Skip to main content

Advertisement

Log in

PET in clinical oncology

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Positron Emission Tomography (PET) is an imaging technique that produces cross sectional images based on tissue biochemical and physiological processes. PET complements other anatomic imaging techniques such as x-ray CT and magnetic resonance imaging (MRI). Fundamental processes such as glucose metabolism, oxygen metabolism, and blood flow can be imaged and quantified with PET, in addition to many other processes of both clinical and investigative interest. PET is now emerging as a clinical tool in oncology and is useful in noninvasively grading tumors, in determining tumor activity and recurrence, and in monitoring the effects of a variety of therapeutic interventions with tumors. While most of the applications of PET in oncology to date have been in brain tumors, the technique is now being applied in tumor evaluations outside of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM: Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16: 210–224, 1975

    Google Scholar 

  2. Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM: Transaxial emission reconstruction tomography: Coincidence detection of positron-emitting radionuclides. In: DeBlanc H, Sorenson JA (eds) Non-Invasive Brain Imaging, Radionuclides and Computed Tomography. Soc Nucl Med, New York, 1975, pp 87–109

    Google Scholar 

  3. Phelps ME, Hoffman EJ, Mullani NA, Higgins CS, Ter-Pogossian MM: Design considerations for a whole body positron emission transaxial tomograph (PETT III). IEEE Trans Nucl Sci NS-23: 516–522, 1976

    Google Scholar 

  4. Hoffman EJ, Phelps ME, Mullani NA, Higgins CS, Ter-Pogossian MM: Design and performance characteristics of a whole body transaxial tomograph. J Nucl Med 17: 493–503, 1976

    Google Scholar 

  5. Di Chiro GD, Brooks RA, Bairamian D, Patronas NJ, Kornblith PL, Smith BH, Mansi L: Diagnostic and prognostic value of positron emission tomography using [18F]fluorodeoxyglucose in brain tumors. In: Reivich M, Alavi A (eds) Positron Emission Tomography. Alan R Liss, Inc. New York, 1985, pp 291–309

    Google Scholar 

  6. Brownell GL, Kairento A-L, Swartz M, Elmaleh DR: Positron emission tomography in oncology — the Masscchusetts General Hospital Experience. Semin Nucl Med 15: 201–209, 1985

    Google Scholar 

  7. Brooks DJ, Beaney RP, Thomas DGT. The role of positron emission tomography in the study of cerebral tumors. Semin Oncol 13: 83–93, 1986

    Google Scholar 

  8. Beaney RP, Lammertsma AA: Use of PET in oncology. In: Reivich M, Alavi A (eds) Positron Emission Tomography, Alan R Liss, Inc., New York, 1985, pp 425–450

    Google Scholar 

  9. Beaney RP: Positron emission tomography in the study of human tumors. Semin Nucl Med 14: 324–341, 1984

    Google Scholar 

  10. Phelps ME, Mazziotta JC, Huang SC: Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metabol 2: 113–162, 1982

    Google Scholar 

  11. Phelps ME, Mazziotta JC, Schelbert HR: Positron emission tomography and autoradiography: Principles and applications for brain and heart. Raven Press, New York, 1986

    Google Scholar 

  12. Di Chiro G, Brooks RA, Patronas NJ, Bairamian D, Kornblith PL, Smith BH, Mansi L, Barker J: Issues in the in vivo measurements of glucose metabolism of human central nervous system tumors. Ann Neurol 15 (Suppl): S138–146, 1984

    Google Scholar 

  13. Di Chiro G, Oldfield E, Bairamian D, Patronas NJ, Brooks RA, Mansi L, Smith BH, Kornblith PL, Margolin R: Metabolic imaging of the brain stem and spinal cord: Studies with positron emission tomography use 18F-2-deoxyglucose in normal and pathological cases. J Comput Assist Tomogr 7: 937–945, 1983

    Google Scholar 

  14. Di Chiro G, De La Paz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP: Glucose utilization of cerebral gliomas measured by [18F]fluorodeoxyglucose and positron emission tomography. Neurology 32: 1323–1329, 1982

    Google Scholar 

  15. Di Chiro G: Positron emission tomography using [18F]fluorodeoxgylucose in brain tumors. A powerful diagnostic and prognostic tool. Investigative Radiology (in press).

