Summary
High-density, three-dimensional cell cultures are difficult to grow in vitro. The rotating-wall vessel (RWV) described here has cultured BHK-21 cells to a density of 1.1 × 107 cells/ml. Cells on microcarriers were observed to grow with enhanced bridging in this batch culture system. The RWV is a horizontally rotated tissue culture vessel with silicon membrane oxygenation. This design results in a low-turbulence, low-shear cell culture environment with abundant oxygenation. The RWV has the potential to culture a wide variety of normal and neoplastic cells.
Similar content being viewed by others
References
Briegleb, W. The clinostat—a tool for analyzing the influence of acceleration on solid-liquid systems. Proceedings of workshop on space biology, Cologne, Germany (ESA SP-206) 97–101; March 1983.
Cherry, R. S.; Papoutsakis, E. T. Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnol. Bioeng. 32(8):1001–1014; 1988.
Croughan, M. S.; Wang, D. I. C. Growth and death in overagitated microcarrier cell cultures. Biotechnol. Bioeng. 33(6):731–744; 1989.
Croughan, M. S.; Hamel, J.-F.; Wang, D. I. C. Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol. Bioeng. 29(1):130–141; 1987.
Croughan, M. S.; Sayre, S. S.; Wang, D. I. C. Viscous reduction of turbulent damage in animal cell culture. Biotechnol. Bioeng. 33(7):862–872; 1989.
Dedolph, R. R.; Dipert, M. H. The physical basis of gravity nullification by clinostatic rotation. Plant Physiol. 47(6):756–764; 1971.
Feder, J.; Tolbert, W. R. The large-scale cultivation of mammalian cells. Sci. Am. 248:36–43; 1983.
Fleischaker, R. J.; Sinsky, A. J. Oxygen demand and supply in cell culture. Eur. J. Appl. Microbiol. Biotechnol. 12:193–197; 1981.
Glacken, M. W.; Fleishaker, R. J.; Sinsky, A. J. Reduction of waste product excretion via nutrient control; Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol. Bioeng. 28(9):1376–1389; 1986.
Glacken, M. W.; Fleishaker, R. J.; Sinsky, A. J. Mammalian cell culture: engineering principles and scale-up. Trends Biotechnol. 1(4):102–108; 1983.
Gmuender, F. K.; Cogoli, A. Cultivation of single cells in space. Appl. Microgravity Technol. 1:115–122; 1988.
Goodwin, T. J.; Jessup, J. M.; Sams, C., et al. In vitro three-dimensional tissue modeling. J.S.C. Technology Annual Report. NASA Technical Memorandum 100473; 1988.
Goodwin, T. J.; Jessup, J. M.; Wolf, D. A. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels. In Vitro Cell. Dev. Biol. 28A:47–60; 1992.
Microcarrier cell culture: principles and methods. Uppsala, Sweden: Pharmacia Fine Chemicals; 1981.
Nilsson, K.; Buzsaky, F.; Mosbach, K. Growth of anchorage-dependent cells on macropourous microcarriers. Bio-Technology 4(11):989–990; 1986.
Schwarz, R. P.; Wolf, D. A.; Trinh, T. Rotating cell culture vessel. U.S. Patent Application Serial No. 07/213,558; 1991.
Taylor, G. R. Cell biology experiments conducted in space. Bioscience 27(2):102–108; 1977.
Thalmann, E. Biological experiences in bubble-free aeration system. Acta. Biotechnol. 9(6):511–516; 1989.
Tschopp, A.; Cogoli, A.; Lewis, M. L., et al. Bioprocessing in space: human cells attach to beads in microgravity. J. Biotechnol. 1(5–6):287–294; 1984.
van Wezel, A. L. Microcarrier/cultures of animal cells. In: Kruse, P. F.; Paterson, M. K., eds. Tissue culture: methods and applications. New York: Academic Press; 1973:372–377.
Vaseen, V. A. U.S. Patent No. 4,223,094; 1980.
Shibayama, D., et al. U.S. Patent No. 3,676,074; 1972.
Wolf, D. A.; Schwarz, R. P.; Trinh, T. Controlled turbulence bioreactors. NASA Tech. Briefs, October 1989:74.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Schwarz, R.P., Goodwin, T.J. & Wolf, D.A. Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity. Journal of Tissue Culture Methods 14, 51–57 (1992). https://doi.org/10.1007/BF01404744
Issue Date:
DOI: https://doi.org/10.1007/BF01404744