Skip to main content

Construction of Small RNA cDNA Libraries for High-Throughput Sequencing

  • Protocol
  • First Online:
cDNA Libraries

Part of the book series: Methods in Molecular Biology ((MIMB,volume 729))

Abstract

Small RNAs (smRNAs) play an essential role in virtually every aspect of growth and development, by regulating gene expression at the post-transcriptional and/or transcriptional level. New high-throughput sequencing technology allows for a comprehensive coverage of smRNAs in any given biological sample, and has been widely used for profiling smRNA populations in various developmental stages, tissue and cell types, or normal and disease states. In this article, we describe the method used in our laboratory to construct smRNA cDNA libraries for high-throughput sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carthew, R. W., and Sontheimer, E. J. (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655.

    Article  PubMed  CAS  Google Scholar 

  2. Voinnet, O. (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669–687.

    Article  PubMed  CAS  Google Scholar 

  3. Kim, V. N., Han, J., and Siomi, M. C. (2009) Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell. Biol. 10, 126–139.

    Article  PubMed  CAS  Google Scholar 

  4. Okamura, K., Chung, W. J., and Lai, E. C. (2008) The long and short of inverted repeat genes in animals: microRNAs, mirtrons and hairpin RNAs. Cell Cycle 7, 2840–2845.

    Article  PubMed  CAS  Google Scholar 

  5. Ramachandran, V., and Chen, X. (2008) Small RNA metabolism in Arabidopsis. Trends Plant Sci. 13, 368–374.

    Article  PubMed  CAS  Google Scholar 

  6. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853–858.

    Article  PubMed  CAS  Google Scholar 

  7. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, R. C., and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864.

    Article  PubMed  CAS  Google Scholar 

  9. Fahlgren, N., Sullivan, C. M., Kasschau, K. D., Chapman, E. J., Cumbie, J. S., Montgomery, T. A., Gilbert, S. D., Dasenko, M., Backman, T. W., Givan, S. A., and Carrington, J. C. (2009) Computational and analytical framework for small RNA profiling by high-throughput sequencing. RNA 15, 992–1002.

    Article  PubMed  CAS  Google Scholar 

  10. Sharma, C. M., and Vogel, J. (2009) Experimental approaches for the discovery and characterization of regulatory small RNA. Curr. Opin. Microbiol. 12, 536–546.

    Article  PubMed  CAS  Google Scholar 

  11. Lu, C., Tej, S. S., Luo, S., Haudenschild, C. D., Meyers, B. C., and Green, P. J. (2005) Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569.

    Article  PubMed  CAS  Google Scholar 

  12. Lister, R., Gregory, B. D., and Ecker, J. R. (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr. Opin. Plant Biol. 12, 107–118.

    Article  PubMed  CAS  Google Scholar 

  13. Shendure, J., Mitra, R. D., Varma, C., and Church, G. M. (2004) Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344.

    Article  PubMed  CAS  Google Scholar 

  14. Girard, A., Sachidanandam, R., Hannon, G. J., and Carmell, M. A. (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202.

    PubMed  Google Scholar 

  15. Qi, Y., He, X., Wang, X. J., Kohany, O., Jurka, J., and Hannon, G. J. (2006) Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443, 1008–1012.

    Article  PubMed  Google Scholar 

  16. Katiyar-Agarwal, S., Gao, S., Vivian-Smith, A., and Jin, H. (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 21, 3123–3134.

    Article  PubMed  CAS  Google Scholar 

  17. Lee, Y. S., Shibata, Y., Malhotra, A., and Dutta, A. (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639–2649.

    Article  PubMed  CAS  Google Scholar 

  18. Addo-Quaye, C., Eshoo, T. W., Bartel, D. P., and Axtell, M. J. (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758–762.

    Article  PubMed  CAS  Google Scholar 

  19. German, M. A., Pillay, M., Jeong, D. H., Hetawal, A., Luo, S., Janardhanan, P., Kannan, V., Rymarquis, L. A., Nobuta, K., German, R., De Paoli, E., Lu, C., Schroth, G., Meyers, B. C., and Green, P. J. (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol. 26, 941–946.

    Article  PubMed  CAS  Google Scholar 

  20. Accerbi, M., Schmidt, S. A., De Paoli, E., Park, S., Jeong, D. H., and Green, P. J. (2010) Methods for isolation of total RNA to recover miRNAs and other small RNAs from diverse species. Methods Mol. Biol. 592, 31–50.

    Article  PubMed  CAS  Google Scholar 

  21. Ho, C. K., and Shuman, S. (2002) Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proc. Natl. Acad. Sci. USA 99, 12709–12714.

    Article  PubMed  CAS  Google Scholar 

  22. Ho, C. K., Wang, L. K., Lima, C. D., and Shuman, S. (2004) Structure and mechanism of RNA ligase. Structure 12, 327–339.

    PubMed  CAS  Google Scholar 

  23. Aravin, A., and Tuschl, T. (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett. 579, 5830–5840.

    Article  PubMed  CAS  Google Scholar 

  24. Hafner, M., Landgraf, P., Ludwig, J., Rice, A., Ojo, T., Lin, C., Holoch, D., Lim, C., and Tuschl, T. (2008) Identification of micro­RNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44, 3–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Pamela Green for encouragement and mentoring on the smRNA study. The work was done in her laboratory. The research was supported by USDA grant #2007-1-0199 to P.J. Green.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lu, C., Shedge, V. (2011). Construction of Small RNA cDNA Libraries for High-Throughput Sequencing. In: Lu, C., Browse, J., Wallis, J. (eds) cDNA Libraries. Methods in Molecular Biology, vol 729. Humana Press. https://doi.org/10.1007/978-1-61779-065-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-065-2_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-064-5

  • Online ISBN: 978-1-61779-065-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics