Skip to main content

Advertisement

Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity

  • Contributed Papers
  • Published:
Journal of tissue culture methods

Summary

High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 × 107 cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briegleb, W. The clinostat—a tool for analyzing the influence of acceleration on solid-liquid systems. Proceedings of workshop on space biology, Cologne, Germany (ESA SP-206) 97–101; March 1983.

  2. Cherry, R. S.; Papoutsakis, E. T. Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnol. Bioeng. 32(8):1001–1014; 1988.

    Google Scholar 

  3. Croughan, M. S.; Wang, D. I. C. Growth and death in overagitated microcarrier cell cultures. Biotechnol. Bioeng. 33(6):731–744; 1989.

    Google Scholar 

  4. Croughan, M. S.; Hamel, J.-F.; Wang, D. I. C. Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol. Bioeng. 29(1):130–141; 1987.

    Google Scholar 

  5. Croughan, M. S.; Sayre, S. S.; Wang, D. I. C. Viscous reduction of turbulent damage in animal cell culture. Biotechnol. Bioeng. 33(7):862–872; 1989.

    Google Scholar 

  6. Dedolph, R. R.; Dipert, M. H. The physical basis of gravity nullification by clinostatic rotation. Plant Physiol. 47(6):756–764; 1971.

    Google Scholar 

  7. Feder, J.; Tolbert, W. R. The large-scale cultivation of mammalian cells. Sci. Am. 248:36–43; 1983.

    PubMed  Google Scholar 

  8. Fleischaker, R. J.; Sinsky, A. J. Oxygen demand and supply in cell culture. Eur. J. Appl. Microbiol. Biotechnol. 12:193–197; 1981.

    Google Scholar 

  9. Glacken, M. W.; Fleishaker, R. J.; Sinsky, A. J. Reduction of waste product excretion via nutrient control; Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol. Bioeng. 28(9):1376–1389; 1986.

    Google Scholar 

  10. Glacken, M. W.; Fleishaker, R. J.; Sinsky, A. J. Mammalian cell culture: engineering principles and scale-up. Trends Biotechnol. 1(4):102–108; 1983.

    Google Scholar 

  11. Gmuender, F. K.; Cogoli, A. Cultivation of single cells in space. Appl. Microgravity Technol. 1:115–122; 1988.

    Google Scholar 

  12. Goodwin, T. J.; Jessup, J. M.; Sams, C., et al. In vitro three-dimensional tissue modeling. J.S.C. Technology Annual Report. NASA Technical Memorandum 100473; 1988.

  13. Goodwin, T. J.; Jessup, J. M.; Wolf, D. A. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell. Dev. Biol. 28A:47–60; 1992.

    PubMed  Google Scholar 

  14. Microcarrier cell culture: principles and methods. Uppsala, Sweden: Pharmacia Fine Chemicals; 1981.

  15. Nilsson, K.; Buzsaky, F.; Mosbach, K. Growth of anchorage-dependent cells on macropourous microcarriers. Bio-Technology 4(11):989–990; 1986.

    Google Scholar 

  16. Schwarz, R. P.; Wolf, D. A.; Trinh, T. Rotating cell culture vessel. U.S. Patent Application Serial No. 07/213,558; 1991.

  17. Taylor, G. R. Cell biology experiments conducted in space. Bioscience 27(2):102–108; 1977.

    Google Scholar 

  18. Thalmann, E. Biological experiences in bubble-free aeration system. Acta. Biotechnol. 9(6):511–516; 1989.

    Google Scholar 

  19. Tschopp, A.; Cogoli, A.; Lewis, M. L., et al. Bioprocessing in space: human cells attach to beads in microgravity. J. Biotechnol. 1(5–6):287–294; 1984.

    PubMed  Google Scholar 

  20. van Wezel, A. L. Microcarrier/cultures of animal cells. In: Kruse, P. F.; Paterson, M. K., eds. Tissue culture: methods and applications. New York: Academic Press; 1973:372–377.

    Google Scholar 

  21. Vaseen, V. A. U.S. Patent No. 4,223,094; 1980.

  22. Shibayama, D., et al. U.S. Patent No. 3,676,074; 1972.

  23. Wolf, D. A.; Schwarz, R. P.; Trinh, T. Controlled turbulence bioreactors. NASA Tech. Briefs, October 1989:74.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, R.P., Goodwin, T.J. & Wolf, D.A. Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity. Journal of Tissue Culture Methods 14, 51–57 (1992). https://doi.org/10.1007/BF01404744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01404744

Key words