Skip to main content

Advertisement

Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies

  • Original Articles
  • p185HER2, Monoclonal Antibodies, Growth Inhibition, Cytotoxicity
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The HER2 protooncogene encodes a receptor tyrosine kinase, p185HER2. The overexpression of p185HER2 has been associated with a worsened prognosis in certain human cancers. In the present work we have screened a variety of different tumor cell lines for p185HER2 expression using both enzyme-linked immunosorbent and fluorescence-activated cell sorting assays employing murine monoclonal antibodies directed against the extracellular domain of the receptor. Increased levels of p185HER2 were found in breast (5/9), ovarian (1/6), stomach (2/3) and colorectal (5/16) carcinomas, whereas all kidney and submaxillary adenocarcinoma cell lines tested were negative. Some monoclonal antibodies directed against the extracellular domain of p185HER2 inhibited growth in monolayer culture of breast and ovarian tumor cell lines overexpressing p185HER2, but had no effect on the growth of colon or gastric adenocarcinomas expressing increased levels of this receptor. The most potent growth-inhibitory anti-p185HER2 monoclonal antibody in monolayer culture, designated mumAb 4D5 (a murine IgG1κ antibody), was also tested in soft-agar growth assays for activity against p185HER2-overexpressing tumor cell lines of each type, with similar results. In order to increase the spectrum of tumor types potentially susceptible to monoclonal antibody-mediated anti-p185HER2 therapies, to decrease potential immunogenicity issues with the use of murine monoclonal antibodies for human therapy, and to provide the potential for antibody-mediated cytotoxic activity, a mouse/human chimeric 4D5 (chmAb 4D5) and a “humanized” 4D5 (rhu)mAb 4D5 HER2 antibody were constructed. Both engineered antibodies, in combination with human peripheral blood mononuclear cells, elicited antibody-dependent cytotoxic responses in accordance with the level of p185HER2 expression. Since this cytotoxic activity is independent of sensitivity to mumAb 4D5, the engineered monoclonal antibodies expand the potential target population for antibody-mediated therapy of human cancers characterized by the overexpression of p185HER2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aasland R, Lillehaug JR, Hale R, et al (1988) Expression of oncogenes in thyroid tumors: coexpression of c-erbB2/neu and c-erbB. Br J Cancer 57: 358–363

    PubMed  Google Scholar 

  2. Akiyama T, Sudo C, Ogawara H, et al (1986) The product of the human c-erbB-2 gene: a 185-kilodalton glycoprotein with tyrosine kinase activity. Science 232: 1644–1646

    PubMed  Google Scholar 

  3. Benz CC, Scott GK, Sarup JC, et al (1991) Tamoxifen resistance associated with p185HER2 overexpression in human breast cancer cells transfected with HER2/neu. Proc Am Assoc Cancer Res 32: 211

    Google Scholar 

  4. Berchuck A, Kamel A, Whitaker R, et al (1990) Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 50: 4087–4091

    PubMed  Google Scholar 

  5. Berchuck A, Rodriguez G, Kinney RB, et al (1991) Overexpression of HER-2/neu in endometrial cancer is associated with advanced stage discase. Am J Obstet, Gynecol 164: 15–21

    Google Scholar 

  6. Berger MS, Locher GW, Saurer S, et al (1988) Correlation of c-erbB-2 gene amplification and protein expression in human breast carcinoma with nodal status and nuclear grading. Cancer Res 48: 1238–1243

    PubMed  Google Scholar 

  7. Bonilla M, Ramirez M, Lopez-Cueto J, et al (1988) In vivo amplification and rearrangement of c-myc oncogene in human breast tumors. JNCI 80: 665–671

    PubMed  Google Scholar 

  8. Borst MP, Baker VV, Dixon D, et al (1990) Oncogene alterations in endometrial cancer. Gynecol Oncol 38: 364–366

    PubMed  Google Scholar 

  9. Brodeur GM, Seeger RC, Schwab M, et al (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124

    PubMed  Google Scholar 

  10. Brüderlein S, van der Bosch K, Schlag P, et al (1990) Cytogenetics and DNA amplification in colorectal cancers. Genes Chromosomes Cancer 2: 63–70

    PubMed  Google Scholar 

  11. Carter P, Presta L, Gorman CM, et al (1993) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA (in press)

  12. Coussens L, Yang-Feng TL, Liao Y-C, et al (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location withneu oncogene. Science 230: 1132–1139