  16. Patronas NJ, Di Chiro G, Brooks RA, De La Paz RL, Kornblith PL, Smith BH, Rizzoli V, Kessler RM, Manning RG, Channing M, Wolf AP, O'Connor CM: Work in progress: [18F]-fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiol 144: 885–889, 1982

    Google Scholar 

  17. Phelps ME: Emission computed tomography. Semin Nucl Med 7: 337–365, 1977

    Google Scholar 

  18. Phelps ME, Hoffman EJ, Huang SC: Single-slice versus multiple-slice positron tomographys. J Nucl Med 290: 800–802, 1979

    Google Scholar 

  19. Brooks RA, Di Chiro G: Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol 21: 689–732, 1976

    Google Scholar 

  20. Budinger TF, Derenzo SE, Gullberg GT, Greenberg WL, Huesman RH: Emission computed axial tomography with single photon and positron annihilation photon emitters. J Comput Assist Tomogr 1: 131–145, 1977

    Google Scholar 

  21. Ter-Pogossian MM, Mullani NA, Ficke DC, Markham J, Snyder DL: Photon time-of-flight-assisted positron emission tomography. J Comput Assist Tomogr 5: 227–229, 1981

    Google Scholar 

  22. Phelps ME, Schelbert HR, Mazziotta JC: Positron computed tomography for studies of myocardial and cerebral function. Ann Int Med 98: 339–359, 1983

    Google Scholar 

  23. Hoffman EJ, Phelps ME, Huang SC: Performance evaluation of a positron tomograph designed for brain imaging. J Nucl Med 24: 245–257, 1983

    Google Scholar 

  24. Hoffman EJ, Ricci AR, Van der Stee LMAM, Phelps MEIII: Basic design considerations. IEEE Trans Nucl Sci NS30: 729–733, 1983

    Google Scholar 

  25. Welch MF, Tewson TJ: Radiopharmaceuticals for neurological studies. In: Sorenson JA (ed) Radiopharmaceuticals II. Soc Nucl Med, New York, 1979, pp 201–219

    Google Scholar 

  26. Wolf AP, Fowler JS: Organic radiopharmaceuticals: Recent advances. In: Sorenson jA (ed) Radiopharmaceuticals II. Soc Nucl Med, New York, 1979, pp 73–93

    Google Scholar 

  27. Wolf A: Special characteristics and potential for radiopharmaceuticals for positron emission tomography. Semin Nucl Med 11: 2–12, 1981

    Google Scholar 

  28. Hawkins RA, Phelps ME, Mazziotta JC, Schelbert HR: Diagnosis and management merge in clinical PET. Diagnostic Imaging, 106–114, 1986

  29. Hawkins RA, Phelps ME, Clinical PET: operational and cost considerations. Administr Radiol 5: 20–26, 1986

    Google Scholar 

  30. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M: The (14C)-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916, 1977

    Google Scholar 

  31. Reivich M, Kuhl DE, Wolf A, Greenberg J, Phelps ME, Ido T, Casella V, Fowler J, Hoffman EJ, Alavi A, Som P, Sokoloff L.: The (18F) fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127–137, 1979

    Google Scholar 

  32. Phelps ME, Huang SC, Hoffman EJ, Selin CE, Kuhl DE: Tomographic measurement of local cerebral glucose metabolic rate in man with (18F) 2-fluorodeoxyglucose: Validation of method. Ann Neurol 6: 371–388, 1979

    Google Scholar 

  33. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CE, Kuhl DE: Non-invasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238: E69-E82, 1980

