Skip to main content

Advertisement

Alamethicin and related peptaibols — model ion channels

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Peptaibols are considered as models of those ion channels which consist of a bundle of transbilayer helices surrounding a central pore. X-Ray diffraction and NMR studies have yielded high resolution structures for several peptaibols. In conjunction with other spectroscopic investigations and molecular dynamics simulations, these studies suggest that peptaibols form proline-kinked α-helices, and that there may be “hinge-bending” movement of the helix in the region of the central proline residue. The amphipathicity of peptaibol helices is analyzed in relation to their channel-forming properties. Studies of the interactions of peptaibols with lipid bilayers suggest that they are helical when in a membrane-like environment, and that the helix orientation relative to the bilayer is sensitive to the peptaibol: lipid ratio, and to the degree of hydration of the bilayer. Electrical studies reveal that many peptaibols form multiple-conductance level channels in a voltage-dependent fashion. Analysis of conductance levels provides support for the “barrel stave” model of channel formation, whereby different conductance levels correspond to different numbers of monomers in a helix bundle. Alternative models for voltage-activation are discussed, and the roles of molecular dipoles and of hinge-bending in this process are considered. Two molecular models for an N = 6 bundle of alamethicin helices are presented and their electrostatic properties analyzed. The relevance of studies of peptaibols to channel and transport proteins in general is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aib:

α-amino-isobutyric acid

Alm:

alamethicin

ATR-FTIR:

attenuated total reflection Fourier transform infrared

CD:

circular dichroism

CFP:

channel-forming peptide

Chol:

cholesterol

diPhyPC:

diphytanoyl phosphatidylcholine

DMPC:

dimyristoyl phosphatidylcholine

DOPC:

dioleoyl phosphatidylcholine

DOPE:

dioleoyl phosphatidylethanolamine

DPPS:

dipahnitoyl phosphatidylserine

DTPC:

ditetradecyl phosphatidylcholine

HSM:

hydrophilic surface map

I-V:

current-voltage

MLV:

multilamellar vesicle

nAChR:

nicotinic acetylcholine receptor

P:L:

protein-to-lipid ratio

POPC:

palmitoyloleoyl phosphatidylcholine

SUV:

small unilamellar vesicle

Zrv:

zervamicin

References

  • Aléman C, Subirana JA, Perez JJ (1992) A molecular mechanical study of the structure of poly(α-aminoisobutyric acid). Biopolymers 32:621–631

    Google Scholar 

  • Aqvist J, Warshel A (1989) Energetics of ion permeation through membrane channels: solvation of Na+ by gramicidin A. Biophys J 56:171–182

    Google Scholar 

  • Archer SH, Cafiso DS (1991) Voltage-dependent conductance for alamethicin in phospholipid vesicles: a test for the mechanism of gating. Biophys J 60:380–388

    Google Scholar 

  • Archer SJ, Ellena JF, Cafiso DS (1991) Dynamics and aggregation of the peptide ion channel alamethicin: measurement using spin-labeled peptides. Biophys J 60:389–398

    Google Scholar 

  • Balaram P (1992) Non-standard amino acids in peptide design and protein engineering. Curr Opin Struct Biol 2:845–851

    Google Scholar 

  • Balaram P, Sukumar M, Krishna K, Mellor IR, Sansom MSP (1992) The properties of ion channels formed by zervamicins. Eur Biophys J 21:117–128

    Google Scholar 

  • Balasubramanian TM, Kendrick NCE, Taylor M, Marshall GR, Hall JE, Vodyanoy I, Reusser F (1981) Synthesis and characterisation of the major component of alamethicin. J Am Chem Soc 103:6127–6132

    Google Scholar 

  • Ball FG, Sansom MSP (1989) Single channel gating mechanisms: model identification and parameter estimation. Proc R See London Ser B 236:385–416

    Google Scholar 

  • Banerjee U, Tsui FP, Balasubramanian TN, Marshall GR, Chan SI (1983) Structure of alamethicin in solution: one- and two-dimensional 1H NMR studies at 500 MHz. J Mol Biol 165:757–775

    Google Scholar 

  • Banerjee U, Zidovetski R, Birge RR, Chan SI (1985) Interaction of alamethicin with lecithin bilayers: a 31P and 2H NMR study. Biochemistry 24:7621–7627