    PubMed  Google Scholar 

  13. Drebin JA, Link VC, Stern DF, et al (1985) Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 41: 695–706

    Google Scholar 

  14. Drebin JA, Link VC, Greene MI (1988) Monoclonal antibodies specific for theneu oncogene product directly mediate anti-tumor effects in vivo. Oncogene 2: 387–394

    PubMed  Google Scholar 

  15. Drebin JA, Link VC, Greene MI (1988) Monoclonal antibodies reactive with distinct domains of theneu oncogene-encoded p185 molecule exert synergistic antitumor effects in vivo. Oncogene 2: 273–277

    PubMed  Google Scholar 

  16. Fendly BF, Winget M, Hudziak RM, et al (1990) Characterization of monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res 50: 1550–1558

    PubMed  Google Scholar 

  17. Fernandez-Pol JA (1985) Epidermal growth factor receptor of A431 cells. Characterization of a monoclonal anti-receptor antibody noncompetitive agonist of epidermal growth factor action. J Biol Chem 260: 5003–5011

    PubMed  Google Scholar 

  18. Freeman MR, Washecka R, Chung LWK (1989) Aberrant expression of epidermal growth factor receptor and HER-2 (erbB-2) messenger RNAs in human renal cancers. Cancer Res 49: 6221–6225

    PubMed  Google Scholar 

  19. Fukushige S-I, Matsubara K-I, Yoshida M, et al (1986) Localization of a novel v-erbB-related gene, c-erbB-2, on human chromosome 17 and its amplification in a gastric cancer cell line. Mol Cell Biol 6: 955–958

    PubMed  Google Scholar 

  20. Guérin M, Barrois M, Terrier M-J, et al (1988) Overexpression of either c-myc or c-erbB-2/neu protooncogenes in human breast carcinomas: correlation with poor prognosis. Oncogene Res 3: 21–31

    PubMed  Google Scholar 

  21. Guérin M, Gabillot M, Mathieu M-C, et al (1989) Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: prognostic significance. Int J Cancer 43: 201–208

    PubMed  Google Scholar 

  22. Hama-Schroff RW, Foon KA, Beatty SM, et al (1985) Human antimurine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res 45: 879–885

    PubMed  Google Scholar 

  23. Hudziak RM, Lewis GD, Shalaby MR, et al (1988) Amplified expression of the HER2/erbB-2 oncogene induces resistance to tumor necrosis factor α in NIH 3T3 cells. Proc Natl Acad Sci USA 85: 5102–5106

    PubMed  Google Scholar 

  24. Hudziak RM Lewis GD, Winget M, et al (1989) p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 9: 1165–1172

    PubMed  Google Scholar 

  25. Hynes NE, Gerber HA, Saurer S, et al (1989) Overexpression of the c-erbB-2 protein in human breast tumor cell lines. J Cell Biochem 39: 167–173

    PubMed  Google Scholar 

  26. Johnson BE, Makuch RW, Simmons AD, et al (1988)myc family DNA amplification in small cell lung cancer patients tumors and corresponding cell lines. Cancer Res 48: 5163–5166

    PubMed  Google Scholar 

  27. Junghans RP, Walmann TA, Landolfi NF, et al (1990) Anti-Tac-H, a humanized antibody to the interleukin 2 receptor with new features for immunotherapy in malignant and immune disorders. Cancer Res 50: 1495–1502

    PubMed  Google Scholar 

  28. Kameda T, Yasui W, Yoshida K, et al (1990) Expression oferbB2 in human gastric carcinomas: relationship between p185erbB2 expression and gene amplification. Cancer Res 50: 8002–8009

    PubMed  Google Scholar 

  29. Kern JA, Schwartz DA, Nordberg JE, et al (1990) p185neu expression in human lung adenocarcinomas predicts shortened survival. Cancer Res 50: 5184–5191

    PubMed  Google Scholar 

  30. King CR, Kraus MN, Aaronson SA (1985) Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 229: 974–976

    PubMed  Google Scholar 

  31. Krauss MH, Popescu NC, Amsbaugh SC, et al (1987) Overexpression of the EGF receptor-related proto-oncogeneerbB-2 in human mammary tumor cell lines by different molecular mechanisms. EMBO J 6: 605–610