    Google Scholar 

  34. Hawkins RA, Phelps ME, Huang SC, Kuhl DE: Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metabol 1: 37–52, 1981

    Google Scholar 

  35. Hawkins RA, Mazziotta JC, Phelps ME, Huang SC, Kuhl DE, Carson RE, Metter EJ, Riege WH: Cerebral glucose metabolism as a function of age in man: The influence of the rate constants in the fluorodeoxyglucose method. J Cereb Blood Flow Metabol 3: 250–253, 1983

    Google Scholar 

  36. Hawkins RA, Phelps ME, Huang SC: Effects of temporal sampling, glucose metabolic rates and disruptions of the blood brain barrier (BBB) on the FDG model with and without a vascular compartment: Studies in human brain tumors with PET. J Cereb Bld Flow Metabol 6: 170–183, 1986

    Google Scholar 

  37. Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin CE, Witner J: Effects of stroke on local metabolism and perfusion: Mapping by emission computed tomography of 18FDG and 13NH3. Ann Neurol 8: 47–60, 1980

    Google Scholar 

  38. Mazziotta JC, Phelps ME, Miller J, Kuhl DE: Tomographic mapping of human cerebral metabolism: Normal unstimulated state. Neurol 31: 503–516, 1981

    Google Scholar 

  39. Phelps ME: Positron computed tomography studies of cerebral glucose metabolism: Theory and application in nuclear medicine. Semin Nucl Med 11: 32–49, 1981

    Google Scholar 

  40. Weber G: Enzymology of cancer cells. N Engl J Med 296: 486–493, 541–551, 1977

    Google Scholar 

  41. Timperley WR: Glycolysis in neuroectodermal tumors. In: Thomas BT, Graham DI (eds) Brain Tumors, Scientific Basis, Clinical Investigation and Current Therapy. Butterworth and Company, London, 1980, pp 145–167

    Google Scholar 

  42. Hawkins RA, Phelps ME, Huang S-C, Wapenski JA, Silberman AW. Quantitative estimations of blood brain barrier (BBB) permeability with Ga-68 EDTA and glucose metabolism with F-18 FDG in human brain tumors with PET. J Cereb Blood Flow Metabol 5 (Suppl 1): S583-S584, 1985

    Google Scholar 

  43. Patronas NJ, Brooks RA, De La Paz RL, Smith BH, Kornblith PL, Di Chiro G: Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR 4: 533–535, 1983

    Google Scholar 

  44. Patronas NJ, Di Chiro GD, Kufta C, Bairamian D, Kornblith PL, Simon R, Larson SM: Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62: 816–822, 1985

    Google Scholar 

  45. Worthington C, Tyler JL, Villemure J-G: Stereotaxic biopsy and positron emission tomography correlation of cerebral gliomas. Surg Neurol 27: 87–92, 1987

    Google Scholar 

  46. Hoffman EJ, Huang S-C, Phelps ME: Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3: 299–308, 1979

    Google Scholar 

  47. Mazziotta JC, Phelps ME, Plummer D, Kuhl DE: Quantitation in positron emission computed tomography: 5. Physical anatomical effects. J Comput Assist Tomogr 5: 734–743, 1981

    Google Scholar 

  48. Caveness WF: Experimental observations: delayed necrosis in normal monkey brain. In: Gilbert HA, Kagan AR (eds) Radiation Damage to the Nervous System, a Delayed Therapeutic Hazard. Raven Press, New York, 1980, pp 1–38

    Google Scholar 

  49. De La Paz RL, Patronas NJ, Brooks RA, Smith BH, Kornblith PL, Milam H, Di Chiro G: Positron emission tomographic study of suppression of gray matter glucose utilization by brain tumors. AJNR 4: 826–829, 1983

    Google Scholar 

  50. Lammertsma AA, Wise RJS, Jones T: Regional cerebral blood flow and oxygen utilization in edema associated with cerebral tumors. In: Go KG, Baethmann A (eds) Recent Progress in the Study and Therapy of Brain Edema. Plenum Publishing Corp., 1984, pp 331–343