    Google Scholar 

  • Barlow DJ, Thornton JM (1988) Helix geometry in proteins. J Mol Biol 201:601–619

    Google Scholar 

  • Baumann G, Mueller P (1974) A molecular model of membrane excitability. J Supramol Struct 2:538–557

    Google Scholar 

  • Bogusz S, Boxer A, Busath DD (1992) An SS1-SS2 β-barrel structure for the voltage-activated potassium channel. Prot Eng 5:285–293

    Google Scholar 

  • Boheim G (1974) Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol 19:277–303

    Google Scholar 

  • Boheim G, Hanke W, Jung G (1983) Alamethicin pore formation: voltage-dependent flip-flop of α-helix dipoles. Biophys Struct Mech 9:181–191

    Google Scholar 

  • Boheim G, Gelfert S, Jung G, Menestrina G (1987) α-Helical ion channels reconstituted into planar bilayers. In: Yagi K, Pullman B (eds) Ion transport through membranes. Academic Press, Tokyo, pp 131–145

    Google Scholar 

  • Brumfeld V, Miller IR (1990) Electric field dependence of alamethicin channels. Biochim Biophys Acta 1024:49–53

    Google Scholar 

  • Burgess AW, Leach SJ (1973) An obligatory alpha-helical amino acid residue. Biopolymers 12:2599–2605

    Google Scholar 

  • Cascio M, Wallace BA (1988) Conformation of alamethicin in phospholipid vesicles: implications for insertion models. Proteins: Struct Funct Genet 4:89–98

    Google Scholar 

  • Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R, Pauptit RA, Jansonius JN, Rosenbusch JP (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733

    Article  CAS  PubMed  Google Scholar 

  • Davis ME, Madura JD, Luty BA, McCammon JA (1991) Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comp Phys Commun 62:182–197

    Google Scholar 

  • Dempsey CE (1990) The actions of melittin on membranes. Biochim Biophys Acta 1031:143–161

    Google Scholar 

  • Dempsey CE, Bazzo R, Harvey TS, Syperek I, Boheim G, Campbell ID (1991) Contribution of proline-14 to the structure and actions of melittin. FEBS Lett 281:240–244

    Google Scholar 

  • Duclohier H, Molle G, Spach G (1989) The influence of the trichozianin C-terminal residues on the ion channel conductance in lipid bilayers. Biochim Biophys Acta 987:133–136

    Google Scholar 

  • Duclohier H, Molle G, Dugast JY, Spach G (1992) Prolines are not essential residues in the “barrel-stave” model for ion channels induced by alamethicin analogues. Biophys J 63:868–873

    Google Scholar 

  • Durrell SR, Guy HR (1992) Atomic scale structure and functional models of voltage-gated potassium channels. Biophys J 62:238–250

    Google Scholar 

  • Edmonds DT (1989) A kinetic role for ionizable sites in membrane channel proteins. Eur Biophys J 17:113–119

    Google Scholar 

  • Esposito G, Carver JA, Boyd J, Campbell ID (1987) High resolution 1H NMR study of the solution structure of alamethicin. Biochemistry 26:1043–1050

    Google Scholar 

  • Fox RO, Richards FM (1982) A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5 Å resolution. Nature 300:325–330

    Google Scholar 

  • Fraternali F (1990) Restrained and unrestrained molecular dynamics simulations in the NVT ensemble of alamethicin. Biopolymers 30:1083–1099

    Google Scholar 

  • Frey S, Tamm LK (1991) Orientation of melittin in phospholipid bilayers: a polarized attenuated total reflection infrared study. Biophys J 60:922–930

    Google Scholar 

  • Furois-Corbin S, Pullman A (1988) Conformation and pairing properties of the N-terminal fragments of trichorzianine and alamethicin: a theoretical study. Biochim Biophys Acta 944:399–413

    Google Scholar 

  • Gordon LGM, Hayden DA (1972) The unit conductance channel of alamethicin. Biochim Biophys Acta 255:1014–1018

    Google Scholar 

  • Gordon LGM, Haydon DA (1975) Potential-dependent conductances in lipid membranes containing alamethicin. Philos Trans R See London B 270:433–447

    Google Scholar 

  • Hall JE, Vodyanoy I, Balasubramanian TM, Marshall GR (1984) Alamethicin: a rich model for channel behaviour. Biophys J 45:233–247

