Abstract
Cholesterol is one of the major constituents of mammalian cell membranes. It plays an indispensable role in regulating the structure and function of cell membranes and affects the pathology of various diseases. In recent decades much attention has been paid to the existence of membrane microdomains, generally termed lipid “rafts”, and cholesterol, along with sphingolipids, is thought to play a critical role in raft structural organization and function. Cholesterol-binding probes are likely to provide useful tools for analyzing the distribution and dynamics of membrane cholesterol, as a structural element of raft microdomains, and elsewhere within the cell. Among the probes, non-toxic derivatives of perfringolysin O, a cholesterol-binding cytolysin, bind cholesterol in a concentration-dependent fashion with a strict threshold. They selectively recognize cholesterol in cholesterol-enriched membranes, and have been used in many studies to detect microdomains in plasma and intracellular membranes. Anti-cholesterol antibodies that recognize cholesterol in domain structures have been developed in recent years. In this chapter, we describe the characteristics of these cholesterol-binding proteins and their applications to studies on membrane cholesterol localization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- PFO,:
-
perfringolysin O;
- EGFP,:
-
enhanced green fluorescent protein;
- DRMs,:
-
detergent-resistant membranes;
- βCD,:
-
β-cyclodextrin;
- SFKs,:
-
Src-family protein kinases;
- TD,:
-
Tangier disease;
- NPC,:
-
Niemann-Pick disease type C
References
Abrami, L., Fivaz, M., Kobayashi, T., Kinoshita, T., Parton, R.G., van der Goot, F.G., 2001, Cross-talk between caveolae and glycosylphosphatidylinositol-rich domains. J. Biol. Chem. 276: 30729–30736.
Addadi, L., Geva, M., Kruth, H.S., 2003, Structural information about organized cholesterol domains from specific antibody recognition. Biochim. Biophys. Acta 1610: 208–216.
Alonso, M.A., Millan, J., 2001, The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J. Cell Sci. 114: 3957–3965.
Alouf, J.E., 2000, Cholesterol-binding cytolytic protein toxins. Int. J. Med. Microbiol. 290: 351–356.
Alving, C.R., Swarz, G.M., Jr., Wassef, N.M., 1989, Naturally occurring autoantibodies to cholesterol in humans. Biochem. Soc. Trans. 17: 637–639.
Anderson, R.G.W., 1998, The caveolae membrane system. Annu. Rev. Biochem. 67: 199–225.
Aoki, T., Kogure, S., Kogo, H., Hayashi, M., Ohno-Iwashita, Y., Fujimoto, T., 2003, Sequestration of cross-linked membrane molecules to caveolae in two different pathways. Acta Histochem. Cytochem. 36: 165–171.
Billington, S.J., Jost, B.H., Songer, J.G., 2000, Thiol-activated cytolysins: structure, function and role in pathogenesis. FEMS Microbiol. Lett. 182: 197–205.
Bíró, A., Cervenak, L., Balogh, A., Lorincz, A., Uray, K., Horváth, A., Romics, L., Matkó, J., Füst, G., László, G., 2007, Novel anti-cholesterol monoclonal immunoglobulin G antibodies as probes and potential modulators of membrane raft-dependent immune functions. J. Lipid Res. 48: 19–29.
Blanchette-Mackie, E.J., 2000, Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim. Biophys. Acta 1486: 171–183.
Brdicka, T., Pavlistova, D., Leo, A., Bruyns, E., Korinek, V., Angelisova, P., Scherer, J., Shevchenko, A., Hilgert, I., Cerny, J., Drbal, K., Kuramitsu, Y., Kornacker, B., Horejsi, V., Schraven, B., 2000, Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J. Exp. Med. 191: 1591–1604.
