Skip to main content

Advertisement

Log in

Role of membrane transport in metabolism and function of glutathione in mammals

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

References

  • Abbott, W.A., Bridges, R.J., Meister, A. 1984. Extracellular metabolism of glutathione accounts for its disappearance from the basolateral circulation of the kidney.J. Biol. Chem. 259: 15393–15400

    Google Scholar 

  • Anderson, M.E., Meister, A. 1983. Transport and direct utilization of γ-glutamylcyst(e)ine for glutathione synthesis.Proc. Natl. Acad. Sci. USA 80: 707–711

    Google Scholar 

  • Bannai, S. 1984a. Transport of cystine and cysteine in mammalian cells.Biochim. Biophys. Acta 779: 289–306

    Google Scholar 

  • Bannai, S. 1984b. Induction of cystine and glutamate transport activity in human fibroblasts by diethyl maleate and other electrophilic agents.J. Biol. Chem. 259: 2435–2440

    Google Scholar 

  • Bannai, S., Ishii, T. 1982. Transport of cystine and cysteine and cell growth in cultured human diploid fibroblasts: Effect of glutamate and homocysteate.J. Cell. Physiol. 112: 265–272

    Google Scholar 

  • Bannai, S., Kitamura, E. 1980. Transport interaction ofl-cystine andl-glutamate in human diploid fibroblasts in culture.J. Biol. Chem. 255: 2372–2376

    Google Scholar 

  • Bannai, S., Kitamura, E. 1981. Role of proton dissociation in the transport of cystine and glutamate in human diploid fibroblasts in culture.J. Biol. Chem. 256: 5770–5772

    Google Scholar 

  • Bannai, S., Kitamura, E. 1982. Adaptive enhancement of cystine and glutamate uptake in human diploid fibroblasts in culture.Biochim. Biophys. Acta 721: 1–10

    Google Scholar 

  • Bannai, S., Takada, A., Tateishi, N. 1984. Traits and regulation of anionic amino acid transport system x c .Fed. Proc. 43: 1814

    Google Scholar 

  • Bannai, S., Tsukeda, H. 1979. The export of glutathione from human diploid cells in culture.J. Biol. Chem. 254: 3444–3450

    Google Scholar 

  • Bartoli, G.M., Sies, H. 1978. Reduced and oxidized glutathione efflux from liver.FEBS Lett. 86: 89–91

    Google Scholar 

  • Christensen, H.N. 1984. Organic ion transport during seven decades. The amino acids.Biochim. Biophys. Acta 779: 255–269

    Google Scholar 

  • Christensen, H.N., Handlogten, M.E. 1981. Role of system gly in glycine transport in monolayer cultures of liver cells.Biochem. Biophys. Res. Commun. 98: 102–107

    Google Scholar 

  • Demaster, E.G., Shirota, F.N., Redfern, B., Goon, D.J.W., Nagasawa, H.T. 1984. Analysis of hepatic reduced glutathione, cysteine and homocysteine by cation-exchange high-performance liquid chromatography with electrochemical detection.J. Chromatog. 308: 83–91

    Google Scholar 

  • Eagle, H., Washington, C., Friedman, S.M. 1966. The synthesis of homocystine, cystathionine, and cystine by cultured diploid and heteroploid human cells.Proc. Natl. Acad. Sci. USA 56: 156–163

    Google Scholar 

  • Ellory, J.C., Jones, S.E.M., Young, J.D. 1981. Glycine transport in human erythrocytes.J. Physiol. (London) 320: 403–422

    Google Scholar 

  • Ellory, J.C., Preston, R.L., Osotimehin, B., Young, J.D. 1983. Transport of amino acids for glutathione biosynthesis in human and dog red cells.Biomed. Biochim. Acta 42:S48-S52

    Google Scholar 

  • Franchi-Gazzola, R., Gazzola, G.C., Dall'Asta, V., Guidotti, G.G. 1982. The transport of alanine, serine, and cysteine in cultured human fibroblasts.J. Biol. Chem. 257: 9582–9587

    Google Scholar 

  • Gazzola, G.C., Dall'Asta, V., Bussolati, O., Makowske, M., Christensen, H.N. 1981. A stereoselective anomaly in dicarboxylic amino acid transport.J. Biol. Chem. 256: 6054–6059