    Google Scholar 

  • Hanke W, Boheim G (1980) The lowest conductance state of the alamethicin pore. Biochim Biophys Acta 596:456–462

    Google Scholar 

  • Hanke W, Methfessel C, Wilmsen HU, Katz E, Jung G, Boheim G (1983) Melittin and a chemically modified trichotoxin form alamethicin-type multi-state pores. Biochim Biophys Acta 727:108–114

    Google Scholar 

  • Haris PI, Chapman D (1988) Fourier transform infrared spectra of the polypeptide alamethicin and a possible structural similarity with bacteriorhodopsin. Biochim Biophys Acta 943:375–380

    Google Scholar 

  • Harvey SC (1989) Treatment of electrostatic effects in macromolecular modelling. Proteins: Struct Funct Genet 5:78–92

    Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes (2nd edn). Sinauer Associates, Sunderland, Mass

    Google Scholar 

  • Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929

    Google Scholar 

  • Hol WG, Duijen PT von, Berendsen HJC (1978) The α-helix dipole and the properties of proteins. Nature 273:443–446

    Google Scholar 

  • Hol WGL (1985) Effects of the α-helix dipole upon the functioning and structures of proteins and peptides. Adv Biophys 19:133–165

    Google Scholar 

  • Hol WGL, Halie LM, Sander C (1981) Dipoles of the α-helix and \-sheet: their role in protein folding. Nature 294:532–536

    Google Scholar 

  • Huang HW, Wu Y (1991) Lipid-alamethicin interactions influence alamethicin orientation. Biophys J 60:1079–1087

    Google Scholar 

  • Kaback HR, Bibi E, Roepe PD (1990) β-Galactosidase transport in E. coli: a functional dissection of the lac permease. TIBS 15:309–314

    Google Scholar 

  • Karle IL (1992) Folding, aggregation and molecular recognition in peptides. Acta Crystallogr B 48:341–356

    Google Scholar 

  • Karle IL, Balaram P (1990) Structural characteristics of α-helical peptide molecules containing Aib residues. Biochemistry 29:6747–6756

    Google Scholar 

  • Karle IL, Flippen-Andersen J, Sukumar M, Balaram P (1987) Conformation of a 16-residue zervamicin IIA analog peptide containing 3 different structural features: 310-helix, α-helix and \-bend ribbon. Proc Natl Acad Sci, USA 84:5087–5091

    Google Scholar 

  • Karle IL, Flippen-Andersen J, Agarwalla S, Balaram P (1991) Crystal structure of Leu-zervamicin, a membrane ion channel peptide. Implications for gating mechanisms. Proc Natl Acad Sci, USA 88:5307–5311

    Google Scholar 

  • Karle IL, Flippen-Andersen J, Agarwalla S, Balaram P (1992) Implications for a ion channel in Leu-zervamicin. In: Sarma RH, Sarma MH (eds) Crystal structure of polymorph B. Structure and Function. Vol 2 Proteins, New York, Academic Press

    Google Scholar 

  • Kelsh LP, Ellena JP, Cafiso DS (1992) Determination of the molecular dynamics of alamethicin using 13C NMR: implications for the mechanism of gating of a voltage-dependent channel. Biochimistry 31:5136–5144

    Google Scholar 

  • Latorre R, Alvarez O (1981) Voltage-dependent channels in planar lipid bilayer membranes. Physiol Rev 61:77–150

    Google Scholar 

  • Lear JD, Wasserman ZR, DeGrado WF (1988) Synthetic amphiphilic peptide models for protein ion channels. Science 240:1177–1181

    Google Scholar 

  • LeBars M, Bachet B, Mornon JP (1988) Structure of a helical 19 peptide (trichorzianine AIIIC). Modelling of transmembrane channels. Z Kristallogr 185:588 (abstract)

    Google Scholar 

  • Li J, Carroll J, Ellar DJ (1991) Crystal structure of insecticidal σ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution. Nature 353:815–821

    Google Scholar 

  • Marger MD, Saier MH (1993) A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. TIBS 18:13–20

    Google Scholar 

  • Marshall GD, Hodgkin EE, Langs DA, Smith GD, Zabrocki J, Leplawy MT (1990) Factors governing helical preference of peptides containing multiple α,α-dialkyl amino acids. Proc Natl Acad Sci, USA 87:487–491