Brooks-Wilson, A., Marcil, M., Clee, S.M., Zhang, L.H., Roomp, K., van Dam, M., Yu, L., Brewer, C., Collins, J.A., Molhuizen, H.O., Loubser, O., Ouelette, B.F., Fichter, K., Ashbourne-Excoffon, K.J., Sensen, C.W., Scherer, S., Mott, S., Denis, M., Martindale, D., Frohlich, J., Morgan, K., Koop, B., Pimstone, S., Kastelein, J.J., Genest, J. Jr, Hayden, M.R., 1999, Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat. Genet. 22: 336–345.
Brown, D.A., London, E., 1997, Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun. 240:1–7.
Brown, D.A., London, E., 2000, Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275: 17221–17224.
Brown, M.S., Goldstein, J.L., 1986, A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34–47.
Christian, A.E., Haynes, M.P., Phillips, M.C., Rothblat, G.H., 1997, Use of cyclodextrins for manipulating cellular cholesterol content. J. Lipid Res. 38: 2264–2272.
Davidson, D., Bakinowski, M., Thomas, M.L., Horejsi, V., Veillette, A., 2003, Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol. Cell. Biol. 23: 2017–2028.
Dijkstra, J., Swartz, G.M., Jr., Raney, J.J., Aniagolu, J., Toro, L., Nacy, C.A., Green, S.J., 1996, Interaction of anti-cholesterol antibodies with human lipoproteins. J. Immunol. 157: 2006–2013.
Edidin, M., 2001, Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol. 11: 492–496.
Fielding, C.J., Fielding, P.E., 2003, Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim. Biophys. Acta 1610: 219–228.
Fivaz, M., Abrami, L., van der Goot, F.G., 1999, Landing on lipid rafts. Trends. Cell Biol. 9: 212–213.
Frey, D., Laux, T., Xu, L., Schneider, C., Caroni, P., 2000, Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical plasticity. J. Cell Biol. 149: 1443–1454.
Fujimoto, K., Umeda M., Fujimoto, T., 1996, Transmembrane phospholipid distribution revealed by freeze-fracture replica labeling. J. Cell Sci. 109: 2453–2460.
Fujimoto, T., 1996, GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem. 44: 929–941.
Fujimoto, T., Hayashi, M., Iwamoto, M., Ohno-Iwashita, Y., 1997, Crosslinked plasmalemmal cholesterol is sequestered to caveolae: analysis with a new cytochemical probe. J. Histochem. Cytochem. 45: 1197–1205.
Gilbert, R.J., 2002, Pore-forming toxins. Cell. Mol. Life Sci. 59: 832–844.
Gombos, I., Steinbach, G., Pomozi, I., Balogh, A., Vámosi, G., Gansen, A., László, G., Garab, G., Matkó, J., 2008, Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells. Cytometry A 73: 220–229.
Gomez-Mouton, C., Abad, J.L., Mira, E., Lacalle, R.A., Gallardo, E., Jimenez-Baranda, S., Illa, I., Bernad, A., Manes, S., Martinez-A., C., 2001, Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl. Acad. Sci. USA 98: 9642–9647.
Hao, M., Lin, S.X., Karylowski, O.J., Wustner, D., McGraw, T.E., Maxfield, F.R., 2002, Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J. Biol. Chem. 277: 609–617.
Harder, T., Scheiffele, P., Verkade, P., Simons, K., 1998, Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141: 929–942.
Hayashi, M., Shimada, Y., Inomata, M., Ohno-Iwashita, Y., 2006, Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane. Biochem. Biophys. Res. Commun. 351: 713–718.
Heijnen, H.F.G., Van Lier, M., Waaijenborg, S., Ohno-Iwashita, Y., Waheed, A.A., Inomata, M., Gorter, G., Möebius, W., Akkerman, J.W.N., Slot, J.W., 2003, Concentration of rafts in platelet filopodia correlates with recruitment of c-Src and CD63 to these domains. J. Thromb. Haemost. 1:1161–1173.
Hooper, N.M., 1999, Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae. Mol. Membr. Biol. 16: 145–156.
Igbavboa, U., Avdulov, N. A., Schroeder, F., Wood, W.G., 1996, Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic plasma membranes of mice. J. Neurochem., 66: 1717–1725.
Ilangumaran, S., Hoessli, D.C., 1998, Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem. J. 335: 433–440.
Inomata, M., Shimada, Y., Hayashi, M., Kondo, H., Ohno-Iwashita, Y., 2006, Detachment-associated changes in lipid rafts of senescent human fibroblasts. Biochem. Biophys. Res. Commun. 343: 489–495.
Inomata, M., Shimada, Y., Hayashi, M., Shimizu, J., Ohno-Iwashita, Y., 2007, Impairment in a negative regulatory system for TCR signaling in CD4+ T cells from old mice. FEBS Lett. 581: 3039–3043.
Ishii, H., Mori, T., Shiratsuchi, A., Nakai, Y., Shimada, Y., Ohno-Iwashita, Y., Nakanishi, Y., 2005, Distinct localization of lipid rafts and externalized phosphatidylserine at the surface of apoptotic cells. Biochem. Biophys. Res. Commun. 327: 94–99.
Iwamoto, M., Ohno-Iwashita, Y., Ando S., 1990, Effect of isolated C-terminal fragment of theta-toxin (perfringolysin O) on toxin assembly and membrane lysis. Eur. J. Biochem. 194: 25–31.
Iwamoto, M., Nakamura, M., Mitsui, K., Ando, S., Ohno-Iwashita, Y., 1993, Membrane disorganization induced by perfringolysin O (theta-toxin) of Clostridium perfringens – effect of toxin binding and self-assembly on liposomes. Biochim. Biophys. Acta 1153: 89–96.
Iwamoto, M., Morita, I., Fukuda, M., Murota, S., Ando, S., Ohno-Iwashita, Y., 1997, A biotinylated perfringolysin O derivative: a new probe for detection of cell surface cholesterol. Biochim. Biophys. Acta 1327: 222–230.
Jacobs, T., Cima-Cabal, M.D., Darji, A., Mendez, F.J., Vazquez, F., Jacobs, A.A.C., Shimada, Y., Ohno-Iwashita, Y., Weiss, S., de los Toyos, J.R., 1999, The conserved undecapeptide shared by thiol-activated cytolysins is involved in membrane binding. FEBS Lett. 459: 463–466.
Kessler, N., Perl-Treves, D., Addadi, L., 1996, Monoclonal antibodies that specifically recognize crystals of dinitrobenzene. FASEB J. 10: 1435–1442.
Kobayashi, T., Stang, E., Fang, K.S., de Moerloose, P., Parton, R.G., Gruenberg, J., 1998, A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392: 193–197.
Kokubo, H., Helms, J.B., Ohno-Iwashita, Y., Shimada, Y., Horikoshi, Y., Yamaguchi, H., 2003, Ultrastructural localization of flotillin-1 to cholesterol-rich membrane microdomains, rafts, in rat brain tissue. Brain Res. 965: 83–90.
Koseki, M., Hirano, K., Masuda, D., Ikegami, C., Tanaka, M., Ota, A., Sandoval, J.C., Nakagawa-Toyama, Y., Sato, S.B., Kobayashi, T., Shimada Y., Ohno-Iwashita Y., Matsuura, F., Shimomura, I., Yamashita, S., 2007, Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-alpha secretion in Abca1-deficient macrophages. J. Lipid Res. 48: 299–306.
Kruth, H.S., Ifrim, I., Chang, J., Addadi, L., Perl-Treves, D., Zhang, W.Y., 2001, Monoclonal antibody detection of plasma membrane cholesterol microdomains responsive to cholesterol trafficking. J. Lipid Res. 42: 1492–1500.
Kusumi, A, Koyama-Honda, I, Suzuki, K., 2004, Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts rom small unstable steady-state rafts. Traffic 5: 213–230.
Landry, Y.D., Denis, M., Nandi, S., Bell, S., Vaughan, A.M., Zha, X., 2006, ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J. Biol. Chem. 281: 36091–36101.