    PubMed  Google Scholar 

  32. Kraus MH, Issing W, Miki T, et al (1989) Isolation and characterization ofERBB3, a third member of the “ERBB”/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc. Natl Acad Sci. USA 86: 9193–9197

    PubMed  Google Scholar 

  33. Lee W-H, Murphree AL, Benedict WF (1984) Expression of the N-myc gene in primary retinoblastoma. Nature 309: 458–460

    PubMed  Google Scholar 

  34. Liberman TA, Nusbaum HR, Razon N, et al (1985) Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human tumors of glial origin. Nature 313: 144–147

    PubMed  Google Scholar 

  35. Lichtenstein A, Berenson J, Gera JF, et al (1990) Resistance of human ovarian cancer cells to tumor necrosis factor and lymphokineactivated killer cells: correlation with expression ofHER2/neu oncogenes. Cancer Res 50: 7364–7370

    PubMed  Google Scholar 

  36. Little CD, Nau MM, Carney DN, et al (1983) Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306: 194–196

    PubMed  Google Scholar 

  37. Liu AY, Robinson RR, Hellström KE, et al (1987) Chimeric mousehuman IgG1 antibody that can mediate lysis of cancer cells. Proc Natl Acad Sci USA 84: 3439–3443

    PubMed  Google Scholar 

  38. Merlino GT, Xu Y-H, Ishii S, et al (1984) Amplified and enhanced expression of the epidermal growth factor receptor gene in A431 human carcinoma cells. Science 224: 417–419

    PubMed  Google Scholar 

  39. Moriyama M, Akiyama T, Yamamoto T, et al (1991) Expression of C-ERBB-2 gene product in urinary bladder cancer. J Urol 145: 423–427

    PubMed  Google Scholar 

  40. Park J-B, Rhim JS, Park S-C, et al (1989) Amplification, overexpression and rearrangement of theerbB-2 protooncogene in primary human stomach carcinomas. Cancer Res 49: 6605–6609

    PubMed  Google Scholar 

  41. Perez R, Pascual M, Macias A, et al (1984) Epidermal growth factor receptors in human breast cancer. Breast Cancer Res Treat 4: 189–193

    PubMed  Google Scholar 

  42. Reichmann L, Clark M, Waldmann H, et al (1988) Reshaping human antibodies for therapy. Nature 332: 323–329

    PubMed  Google Scholar 

  43. Ro J, North SM, Gallick GE, et al (1988) Amplified and overexpressed epidermal growth factor receptor gene in uncultured primary human breast carcinoma. Cancer Res 48: 161–164

    PubMed  Google Scholar 

  44. Sarup JC, Johnson RM, King KL, et al (1991) Characterization of an anti-p185HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth. Growth Regul 1: 72–82

    PubMed  Google Scholar 

  45. Schechter AL, Stern DF, Vaidyanathan L, et al (1984) Theneu oncogene: anerbB-related gene encoding a 185,000-Mr tumor antigen. Nature 312: 513–516

    PubMed  Google Scholar 

  46. Schechter AL, Hung M-C, Vaidyanathan L, et al (1985) Theneu gene: anerbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 229: 976–978

    PubMed  Google Scholar 

  47. Schneider PM, Hung M-C, Chiocca SM, et al (1989) Differential expression of the c-erbB-2 gene in human small cell and non-small cell lung cancer. Cancer Res 49: 4968–4971

    PubMed  Google Scholar 

  48. Seeger RC, Brodeur GH, Sather H, et al (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313: 1111–1116

    PubMed  Google Scholar 

  49. Semba K, Kamato N, Toyoshima K, et al (1985) A v-erbB-related protooncogene, c-erbB-2 is distinct from the c-erbB-1/epidermal growth factor receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci USA 82: 6497–6501

    PubMed  Google Scholar 

  50. Seshadri R, Matthews C, Dobrovic A, et al (1989) The significance of oncogene amplification in primary breast cancer. Int J Cancer 43: 270–272

    PubMed  Google Scholar 

  51. Shalaby MR, Shepard HM, Presta L, et al (1992) The development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing theHER2 protooncogene. J Exp Med 175: 217–225

    PubMed  Google Scholar 

  52. Shawler DL, Bartholomew RM, Smith LM, et al (1985) Human immune response to multiple injections of murine monoclonal IgG. J Immunol 135: 1530–1535