    Google Scholar 

  • Gazzola, G.C., Dall'Asta, V., Guidotti, G.G. 1980. The transport of neutral amino acids in cultured human fibroblasts.J. Biol. Chem. 255: 929–936

    Google Scholar 

  • Griffith, O.W., Novogrodsky, A., Meister, A. 1979. Translocation of glutathione from lymphoid cells that have markedly different γ-glutamyl transpeptidase activities.Proc. Natl. Acad. Sci. USA 76: 2249–2252

    Google Scholar 

  • Hill, K.E., Burk, R.F. 1983. Effect of methionine and cysteine on glutathione synthesis by selenium-deficient isolated rat hepatocytes.In: Functions of Glutathione. Biochemical, Physiological, Toxicological, and Clinical Aspects. A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik, editors. pp. 117–124. Raven, New York

    Google Scholar 

  • Inaba, M., Maede, Y. 1984. Increase of Na+-gradient-dependentl-glutamate andl-aspartate transport in high K+ dog erythrocytes associated with high activity of (Na+, K+)-ATPase.J. Biol. Chem. 259: 312–317

    Google Scholar 

  • Inoue, M., Akerboom, T.P.M., Sies, H., Kinne, R., Thao, T., Arias, I.M. 1984a. Biliary transport of glutathione S-conjugate by rat liver canalicular membrane vesicles.J. Biol. Chem. 259:4998–5002

    Google Scholar 

  • Inoue, M., Kinne, R., Tran, T., Arias, I.M. 1983. The mechanism of biliary secretion of reduced glutathione. Analysis of transport process in isolated rat-liver canalicular membrane vesicles.Eur. J. Biochem. 134:467–471

    Google Scholar 

  • Inoue, M., Kinne, R., Tran, T., Arias, I.M. 1984. Glutathione transport across hepatocyte plasma membranes. Analysis using isolated rat-liver sinusoidal-membrane vesicles.Eur. J. Biochem. 138:491–495

    Google Scholar 

  • Ishii, T., Hishinuma, I., Bannai, S., Sugita, Y. 1981. Mechanism of growth promotion of mouse lymphoma L1210 cells in vitro by feeder layer or 2-mercaptoethanol.J. Cell. Physiol. 107:283–293

    Google Scholar 

  • Kilberg, M.S. 1982. Amino acid transport in isolated rat hepatocytes.J. Membrane Biol. 69:1–12

    Google Scholar 

  • Kilberg, M.S., Handlogten, M.E., Christensen, H.N. 1980. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs.J. Biol. Chem. 255:4011–4019

    Google Scholar 

  • Kilberg, M.S., Handlogten, M.E., Christensen, H.N. 1981. Characteristics of System ASC for transport of neutral amino acids in the isolated rat hepatocyte.J. Biol. Chem. 256:3304–3312

    Google Scholar 

  • King, G.F., Kuchel, P.W. 1985. Assimilation of α-glutamyl-peptides by human erythrocytes. A possible means of glutamate supply for glutathione synthesis.Biochem. J. 227:833–842

    Google Scholar 

  • Lash, L.H., Jones, D.P. 1984. Renal glutathione transport. Characteristics of the sodium-dependent system in the basal-lateral membrane.J. Biol. Chem. 259:14508–14514

    Google Scholar 

  • Lauterburg, B.H., Adams, J.D., Mitchell, J.R. 1984. Hepatic glutathione homeostasis in the rat: Efflux accounts for glutathione turnover.Hepatology 4:586–590

    Google Scholar 

  • Linder, M., De Burlet, G., Sudaka, P. 1984. Transport of glutathione by intestinal brush border membrane vesicles.Biochem. Biophys. Res. Commun. 123:929–936

    Google Scholar 

  • Maede, Y., Kasai, N., Taniguchi, N. 1982. Hereditary high concentration of glutathione in canine erythrocytes associated with high accumulation of glutamate, glutamine, and aspartate.Blood 59:883–889

    Google Scholar 

  • Makowske, M., Christensen, H.N. 1982. Contrasts in transport systems for anionic amino acids in hepatocytes and a hepatoma cell line HTC.J. Biol. Chem. 257:5663–5670