Larbi, A., Douziech, N., Dupuis, G., Khalil, A., Pelletier, H., Guerard, K.P., Fülöp, T. Jr., 2004, Age-associated alterations in the recruitment of signal-transduction proteins to lipid rafts in human T lymphocytes. J. Leukoc. Biol. 75: 373–381.
London, E., Brown, D.A., 2000, Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta 1508:182–195.
Madore, N., Smith, K.L., Graham, C.H., Jen, A., Brady, K., Hall, S., Morris, R., 1999, Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 18: 6917–6926.
Maekawa, S., Maekawa, M., Hattori, S., Nakamura, S., 1993, Purification and molecular cloning of a novel acidic calmodulin binding protein from rat brain. J. Biol. Chem. 268: 13703–13709.
Maekawa, S., Sato, C., Kitajima, K., Funatsu, N., Kumanogoh, H., Sokawa, Y., 1999, Cholesterol-dependent localization of NAP-22 on a neuronal membrane microdomain (raft). J. Biol. Chem. 274: 21369–21374.
Maekawa, S., Iino, S., Miyata, S., 2003, Molecular characterization of the detergent-insoluble cholesterol-rich membrane microdomain (raft) of the central nervous system. Biochim. Biophys. Acta 1610: 261–270.
Marwali, M.R., Rey-ladino, J., Dreolini, L., Shaw, D., Takei, F., 2003, Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. Blood 102: 215–222.
Mayor, S, Rao, M., 2004, Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5:231–240.
Mayor, S., Rothberg, K.G., Maxfield, F.R., 1994, Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264: 1948–1951.
Miller, R.A., 2000, Effect of aging on T lymphocyte activation. Vaccine 18: 1654–1660.
Miller, R.G., 1984, The use and abuse of filipin to localize cholesterol in membranes. Cell Biol. Int. Rep. 8: 519–535.
Möbius, W., Ohno-Iwashita, Y., van Donselaar, E.G., Oorschot, V.M.J., Shimada, Y., Fujimoto, T., Heijnen, H.F.G., Geuze, H.J., Slot, J.W., 2002, Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J. Histochem. Cytochem. 50: 43–55.
Möbius, W., van Donselaar, E., Ohno-Iwashita, Y., Shimada, Y., Heijnen, H.F.G., Slot, J.W., Geuze, H.J., 2003, Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4: 222–231.
Montixi, C., Langlet, C., Bernard, A.M., Thimonier, J., Dubois, C., Wurbel, M.A., Chauvin, J.P., Pierres, M., He, H.T., 1998, Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17: 5334–5348.
Murate, M., Shimada, Y., Ohno-Iwashita, Y., Umeda, M., Kobayashi, T., 2008, Revisiting lipid asymmetry in red blood cells. Flippases 2008 Abstract Book: 15.
Nagafuku, M., Kabayama, K., Oka, D., Kato, A., Tani-ichi, S., Shimada, Y., Ohno-Iwashita, Y., Yamasaki, S., Saito, T., Iwabuchi, K., Hamaoka, T., Inokuchi, J., Kosugi, A., 2003, Reduction of glycosphingolipid levels in lipid rafts affects the expression state and function of glycosylphosphatidylinositol-anchored proteins but does not impair signal transduction via the T cell receptor. J. Biol. Chem. 278: 51920–51927.
Nakamura, M., Sekino, N., Iwamoto, M., Ohno-Iwashita, Y., 1995, Interaction of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin, with liposomal membranes: change in the aromatic side chains upon binding and insertion. Biochemistry 34: 6513–6520.
Nakamura, M., Sekino-Suzuki, N., Mitsui, K., Ohno-Iwashita, Y., 1998, Contribution of tryptophan residues to the structural changes in perfringolysin O during interaction with liposomal membranes. J. Biochem. (Tokyo) 123: 1145–1155.