  51. Baron JC, Bousser MG, Comar D, Duquesnoy N, Sastre J, Castaigne P: ‘Crossed cerebellar diaschisis’: a remote functional depression secondary to supratentorial infarction in man. J Cereb Blood Flow Metabol (Suppl) 1: 500–501, 1981

    Google Scholar 

  52. Kushner M, Alavi A, Reivich M, Dann R, Burke A, Robinson G: Contralateral cerebellar hypometabolism following cerebral insult: A positron emission tomographic study. Ann Neurol 15: 425–434, 1984

    Google Scholar 

  53. Fukuyama H, Kameyama M, Harada K, Fujimoto N, Kobayashi A, Taki W, Ishikawa T, Handa H, Tanada S, Torizuka K: Thalamic tumors invading the brain stem produce crossed cerebellar diaschisis demonstrated by PET. J Neurol, Neurosurg and Psychiat 49: 524–528, 1986

    Google Scholar 

  54. Ell PJ, Jarritt PH, Costa DC, Callum ID, Lui D: Functional imaging of the brain. Semin Nucl Med 17: 214–229, 1987

    Google Scholar 

  55. Halama JR, Henkin RE: Single photon emission computed tomography. In: Freeman LM (ed) Freeman and Johnson's Clinical Radionuclide Imaging, Vol 3: Grune and Stratton, New York, 1986, pp 1529–1651

    Google Scholar 

  56. Sorenson JA, Phelps ME: Physics in Nuclear Medicine. Grune & Stratton, New York, 1986

    Google Scholar 

  57. Phelps ME, Huang S-C, Kuhl DE, Hoffman EJ, Selin CE: Cerebral extraction of N-13 ammonia: Its dependence on cerebral blood flow and capillary permeability surface area product. Stroke 12: 607–619, 1981

    Google Scholar 

  58. Schelstraete K, Simons M, Deman J, Vermeulen L, Slegers G, Vandecasteele C, Goethals P, DeSchryver A: Uptake of 13N-ammonia by human tumors as studied by positron emission tomography. Brit J Radiol 55: 797–804, 1982

    Google Scholar 

  59. Frackowiak SJ, Lenzi GL, Jones T, Heather JD: Quantificative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: Theory, procedure and normal values. J Comput Tomogr 4: 727–736, 1980

    Google Scholar 

  60. Jones T, Chesler DA, Ter-Pogossian MM: The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol 49: 339–343, 1976

    Google Scholar 

  61. Albert MM, Ackerman RH, Correia JA, Baron JC, Brownell GL, Taveras JM: Measurement of rCBF and rCMRO2 by continous inhalation of 15O-labelled CO2 and O2. Acta Neuro Scand 56 (Suppl 72): 186–187, 1977

    Google Scholar 

  62. Lenzi GL, Frackowiak RS, Jones T: Regional cerebral blood flow (CBF), oxygen utilization (CMRO2) and oxygen extraction ratio (OER) in acute hemispheric stroke. J Cereb Blood Flow Metabol 1 (Suppl 1): S504-S505, 1981

    Google Scholar 

  63. Huang S-C, Carson RE, Phelps ME: Measurement of local blood flow and distribution volume with short-lived isotopes: A general input technique. J Cereb Blood Flow Metabol 2: 99–108, 1982

    Google Scholar 

  64. Huang S-C, Carson RE, Hoffman EJ, Miller J, MacDonald NS, Barrio JR, Phelps ME: Quantitative measurement of local cerebral blood flow in man using positron computed tomography and clearance of 15O water. J Cereb Blood Flow Metabol 3: 141–153, 1983

    Google Scholar 

  65. Gambhir SS, Huang S-C, Hawkins RA, Phelps ME: A study of the single compartment tracer kinetic model for the measurement of 15O-water and positron emission tomography. J Cereb Blood Flow Metabol 7: 13–20, 1987