    Google Scholar 

  • Mathew MK, Balaram P (1983a) A helix dipole model for alamethicin and related transmembrane channels. FEBS Lett 157:1–5

    Google Scholar 

  • Mathew MK, Balaram P (1983b) Alamethicin and related channel forming polypeptides. Mol Cell Biochem 50:47–64

    Google Scholar 

  • Mellor IR, Sansom MSP (1990) Ion channel properties of mastoparan, a 14 residue peptide from wasp venom, and of MP3, a 12 residue analogue. Proc R Soc London B 239:383–400

    Google Scholar 

  • Mellor IR, Thomas DH, Sansom MSP (1988) Properties of ion channels formed by Staphylococcus aureus σ-toxin. Biochim Biophys Acta 942:280–294

    Google Scholar 

  • Miller C (1992) Hunting for the pore of voltage-gated channels. Curr Biol 2:573–575

    Google Scholar 

  • Molle G, Duclohier H, Spach G (1987) Voltage-dependent and multi-state ionic channels induced by trichorzianines, anti-fungal peptides related to alamethicin. FEBS Lett 224:208–212

    Google Scholar 

  • Molle G, Dugast JY, Duclohier H, Spach G (1988) Conductance properties of des-Aib-Leu-des-Pheol-Phe-alamethicin in planar lipid bilayers. Biochim Biophys Acta 938:310–314

    Google Scholar 

  • Molle G, Duclohier H, Dugast JY, Spach G (1989) Design and conformation of non-Aib synthetic peptides enjoying alamethicin-like ionophore activity. Biopolymers 28:273–283

    Google Scholar 

  • Molle G, Duclohier H, Julien S, Spach G (1991) Synthetic analogues of alamethicin: effect of C-terminal residue substitutions and chain length on the ion channel lifetimes. Biochim Biophys Acta 1064:365–369

    Google Scholar 

  • Oiki S, Madison V, Mental M (1990) Bundles of amphipathic transmembrane α-helices as a structural motif for ion-conducting channel proteins: studies on sodium channels and acetylcholine receptors. Proteins: Struct Funct Genet 8:226–236

    Google Scholar 

  • Padley RC, Cook JC, Rinehart KL (1977) High resolution and field desorption mass spectrometry studies and revised structures of alamethicins I and II. J Am Chem Soc 99:8469–8483

    Google Scholar 

  • Parker MW, Pattus F, Tucker AD, Tsernoglou D (1989) Structure of the membrane-pore-forming fragment of colicin-A. Nature 337:93–96

    Google Scholar 

  • Pastore A, Harvey TS, Dempsey CE, Campbell ID (1989) The dynamic properties of melittin in solution — investigation by NMR and molecular dynamics. Eur Biophys J 16:363–367

    Google Scholar 

  • Rebuffat S, Prigent Y, Auvin-Guette C, Bodo B (1991) Tricholongins BI and BII, 19-residue peptaibols from Trichoderma longibrachiatum: solution structure from two-dimensional NMR spectroscopy. Eur J Biochem 210:661–674

    Google Scholar 

  • Richardson JS, Richardson DC (1989) Principles and patterns of protein conformation. In: Fasman GD (ed) Prediction of protein structure and the principles of protein conformation, Plenum, New York, pp 1–98

    Google Scholar 

  • Rizzo V, Stankowski S, Schwarz G (1987) Alamethicin incorporation in lipid bilayers: a thermodynamic analysis. Biochemistry 26:2751–2759

    Google Scholar 

  • Sankararamakrishnan R, Vishveshwara S (1992) Geometry of proline-containing alpha-helices in proteins. Int J Peptide Protein Res 39:356–363

    Google Scholar 

  • Sankararamakrishnan R, Vishveshwara S (1993) Characterisation of proline-containing α-helix (helix F model of bacteriorhodopsin) by molecular dynamics studies. Proteins: Struct Funct Genet 15:26–41

    Google Scholar 

  • Sansom MSP (1991) The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 55:139–236

    Google Scholar 

  • Sansom MSP (1992) An investigation of the role of serine and threonine sidechains in ion channel proteins. Eur Biophys J 21:281–298

    Google Scholar 

  • Sansom MSP (1993) Peering down a pore. Curr Biol 3:239–241

    Google Scholar 

  • Sansom MSP, Kerr ID (1993) Influenza virus M2 protein: a molecular modelling study of the ion channel. Prot Eng 6:65–74

    Google Scholar 

  • Sansom MSP, Kerr ID, Mellor IR (1991) Ion channels formed by amphipathic helical peptides—a molecular modelling study. Eur Biophys J 20:229–240

    Google Scholar 

  • Sansom MSP, Balaram P, Karle IL (1993) Molecular modelling of ion channels formed by zervamicin-IIB. Eur Biophys J 21:369–383

    Google Scholar 

  • Schwarz G (1987) Basic kinetics of binding and incorporation with supramolecular aggregates. Biophys Chem 26:163–169

    Google Scholar 

  • Schwarz G, Savko P (1982a) Dielectric probe of the electric-field-sensitive peptide alamethicin. Bioelectromagnetics 3:25–28

    Google Scholar 

  • Schwarz G, Savko P (1982b) Structural and dipolar properties of the voltage-dependent pore former alamethicin in octanol/dioxane. Biophys J 39:211–219

    Google Scholar 

  • Schwarz G, Savko P, Jung G (1983) Solvent-dependent structural features of the membrane active peptide trichotoxin A40 as reflected in its dielectric dispersion. Biochim Biophys Acta 728:419–428

    Google Scholar 

  • Schwarz G, Stankowski S, Rizzo V (1986) Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin. Biochim Biophys Acta 861:141–151

    Google Scholar 

  • Schwarz G, Gerke H, Rizzo V, Stankowski S (1987) Incorporation kinetics in a membrane, studied with the pore-forming peptide alamethicin. Biophys J 52:685–692

    Google Scholar 

  • Stankowski S, Schwarz G (1989) Lipid dependence of peptide-membrane interactions: bilayer affinity and aggregation of the peptide alamethicin. FEBS Lett 250:556–560

    Google Scholar 

  • Stankowski S, Schwarz UD, Schwarz G (1988) Voltage-dependent pore activity of the peptide alamethicin correlated with incorporation in the membrane: salt and cholesterol effects. Biochim Biophys Acta 941:11–18

    Google Scholar 

  • Stroud RM, McCarthy MP, Shuster M (1990) Nicotinic acetylcholine receptor superfamily of ligand gated ion channels. Biochemistry 29:1107–1123

    Google Scholar 

  • Toniolo C, Benedetti E (1991) The polypeptide 310-helix. Trends Biochem Sci 16:350–353

    Google Scholar 

  • Toyoshima C, Unwin N (1988) Ion channel of acetylcholine receptor reconstructed from images of post-synaptic membranes. Nature 336:247–250

    Google Scholar 

  • Unwin N (1989) The structure of ion channels in membranes of excitable cells. Neuron 3:665–676

    Google Scholar 

  • Unwin N (1993) Nicotinic acetylcholine receptor at 9 Å resolution. J Mol Biol 230:1101–1124

    Google Scholar 

  • Vodyanoy I, Hall JE, Balasubramanian TM (1983) Alamethicininduced current-voltage curve asymmetry in lipid bilayers. Biophys J 42:71–82

    Google Scholar 

  • Vogel H (1987) Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. Biochemistry 26:4562–4572

    Google Scholar 

  • Wada A (1976) The α-helix as an electric macro-dipole. Adv Biophys 9:1–63

    Google Scholar 

  • Weiss MS, Kreusch A, Schiltz E, Nestel U, Welte W, Weckesser J, Schulz GE (1991) The structure of porin from Rhodobacter capsulatus at 1.8 Å resolution. FEBS Lett 280:379–382

    Google Scholar 

  • Wine JJ (1993) Ion channels and transmembrane transporters. Curr Biol 3:118–120

    Google Scholar 

  • Woolley GA, Wallace BA (1992) Model ion channels: gramicidin and alamethicin. J Membr Biol 129:109–136

    Google Scholar 

  • Woolley GA, Wallace BA (1993) Temperature-dependence of the interaction of alamethicin helices in membranes. (submitted for publication)

  • Yee AA, O'Neil JDJ (1992) Uniform 15N labeling of a fungal peptide: the structure and dynamics of an alamethicin by 15N and 1H NMR spectroscopy. Biochemistry 31:3135–3143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansom, M.S.P. Alamethicin and related peptaibols — model ion channels. Eur Biophys J 22, 105–124 (1993). https://doi.org/10.1007/BF00196915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196915

Key words