Nakamura, M., Kondo, H., Shimada, Y., Waheed, A.A., Ohno-Iwashita, Y., 2003, Cellular aging-dependent decrease in cholesterol in membrane microdomains of human diploid fibroblasts. Exp. Cell Res. 290: 381–390.
Ohno-Iwashita, Y., Iwamoto, M., Mitsui, K., Kawasaki, H., Ando, S., 1986, Cold-labile hemolysin produced by limited proteolysis of theta-toxin from Clostridium perfringens. Biochemistry 25: 6048–6053.
Ohno-Iwashita, Y., Iwamoto, M., Mitsui, K., Ando, S., Nagai, Y., 1988, Protease-nicked θ-toxin of Clostridium perfringens, a new membrane probe with no cytolytic effect, reveals two classes of cholesterol as toxin-binding sites on sheep erythrocytes. Eur. J. Biochem. 176: 95–101.
Ohno-Iwashita, Y., Iwamoto, M., Ando, S., Mitsui, K., Iwashita, S., 1990, A modified theta-toxin produced by limited proteolysis and methylation: a probe for the functional study of membrane cholesterol. Biochim. Biophys. Acta 1023: 441–448.
Ohno-Iwashita, Y., Iwamoto, M., Mitsui, K., Ando, S., Iwashita, S., 1991, A cytolysin, θ-toxin, preferentially binds to membrane cholesterol surrounded by phospholipids with 18-carbon hydrocarbon chains in cholesterol-rich region. J. Biochem. (Tokyo) 110: 369–375.
Ohno-Iwashita, Y., Iwamoto, M., Ando, S., Iwashita, S., 1992, Effect of lipidic factors on membrane cholesterol topology – mode of binding of theta-toxin to cholesterol in liposomes. Biochim. Biophys. Acta 1109: 81–90.
Ohno-Iwashita, Y., Shimada, Y., Waheed, A.A., Hayashi, M., Inomata, M., Nakamura, M., Maruya, M., Iwashita, S., 2004, Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts. Anaerobe 10: 125–134.
Ohsaki, Y., Sugimoto, Y., Suzuki, M., Kaidoh, T., Shimada, Y., Ohno-Iwashita, Y., Davies, J.P., Ioannou, Y.A., Ohno, K., Ninomiya, H., 2004, Reduced sensitivity of Niemann-Pick C1-deficient cells to θ-toxin (perfringolysin O): sequestration of toxin to raft-enriched membrane vesicles. Histochem. Cell Biol. 121: 263–272.
Ostermeyer, A.G., Beckrich, B.T., Ivarson, K.A., Grove, K.E., Brown, D.A., 1999, Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein. J. Biol. Chem. 274: 34459–34466.
Palmer, M., 2001, The family of thiol-activated, cholesterol-binding cytolysins. Toxicon 39: 1681–1689.
Parton, R.G., 1994, Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem. 42: 155–166.
Pawelec, G., Hirokawa, K., Fülöp, T. Jr., 2001, Altered T cell signalling in ageing. Mech. Ageing Dev. 122: 1613–1637.
Perl-Treves, D., Kessler N., Izhaky, D., Addadi, L., 1996, Monoclonal antibody recognition of cholesterol monohydrate crystal faces. Chem. Biol. 3: 567–577.
Pike, L.J., 2006, Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 47:1597–1598.
Ramachandran, R., Heuck, A.P., Tweten, R.K., Johnson, A.E., 2002, Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat. Struct. Biol. 9: 823–827.
Reid, P.C., Sakashita, N., Sugii, S., Ohno-Iwashita, Y., Shimada, Y., Hickey, W.F., Chang, T.Y., 2004, A novel cholesterol stain reveals early neuronal cholesterol accumulation in the Niemann-Pick type C1 mouse brain. J. Lipid Res. 45: 582–591.