    Google Scholar 

  • McIntyre, T.M., Curthoys, N.P. 1979. Comparison of the hydrolytic and transfer activities of rat renal γ-glutamyltranspeptidase.J. Biol. Chem. 254:6499–6504

    Google Scholar 

  • McIntyre, T.M., Curthoys, N.P. 1980. The interorgan metabolism of glutathione.Int. J. Biochem. 12:545–551

    Google Scholar 

  • Meister, A. 1984. New developments in glutathione metabolism and their potential application in therapy.Hepatology 4:739–742

    Google Scholar 

  • Meister, A., Anderson, M.E. 1983. Glutathione.Annu. Rev. Biochem. 52:711–760

    Google Scholar 

  • Meister, A., Tate, S.S. 1976. Glutathione and related γ-glutamyl compounds: Biosynthesis and utilization.Annu. Rev. Biochem. 45:559–604

    Google Scholar 

  • Novogrodsky, A., Tate, S.S., Meister, A. 1976. γ-Glutamyl transpeptidase, a lymphoid cell-surface marker: Relationship to blastogenesis, differentiation, and neoplasia.Proc. Natl. Acad. Sci. USA 73:2414–2418

    Google Scholar 

  • Orrenius, S., Ormstad, K., Thor, H., Jewell, S.A. 1983. Turnover and functions of glutathione studied with isolated hepatic and renal cells.Fed. Proc. 42:3177–3188

    Google Scholar 

  • Rankin, B.B., Curthoys, N.P. 1982. Evidence for the renal paratubular transport of glutathione.FEBS Lett. 147:193–196

    Google Scholar 

  • Richman, P.G., Meister, A. 1975. Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione.J. Biol. Chem. 250:1422–1426

    Google Scholar 

  • Saetre, R., Rabenstein, D.L. 1978. Determination of cysteine in plasma and urine and homocysteine in plasma by high-pressure liquid chromatography.Anal. Biochem. 90:684–692

    Google Scholar 

  • Sies, H., Akerboom, T.P.M. 1984. Glutathione disulfide (GSSG) efflux from cells and tissues.Methods Enzymol. 105:445–451

    Google Scholar 

  • Takada, A., Bannai, S. 1984. Transport of cystine in isolated rat hepatocytes in primary culture.J. Biol. Chem. 259:2441–2445

    Google Scholar 

  • Tateishi, N., Higashi, T., Naruse, A., Nakashima, K., Shiozaki, H., Sakamoto, Y. 1977. Rat liver glutathione: Possible role as a reservoir of cysteine.J. Nutr. 107:51–60

    Google Scholar 

  • Tateishi, N., Higashi, T., Shinya, S., Naruse, A., Sakamoto, Y. 1974. Studies on the regulation of glutathione level in rat liver.J. Biochem. 75:93–103

    Google Scholar 

  • Thor, H., Moldéus, P., Orrenius, S. 1979. Metabolic activation and hepatotoxicity. Effect of cysteine, N-acetylcysteine, and methionine on glutathione biosynthesis and bromobenzene toxicity in isolated rat hepatocytes.Arch. Biochem. Biophys. 192:405–413

    Google Scholar 

  • Young, J.D., Ellory, J.C., Tucker, E.M. 1976. Amino acid transport in normal and glutathione-deficient sheep erythrocytes.Biochem. J. 154:43–48

    Google Scholar 

  • Young, J.D., Jones, S.E.M., Ellory, J.C. 1980. Amino acid transport in human and in sheep erythrocytes.Proc. R. Soc. London B 209:355–375

    Google Scholar 

  • Young, J.D., Tucker, E.M. 1983. Erythrocyte glutathione deficiency in sheep.In: Functions of Glutathione: Biochemical, Physiological, Toxicological, and Clinical Aspects. A. Larsson, S. Orrenius, A. Holmgren, and B. Mannervik, editors. pp. 373–384. Raven, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bannai, S., Tateishi, N. Role of membrane transport in metabolism and function of glutathione in mammals. J. Membrain Biol. 89, 1–8 (1986). https://doi.org/10.1007/BF01870891

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870891

Key Words

Navigation