    Google Scholar 

  66. Warburg O: The Metabolism of Tumors. Arnold Constable, London, 1930, pp 75–327

    Google Scholar 

  67. Kirsch WM, Tucker WS, Tabuchi K, Fink LM, Van Buskirk JJ, Low M: The metabolism of the glioblastoma: pathological correlates. Clin Neurosurg 25: 310–325, 1977

    Google Scholar 

  68. Greenstein JP: Biochemistry of Cancer. Academic Press, Inc., New York, 1954

    Google Scholar 

  69. Allen N: Oxidative metabolism of brain tumors. Progr Exp Tumor Res 17: 192–209, 1972

    Google Scholar 

  70. Ito M, Lammertsma AA, Wise RJS, Bernardi S, Frackowiak RSJ, Heather JD, McKenzie CG, Thomas DGT, Jones T: Measurement of regional cerebral blood flow and oxygen utilization in patients with cerebral tumors using 15O and positron emission tomography: Analytical techniques and preliminary results. Neuroradiology 23: 63–74, 1982

    Google Scholar 

  71. Withers HR, Peters LJ: Biological aspects of radiation therapy. In: Fletcher GH (ed) Textbook of Radiotherapy, 3rd ed. Lea & Febiger, Philadelphia, 1980, pp 103–179

    Google Scholar 

  72. Rhodes CG, Wise RJS, Gibbs JM, Frackowiak RSJ, Hatazawa J, Palmer AJ, Thomas DGT, Jones T: In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 14: 614–626, 1983

    Google Scholar 

  73. Siesjo BK: Brain Energy Metabolism. John Wiley and Sons, Chichester, New York, Brisbane and Toronto, 1978

    Google Scholar 

  74. Mineura K, Yasuda T, Kowada M, Shishido F, Ogawa T, Uemura K: Positron emission tomographic evaluation of histological malignancy in gliomas using oxygen-15 and fluorine-18-fluorodeoxyglucose. Neurological Research 8: 164–168, 1986

    Google Scholar 

  75. Lammertsma AA, Wise RJS, Jones T: In vivo measurements of regional cerebral blood flow and blood volume in patients with brain tumors using positron emission tomography. Acta Neurochir 69: 5–13, 1983

    Google Scholar 

  76. Beaney RP, Lammertsma AA, Jones T, McKenzie CG, Halnan KE: Positron emission tomography for in vivo measurement of regional blood flow, oxygen utilization and blood volume in patients with breast carcinoma. The Lancet, Jan. 21, 131–134, 1984

    Google Scholar 

  77. Rappaport SI: Blood Brain Barrier in Psysiology and Medicine, Raven Press, New York, 1976

    Google Scholar 

  78. Blasberg RG, Gazendam J, Patlak CS, Shapiro WR, Fenstermacher JD: Changes in blood-brain transfer parameters induced by hyperosmolar intracarotid infusion and by metastatic tumor growth. In: Eisenberg H, Suddith R (eds) Cerebral Microvasculature: Investigation of the Blood Brain Barrier. Plenum Press, New York, 1980, pp 307–319

    Google Scholar 

  79. Blasberg DG, Kobayashi T, Patlak C, Shinohora M, Miyoaka M, Rice JM, Shapiro WR: Regional blood flow, capillary permeability, and glucose utilization in two brain tumor models: preliminary observation and pharmacokinetic implications. Cancer Treat Rep 65 (Suppl 2): 3–12, 1981

    Google Scholar 

  80. Blasberg RG, Fenstermacher JD, Patlak CS: Transport of α-aminobutyric acid across brain capillary and cellular membrane. J Cereb Blood Flow Metabol 3: 8–32, 1983

    Google Scholar 

  81. Blasberg RG, Patlak CS, Fenstermacher JD: Selection of experimental conditions for the accurate determination of blood-brain transfer constants from single-time experiments: a theoretical analysis. J Cereb Blood Flow Metabol 3: 215–255, 1983