Reid, P.C., Lin, S., Vanier, M.T., Ohno-Iwashita, Y., Harwood, H.J., Jr., Hickey, W.F., Chang, C.C.Y., Chang, T.Y., 2008, Partial blockage of sterol biosynthesis with a squalene synthase inhibitor in early postnatal Niemann-Pick type C npc nih null mice brains reduces neuronal cholesterol accumulation, abrogates astrogliosis, but may inhibit myelin maturation. J. Neurosci. Methods 168: 15–25.
Roper, K., Corbeil, D., Huttner, W.B., 2000, Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat. Cell Biol. 2: 582–592.
Rossjohn, J., Feil, S.C., McKinstry, W.J., Tweten, R.K., Parker, M.W., 1997, Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89: 685–692.
Sato, T., Zakaria, A.M., Uemura, S., Ishii, A., Ohno-Iwashita, Y., Igarashi, Y., Inokuchi. J., 2005, Role for up-regulated ganglioside biosynthesis and association of Src family kinases with microdomains in retinoic acid-induced differentiation of F9 embryonal carcinoma cells. Glycobiology 15: 687–699.
Schoer, J.K., Gallegos, A.M., McIntosh, A.L., Starodub, O., Kier, A.B., Billheimer, J.T., Schroeder, F., 2000, Lysosomal membrane cholesterol dynamics. Biochemistry 39: 7662–7677.
Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., Simons, K., 2003, Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA 100: 5795–5800.
Sekino-Suzuki, N., Nakamura, M., Mitsui, K., Ohno-Iwashita, Y., 1996, Contribution of individual tryptophan residues to the structure and activity of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin. Eur. J. Biochem. 241: 941–947.
Severs, N.J., 1997, Cholesterol cytochemistry in cell biology and disease. Subcell. Biochem. 28: 477–505.
Shimada, Y., Nakamura, M., Naito, Y., Nomura, K., Ohno-Iwashita, Y., 1999, C-terminal amino acid residues are required for the folding and cholesterol binding property of perfringolysin O, a pore-forming cytolysin. J. Biol. Chem. 274: 18536–18542.
Shimada, Y., Maruya, M., Iwashita, S., Ohno-Iwashita, Y., 2002, The C-terminal domain of perfringolysin O is an essential cholestereol-binding unit targeting to cholesterol-rich microdomains. Eur. J. Biochem. 269: 6195–6203.
Shimada, Y., Inomata, M., Suzuki, H., Hayashi, M., Waheed, A.A., Ohno-Iwashita, Y., 2005, Separation of a cholesterol-enriched microdomain involved in T-cell signal transduction. FEBS J. 272: 5454–5463.
Shogomori, H., Brown, D.A., 2003, Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol. Chem. 384: 1259–1263.
Simons, K., Ikonen, E., 1997, Functional rafts in cell membranes. Nature 387: 569–572.
Simons, K., Ikonen, E., 2000, How cells handle cholesterol. Science 290: 1721–1726.
Simons, K., Toomre, D., 2000, Lipid rafts and signal transduction. Nat. Rev. Mol. Cell. Biol. 1: 31–39.
Simons, K., Ehehalt, R., 2002, Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110: 597–603.
Stuermer, C.A., Lang, D.M., Kirsch, F., Wiechers, M., Deininger, S.O., Plattner, H., 2001, Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol. Biol. Cell 12: 3031–3045.
Sugii, S., Reid, P.C., Ohgami, N., Shimada, Y., Maue, R.A., Ninomiya, H., Ohno-Iwashita, Y., Chang, T.Y., 2003, Biotinylated theta-toxin derivative as a probe to examine intracellular cholesterol-rich domains in normal and Niemann-Pick type C1 cells. J. Lipid Res. 44: 1033–1041.
Swartz, G.M., Jr., Gentry, M.K., Amende, L.M., Blanchette-Mackie, E.J., Alving, C.R., 1988, Antibodies to cholesterol. Proc. Natl. Acad. Sci. USA 85: 1902–1906.
Tamir, A., Eisenbraun, M.D., Garcia, G.G., Miller, R.A., 2000, Age-dependent alterations in the assembly of signal transduction complexes at the site of T cell/APC interaction. J. Immunol. 165:1243–1251.
