Skip to main content

Hypoxia-Inducible Factors: Post-translational Crosstalk of Signaling Pathways

  • Protocol
  • First Online:
Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 647))

Abstract

Hypoxia-inducible factor-1 (HIF-1) has a central role in the mammalian program by which cells respond to hypoxia in both physiological and pathological situations. HIF-1 transcriptional activity, protein stabilization, protein–protein interaction, and cellular localization are mainly modulated by Post-translational modifications such as hydroxylation, acetylation, phosphorylation, S-nitrosylation, and SUMOylation. Here, we summarize current knowledge about Post-translational HIF-1 regulation and give additional information about useful methods to determine some of these various modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kewley RJ, Whitelaw ML, Chapman-Smith A (2004) The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol 36:189–204

    Article  PubMed  CAS  Google Scholar 

  2. Kvietikova I, Wenger RH, Marti HH, Gassmann M (1995) The transcription factors ATF-1 and CREB-1 bind constitutively to the hypoxia-inducible factor-1 (HIF-1) DNA recognition site. Nucleic Acids Res 23:4542–4550

    Article  PubMed  CAS  Google Scholar 

  3. Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005:re12. doi:re12

    Article  PubMed  Google Scholar 

  4. Semenza GL (2007) Life with oxygen. Science 318:62–64

    Article  PubMed  CAS  Google Scholar 

  5. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    Article  PubMed  CAS  Google Scholar 

  6. Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makino Y, Tanaka H et al (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17:6573–6586

    Article  PubMed  CAS  Google Scholar 

  7. Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272:19253–19260

    Article  PubMed  CAS  Google Scholar 

  8. Pugh CW, O’Rourke JF, Nagao M, Gleadle JM, Ratcliffe PJ (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272:11205–11214

    Article  PubMed  CAS  Google Scholar 

  9. Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K et al (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18:1905–1914

    Article  PubMed  CAS  Google Scholar 

  10. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992

    Article  PubMed  CAS  Google Scholar 

  11. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36:1–12

    Article  PubMed  Google Scholar 

  12. Chun YS, Choi E, Kim TY, Kim MS, Park JW (2002) A dominant-negative isoform lacking exons 11 and 12 of the human hypoxia-inducible factor-1alpha gene. Biochem J 362:71–79

    Article  PubMed  CAS  Google Scholar 

  13. Chun YS, Choi E, Yeo EJ, Lee JH, Kim MS, Park JW (2001) A new HIF-1 alpha variant induced by zinc ion suppresses HIF-1-mediated hypoxic responses. J Cell Sci 114:4051–4061

    PubMed  CAS  Google Scholar 

  14. Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82

    Article  PubMed  CAS  Google Scholar 

  15. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 94:4273–4278

    Article  PubMed  CAS  Google Scholar 

  16. Flamme I, Frohlich T, von Reutern M, Kappel A, Damert A, Risau W (1997) HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev 63:51–60

    Article  PubMed  CAS  Google Scholar 

  17. Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray GM et al (1997) Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272:8581–8593

    Article  PubMed  CAS  Google Scholar 

  18. O’Rourke JF, Tian YM, Ratcliffe PJ, Pugh CW (1999) Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1 alpha. J Biol Chem 274:2060–2071

    Article  PubMed  Google Scholar 

  19. Morita M, Ohneda O, Yamashita T, Takahashi S, Suzuki N, Nakajima O et al (2003) HLF/HIF-2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J 22:1134–1146

    Article  PubMed  CAS  Google Scholar 

  20. Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M et al (2004) Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J 18:1462–1464

    PubMed  CAS  Google Scholar 

  21. Scortegagna M, Ding K, Zhang Q, Oktay Y, Bennett MJ, Bennett M et al (2004) HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood 105(8):3133–3140

    Article  PubMed  CAS  Google Scholar 

  22. Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL et al (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92:2260–2268

    PubMed  CAS  Google Scholar 

  23. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23:9361–9374

    Article  PubMed  CAS  Google Scholar 

  24. Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25:5675–5686

    Article  PubMed  CAS  Google Scholar 

  25. Hu CJ, Sataur A, Wang L, Chen H, Simon MC (2007) The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell 18:4528–4542