    Google Scholar 

  82. Yamamoto YL, Thompson CJ, Meyer E, Robertson JS, Feindel W: Dynamic positron emission tomography for study of cerebral hemodynamics in cross section of the head using positron emitting 68Ga-EDTA and 77Kr. J Comput Assist Tomogr 1: 43–56, 1977

    Google Scholar 

  83. Phelps ME, Hoffman EJ, Huang S-C, Kuhl DE: Design and performance characteristics of the ECAT positron tomograph. J Comput Assist Tomogr 2: 648, 1978

    Google Scholar 

  84. Hawkins RA, Phelps ME, Huang S-C, Wapenski JA, Grimm PD, Parker RG, Juillard G, Greenberg JH. A kinetic evaluation of blood-brain barrier permeability in human brain tumors with [68Ga] EDTA and positron computed tomography. J Cereb Blood Flow Metabol 4: 507–515, 1984

    Google Scholar 

  85. Neuwelt EA, Specht HD, Howieson J, Haines JE, Bennett MJ, Hill SA, Frenkel EP: Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning. AJNR 4: 907–913, 1983

    Google Scholar 

  86. Yen CK, Budinger TF, Friedland RP, Derenzo SE, Huesman RH, O'Brien HA: Brain tumor evaluation using Rb-82 and positron emission tomography. J Nucl Med 23: 532–537, 1982

    Google Scholar 

  87. Lammertsma AA, Brooks DJ, Frackowiak RSJ, Heather JD, Jones T: A method to quantitate the fractional extraction of rubidium-82 across the blood brain barrier using positron emission tomography. J Cereb Blood Flow Metab 4: 523–534, 1984

    Google Scholar 

  88. Brooks DJ, Beaney RP, Lammertsma AA, Leenders KL, Horlock PL, Kensett MJ, Marshall J, Thomas DG, Jones T: Quantitative measurement of blood brain barrier permeability using rubidium-82 and positron emission tomography. J Cereb Blood Flow Metab 4: 535–545, 1984

    Google Scholar 

  89. Villemure J-G, Yamamoto LY, Thompson C, Feindel W: Monitoring of changes in blood tumor barrier permeability after intravenous mannitol: study with positron emission tomography. J Cereb Blood Flow Metabol 7: Suppl 1: S470, 1987

  90. Jardon JO, Dhawan V, Moeller JR, Strother SC, Thaler HT, Rottenberg DA: The time course of steroid action on brain tumor capillary permeability: a positron emission tomography study using 82Rb. J Cereb Blood Flow and Metabol 7: Suppl 1: S463, 1987

  91. Phelps ME, Barrio JR, Huang S-C, Keen RE, Chugani HT, Mazziotta JC: Criteria for the tracer kinetic measurement of cerebral protein synthesis in man with positron CT. Ann Neurol 15 (Suppl): S192-S202, 1984

    Google Scholar 

  92. Hawkins RA, Huang S-C, Phelps ME, Barrio JR, Keen RE, Mazziotta JC: An evaluation of the C-11 leucine method for estimation of cerebral protein synthesis rates in humans: model identification and technical issues. J Cereb Blood Flow Metabol 7 (Suppl 1): S504, 1987

  93. Keen RE, Barrio JR, Nissenson CH, Hawkins RA, Huang S-C, Phelps ME: Measurement of in vivo brain protein synthesis with leucyl-tRNA used as precursor pool: biochemical parameters used to establish tracer kinetic model for positron emission tomography. J Cereb Blood Flow Metabol S511, 1987

  94. Kirchner DT, Ryan J, Zalutsky M, Harper DV: Positron emission tomography for the evaluation of pancreatic disease. Semin Nucl Med 10: 374–391, 1980

    Google Scholar 

  95. Hubner KF, Purvis JT, MahaleyJr. SM, Robertson JT, Rogers S, Gibbs WD, King P, Partain CL: Brain tumor imaging by positron emission computed tomography using 11C-labeled amino acids. J Comput Assist Tomogr 6: 544–550, 1982