    PubMed  Google Scholar 

  53. Sias PE, Kotts CE, Vetterlein D, et al (1990) ELISA for quantitation of the extracellular domain of p185HER2 in biological fluids. J Immunol Methods 132: 73–80

    PubMed  Google Scholar 

  54. Slamon DJ, DeKernion JB, Verma IM, et al (1984) Expression of cellular oncogenes in human malignancies. Science 224: 256–262

    PubMed  Google Scholar 

  55. Slamon DJ, Clark GM, Wong SG, et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182

    PubMed  Google Scholar 

  56. Slamon DJ, Godolphin W, Jones LA, et al (1989) Studies of the HER-2/neu protooncogene in human breast and ovarian cancer. Science 244: 707–712

    PubMed  Google Scholar 

  57. Stern DF, Heffernan PA, Weinberg RA (1986) p185, a product of theneu protooncogene, is a receptorlike protein associated with tyrosine kinase activity. Mol Cell Biol 6: 1729–1740

    PubMed  Google Scholar 

  58. Tal M, Wetzler M, Josefberg Z, et al (1988) Sporadic amplification of the HER2/neu protooncogene in adenocarcinomas of various tissues. Cancer Res 48: 1517–1520

    PubMed  Google Scholar 

  59. Tandon AK, Clark GM, Cuamness GC, et al (1989) HER2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol 7: 1120–1128

    PubMed  Google Scholar 

  60. Ullrich A, Coussens L, Hayflick JS, et al (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 300: 418–425

    Google Scholar 

  61. van de Vijver M, van de Bersselaar R, Devilee P, et al (1987) Amplification of theneu (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cell Biol 7: 2019–2023

    PubMed  Google Scholar 

  62. van de Vijver MJ, Peterse JL, Mool WJ, et al (1988)Neu protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 319: 1239–1245

    PubMed  Google Scholar 

  63. Venter DJ, Kumar S, Tuzi NL, et al (1987) Overexpression of the c-erbB-2 oncoprotein in human breast carcinomas: immunohistological assessment correlates with gene amplification. Lancet 2: 69–72

    PubMed  Google Scholar 

  64. Weinberg RA (1984)ras oncogenes and the molecular mechanisms of carcinogenesis. Blood 64: 1143–1145

    PubMed  Google Scholar 

  65. Williams TN, Weiner DB, Greene MI, et al (1991) Expression of c-erbB-2 in human pancreatic adenocarcinomas. Pathobiology 59: 46–52

    PubMed  Google Scholar 

  66. Wright C, Angus B, Nicholson S, et al (1989) Expression of c-erbB-2 oncoprotein: a prognostic indicator in human breast cancer. Cancer Res 49: 2087–2090

    PubMed  Google Scholar 

  67. Yamamoto T, Kamato N, Kawano N, et al (1986) High incidence of amplification of epidermal growth factor receptor gene in human squamous carcinoma cell line. Cancer Res 46: 414–416

    PubMed  Google Scholar 

  68. Yamazaki H, Fukui Y, Ueyama Y, et al (1988) Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erb) in human brain tumors. Mol Cell Biol 8: 1816–1820

    PubMed  Google Scholar 

  69. Yao M, Shuin T, Misaki H, et al (1988) Enhanced expression of c-myc and epidermal growth factor receptor (c-erbB1) genes in primary human renal cancer. Cancer Res 48: 6753–6757

    PubMed  Google Scholar 

  70. Yokota J, Yamamoto T, Miyajima N, et al (1988) Genetic alterations of the c-erbB-2 oncogene occur frequently in tubular adenocarcinoma of the stomach and are often accompanied by amplification of the v-erbA homologue. Oncogene 2: 283–287

    PubMed  Google Scholar 

  71. Yonemura Y, Ninomiya I, Yamaguchi A, et al (1991) Evaluation of immunorcactivity for erbB-2 protein as a marker of poor short term prognosis in gastric cancer. Cancer Res 51: 1034–1038

    PubMed  Google Scholar 

  72. Zhou D, Battifora H, Yokota J, et al (1987) Association of multiple copies of the c-erbB-2 oncogene with spread of breast cancer. Cancer Res 47: 6123–6125

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, G.D., Figari, I., Fendly, B. et al. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol Immunother 37, 255–263 (1993). https://doi.org/10.1007/BF01518520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01518520

Key words