    Article  PubMed  CAS  Google Scholar 

  26. Lisy K, Peet DJ (2008) Turn me on: regulating HIF transcriptional activity. Cell Death Differ 15:642–649

    Article  PubMed  CAS  Google Scholar 

  27. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12:3320–3324

    Article  PubMed  CAS  Google Scholar 

  28. Wiesener MS, Jurgensen JS, Rosenberger C, Scholze C, Horstrup JH, Warnecke C et al (2003) Widespread, hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17(2):271–273

    PubMed  CAS  Google Scholar 

  29. Peng J, Zhang L, Drysdale L, Fong GH (2000) The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97:8386–8391

    Article  PubMed  CAS  Google Scholar 

  30. Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H et al (2002) Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8:702–710

    PubMed  CAS  Google Scholar 

  31. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7:205–213

    PubMed  CAS  Google Scholar 

  32. Kietzmann T, Cornesse Y, Brechtel K, Modaressi S, Jungermann K (2001) Perivenous expression of the mRNA of the three hypoxia-inducible factor alpha-subunits, HIF1alpha, HIF2alpha and HIF3alpha, in rat liver. Biochem J 354:531–537

    Article  PubMed  CAS  Google Scholar 

  33. Hara S, Hamada J, Kobayashi C, Kondo Y, Imura N (2001) Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha. Biochem Biophys Res Commun 287:808–813

    Article  PubMed  CAS  Google Scholar 

  34. Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554

    Article  PubMed  CAS  Google Scholar 

  35. Makino Y, Kanopka A, Wilson WJ, Tanaka H, Poellinger L (2002) Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem 277:32405–32408

    Article  PubMed  CAS  Google Scholar 

  36. Makino Y, Uenishi R, Okamoto K, Isoe T, Hosono O, Tanaka H et al (2007) Transcriptional up-regulation of inhibitory PAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells. J Biol Chem 282:14073–14082

    Article  PubMed  CAS  Google Scholar 

  37. Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S et al (2003) Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278:11032–11040

    Article  PubMed  CAS  Google Scholar 

  38. Gorlach A, Camenisch G, Kvietikova I, Vogt L, Wenger RH, Gassmann M (2000) Efficient translation of mouse hypoxia-inducible factor-1alpha under normoxic and hypoxic conditions. Biochim Biophys Acta 1493:125–134

    Article  PubMed  CAS  Google Scholar 

  39. Gross J, Rheinlander C, Fuchs J, Mazurek B, Machulik A, Andreeva N et al (2003) Expression of hypoxia-inducible factor-1 in the cochlea of newborn rats. Hear Res 183:73–83

    Article  PubMed  CAS  Google Scholar 

  40. Heidbreder M, Frohlich F, Johren O, Dendorfer A, Qadri F, Dominiak P (2003) Hypoxia rapidly activates HIF-3alpha mRNA expression. FASEB J 17:1541–1543

    PubMed  CAS  Google Scholar 

  41. Pascual O, Denavit-Saubie M, Dumas S, Kietzmann T, Ghilini G, Mallet J et al (2001) Selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1alpha (HIF-1alpha) under in vivo hypoxia in rat brainstem. Eur J Neurosci 14:1981–1991

    Article  PubMed  CAS  Google Scholar 

  42. Wang GL, Jiang BH, Semenza GL (1995) Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem Biophys Res Commun 216:669–675

    Article  PubMed  CAS  Google Scholar 

  43. Kaelin WG Jr (2002) How oxygen makes its presence felt. Genes Dev 16:1441–1445

    Article  PubMed  CAS  Google Scholar 

  44. Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354

    Article  PubMed  CAS  Google Scholar 

  45. Safran M, Kaelin WG Jr (2003) HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest 111:779–783

    PubMed  CAS  Google Scholar 

  46. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  PubMed  CAS  Google Scholar 

  47. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  PubMed  CAS  Google Scholar 

  48. Ivan M, Haberberger T, Gervasi DC, Michelson KS, Gunzler V, Kondo K et al (2002) Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci USA 99:13459–13464