    Google Scholar 

  96. Smith CB, Davidsen L, Deibler G, Patlak C, Pettigrew K, Sokoloff L: A method for the determination of local rates of protein synthesis in brain. Trans Am Soc Neurochem 11: 94, 1980

    Google Scholar 

  97. Kennedy C, Suda S, Smith CB, Miyaoka M, Ito M, Sokoloff L: Changes in protein synthesis underlying functional plasticity in immature monkey visual system. Proc Nat Acad Sci 78: 3950–3953, 1981

    Google Scholar 

  98. Barrio JR, Keen RE, Huang SC, Hawkins RA, Phelps ME: Estimation of protein biosynthesis rates in vivo: tracer kinetic modeling and biochemical correlates. J Cereb Blood Flow Metabol 5 (Suppl 1): S617–618, 1985

    Google Scholar 

  99. Silberman AW, Morgan DF, Storm FK, Rand RW, Benz M, Drury B, Morton DL: Combination radiofrequency hyperthermia and chemotherapy (BCNU) for brain malignancy. J Neuro-Onc 2: 19–28, 1984

    Google Scholar 

  100. Storm FK, Morton DL, Kaiser LR, Harrison WH, Elliott RS, Weisenburger TH, Parker RG, Haskell CM: Clinical radiofrequency hyperthermia: A review. J Natl Cancer Inst Monogr 61: 343–350, 1982

    Google Scholar 

  101. Bergstrom M, Collins VP, Ehrin E, Ericson K, Eriksson L, Greitz T, Halldin C, von Holst H, Langstrom B, Lilja A, Lundqvist H, Nagren K: Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 7: 1062–1066, 1983

    Google Scholar 

  102. La France ND, O'Tauma L, Villemagne V, Williams J, Douglass K, Dannals RF, Ravert H, Wilson A, Drew H, Links J, Wong D, Carson B, Brem H, Strauss L, Wagner HN: Quantitative imaging and follow-up experience of C-11-L-methionine accumulation in brain tumors with positron emission tomography. J Nucl Med 28: 645, 1987

    Google Scholar 

  103. Bustany P, Chatel M, Derlon JM, Darcel F, Sgouropoulos P, Soussaline F: Brain tumor protein synthesis and histological grade. J Neuro-oncology 3: 397–404, 1986

    Google Scholar 

  104. Kubota K, Matsuzawa T, Ito M, Ito K, Fujiwara T, Abe Y, Yoshioka S, Fukuda H, Hatazawa J, Iwata R, Watanuki S, Ido T: Lung tumor imaging by positron emission tomography using C-11 L-methionine. J Nucl Med 26: 37–42, 1985

    Google Scholar 

  105. Gerson DF, Kiefer H, Eufe W: Intracellular pH of mitogen-stimulated lymphocytes. Science 216: 1009–1010, 1982

    Google Scholar 

  106. Haveman J: The influence of pH on the survival after X-irradiation of cultured malignant cells: Effects of carbonylcyanide-3-chlorphenylhydrazone. Int J Radiat Biol 37: 201–205, 1980

    Google Scholar 

  107. Hofer KG, Mivechi NF: Tumor cell sensitivity to hyperthermia as a function of extracellular and intracellular pH. J Natl Cancer Inst 65: 621–625, 1980

    Google Scholar 

  108. Rottenberg DA, Ginos JZ, Kearfott KJ, Junck L, Bigner DD: In vivo measurement of regional brain tissue pH using positron emission tomography. Ann Neurol 15 (Suppl): S98-S102, 1984

    Google Scholar 

  109. Kearfott KJ, Junck L, Rottenberg DA: C-11 dimethyloxazolicinedione (DMO): biodistribution, radiation absorbed dose, and potential for PET measurement of regional brain pH: concise communication. J Nucl Med 24: 805–811, 1983