Tamura, T., Kunimatsu, T., Yee, S.T, Igarashi, O., Utsuyama, M., Tanaka, S., Miyazaki, S., Hirokawa, K., Nariuchi, H., 2000, Molecular mechanism of the impairment in activation signal transduction in CD4(+) T cells from old mice. Int. Immunol. 12:1205–1215.
Tani-ichi, S., Maruyama, K., Kondo, N., Nagafuku, M.,Kabayama, K., Inokuchi, J., Shimada, Y., Ohno-Iwashita, Y., Yagita, H., Kawano, S., Kosugi, A., 2005, Structure and function of lipid rafts in human activated T cells. Int. Immunol. 17: 749–758.
Tashiro, Y., Yamazaki, T., Shimada, Y., Ohno-Iwashita, Y., Okamoto, K., 2004, Axon-dominant localization of cell-surface cholesterol in cultured hippocampal neurons and its disappearance in Niemann-Pick type C model cells. Eur. J. Neurosci. 20: 2015–2021.
Terashita, A., Funatsu, N., Umeda, M., Shimada, Y., Ohno-Iwashita, Y., Epand, R.M., Maekawa, S., 2002, Lipid binding activity of a neuron-specific protein NAP-22 studied in vivo and in vitro. J. Neurosci. Res. 70: 172–179.
Tu, X., Huang, A., Bae, D., Slaughter, N., Whitelegge, J., Crother, T., Bickel, P.E., Nel, A., 2004, Proteome analysis of lipid rafts in Jurkat cells characterizes a raft subset that is involved in NF-kappaB activation. J. Proteome Res. 3: 445–454.
Tweten, R.K., Parker, M.W., Johnson, A.E., 2001, The cholesterol-dependent cytolysins. Curr. Top. Microbiol. Immunol. 257: 15–33.
Van Lier, M., Lee, F., Farndale, R.W., Gorter, G., Verhoef, S., Ohno-Iwashita , Y., Akkerman, J.W.N., Heijnen, H.F.G., 2005, Adhesive surface determines raft composition in platelets adhered under flow. J. Thromb. Haemost. 3: 2514–2525.
Waheed, A.A., Shimada, Y., Heijnen, H.F.G., Nakamura, M., Inomata, M., Hayashi, M., Iwashita, S., Slot, J.W., Ohno-Iwashita, Y., 2001, Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts). Proc. Natl. Acad. Sci. USA 98: 4926–4931.
Xavier, R., Brennan, T., Li, Q., McCormack, C., Seed, B., 1998, Membrane compartmentation is required for efficient T cell activation. Immunity 8: 723–732.
Yamaji, A., Sekizawa, Y., Emoto, K., Sakuraba, H., Inoue, K., Kobayashi, H., Umeda, M., 1998, Lysenin, a novel sphingomyelin-specific binding protein. J. Biol. Chem. 273: 5300–5306.
Zhang, W., Trible, R.P., Samelson, L.E., 1998, LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9: 239–246.
Acknowledgements
Work in the authors’ laboratory is supported in part by Grants-in-Aid for Science Research from the Japan Society for the Promotion of Science (to Y. O.-I. and to M. I.). We thank Dr. M.M. Dooley-Ohto for reading the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer Science+Business Media B.V.
About this chapter
Cite this chapter
Ohno-Iwashita, Y., Shimada, Y., Hayashi, M., Iwamoto, M., Iwashita, S., Inomata, M. (2010). Cholesterol-Binding Toxins and Anti-cholesterol Antibodies as Structural Probes for Cholesterol Localization. In: Harris, J. (eds) Cholesterol Binding and Cholesterol Transport Proteins:. Subcellular Biochemistry, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8622-8_22
Download citation
DOI: https://doi.org/10.1007/978-90-481-8622-8_22
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-8621-1
Online ISBN: 978-90-481-8622-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)