraneoplastic Neurological Syndromes, in Breast Cancer. Mol Med 4, 29–39 (1998). https://doi.org/10.1007/BF03401727

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401727

Keywords