    Google Scholar 

  110. Junck L, Blasberg R, Rottenberg DA: Strain and tumor pH in experimental leptomeningeal carcinomatosis. Trans Am Neurol Assoc 106: 298–301, 1981

    Google Scholar 

  111. Buxton RB, Wechsler LR, Alpert NM, Ackerman RH, Elmaleh DR, Correia JA: The measurement of brain pH using 11CO2 and positron emission tomography. J Cereb Blood Flow and Metabol 4: 8–16, 1984

    Google Scholar 

  112. Yamamoto YL, Diksic M: Positron emission tomography studies of pharmacokinetics. In: Reivich M, Alavi A (eds) Positron Emission Tomography. Alan R Liss, New York, 1985, pp 413–423

    Google Scholar 

  113. Yamamoto YL, Diksic M, Sako K, Arita N, Feindel W, Thompson CJ: Pharmacokinetics and metabolic studies in human malignant gliomas. In: Magistretti PL (ed) Functional Radionuclide Imaging of the Brain. Raven Press, New York, 1983, pp 327–335

    Google Scholar 

  114. Ginos JZ, Dhawan V, Cooper AJL, Strother SC, Alcock N, Rottenberg DA: Intraarterial versus intravenous cisplatin for treatment of malignant brain tumors: assessment of the pharmacologic advantage of intraarterial chemotherapy using 13N-cisplatin/PET. J Cereb Blood Flow Metabol 6(Suppl 1): S464, 1987

  115. Tyler JL, Yamamoto YL, Diksic M, Theron J, Villemure JG, Worthington C, Evans AC, Feindel W: Pharmacokinetics of superselective intra-arterial and intravenous [11C]BCNU evaluated by PET. J Nucl Med 27: 775–780, 1986

    Google Scholar 

  116. Comar D, Mazierre M, Gadot JM, Berger G, Sousalline F: Visualization of 11C-flunitrazepam displacement in the brain of the live baboon. Nature 280: 329–331, 1979

    Google Scholar 

  117. Huang S-C, Barrio JR, Phelps ME: Neuroreceptor assay with positron emission tomography: Equilibrium versus dynamic approaches. J Cereb Blood Flow Metabol 6: 515–521, 1986

    Google Scholar 

  118. Wong DF, Gjedde A, Wagner HN Jr: Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligands. J Cereb Blood Flow Metabol 6: 137–146, 1986

    Google Scholar 

  119. Wong DF, Gjedde A, Wagner HNJr., Dannals RF, Douglass KH, Links JM, Kuhar MJ: Quantification of neuroreceptors in the living human brain. II. Inhibition studies of receptor density and affinity. J Cereb Blood Flow Metabol 6: 147–153, 1986

    Google Scholar 

  120. Muhr C, Bergstrom M, Lundberg PO, Bergstrom K, Hartvig P, Lundqvist H, Antoni G, Langstrom B: Dopamine receptors in pituitary adenomas: PET visualization with 11C-N-methylspiperone. J Comput Assist Tomogr 10: 175–180, 1986

    Google Scholar 

  121. Muhr C, Lundberg PO, Antoni G, et al.: 11C-Bromocriptine uptake in pituitary adenomas. In: McLeod RM, Thorner MO, Scapagnini U (eds) Prolactin. Basic and Clinical Correlates. Liviana Press, Padova, 1985, pp 729–737

    Google Scholar 

  122. Mintun MA, Welch MJ, Mathias CJ, Brodack JA, Siegel BA, Katzenellenbogen JA: Application of 16 α-[F-18]-fluoro-17 β-estradiol for the assessment of estrogen receptors in human breast carcinoma. J Nucl Med 28: 561, 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Operated for the U.S. Department of Energy by the University of California under Contract #DE-AC03-76-SF00012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawkins, R.A., Phelps, M.E. PET in clinical oncology. Cancer Metast Rev 7, 119–142 (1988). https://doi.org/10.1007/BF00046482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046482

Key words

Navigation