    Article  PubMed  CAS  Google Scholar 

  49. Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278:30772–30780

    Article  PubMed  CAS  Google Scholar 

  50. Oehme F, Ellinghaus P, Kolkhof P, Smith TJ, Ramakrishnan S, Hutter J et al (2002) Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem Biophys Res Commun 296:343–349

    Article  PubMed  CAS  Google Scholar 

  51. Koivunen P, Tiainen P, Hyvarinen J, Williams KE, Sormunen R, Klaus SJ et al (2007) An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J Biol Chem 282:30544–30552

    Article  PubMed  CAS  Google Scholar 

  52. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O-2-regulated prolyl hydroxylation. Science 292:468–472

    Article  PubMed  CAS  Google Scholar 

  53. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 20:5197–5206

    Article  PubMed  CAS  Google Scholar 

  54. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  PubMed  CAS  Google Scholar 

  55. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE et al (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427

    Article  PubMed  CAS  Google Scholar 

  56. Min JH, Yang H, Ivan M, Gertler F, Kaelin WG Jr, Pavletich NP (2002) Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science 296:1886–1889

    Article  PubMed  CAS  Google Scholar 

  57. Tanimoto K, Makino Y, Pereira T, Poellinger L (2000) Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 19:4298–4309

    Article  PubMed  CAS  Google Scholar 

  58. Kallio PJ, Wilson WJ, O’Brien S, Makino Y, Poellinger L (1999) Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 274:6519–6525

    Article  PubMed  CAS  Google Scholar 

  59. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647

    Article  PubMed  CAS  Google Scholar 

  60. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q et al (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14:34–44

    PubMed  CAS  Google Scholar 

  61. Bae MK, Ahn MY, Jeong JW, Bae MH, Lee YM, Bae SK et al (2002) Jab1 interacts directly with HIF-1alpha and regulates its stability. J Biol Chem 277:9–12

    Article  PubMed  CAS  Google Scholar 

  62. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295:858–861

    Article  PubMed  CAS  Google Scholar 

  63. Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–2686

    Article  PubMed  CAS  Google Scholar 

  64. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK (2002) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466–1471

    Article  PubMed  CAS  Google Scholar 

  65. Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW et al (2002) Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277:26351–26355

    Article  PubMed  CAS  Google Scholar 

  66. Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH et al (2002) Regulation and Destabilization of HIF-1alpha by ARD1-Mediated Acetylation. Cell 111:709–720

    Article  PubMed  CAS  Google Scholar 

  67. Arnesen T, Kong X, Evjenth R, Gromyko D, Varhaug JE, Lin Z et al (2005) Interaction between HIF-1 alpha (ODD) and hARD1 does not induce acetylation and destabilization of HIF-1 alpha. FEBS Lett 579:6428–6432

    Article  PubMed  CAS  Google Scholar 

  68. Bilton R, Mazure N, Trottier E, Hattab M, Dery MA, Richard DE et al (2005) Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1alpha and is not induced by hypoxia or HIF. J Biol Chem 280:31132–31140

    Article  PubMed  CAS  Google Scholar 

  69. Bilton R, Trottier E, Pouyssegur J, Brahimi-Horn MC (2006) ARDent about acetylation and deacetylation in hypoxia signalling. Trends Cell Biol 16:616–621

    Article  PubMed  CAS  Google Scholar 

  70. Semenza G (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64:993–998

    Article  PubMed  CAS  Google Scholar 

  71. Richard DE, Berra E, Gothie E, Roux D, Pouyssegur J (1999) p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem 274:32631–32637

    Article  PubMed  CAS  Google Scholar 

  72. Sodhi A, Montaner S, Miyazaki H, Gutkind JS (2001) MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1alpha in rasV12 upregulation of VEGF. Biochem Biophys Res Commun 287:292–300

    Article  PubMed  CAS  Google Scholar 

  73. Minet E, Michel G, Mottet D, Raes M, Michiels C (2001) Transduction pathways involved in Hypoxia-Inducible Factor-1 phosphorylation and activation. Free Radic Biol Med 31:847–855

    Article  PubMed  CAS  Google Scholar 

  74. Sang N, Stiehl DP, Bohensky J, Leshchinsky I, Srinivas V, Caro J (2003) MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem 278:14013–14019

    Article  PubMed  CAS  Google Scholar 

  75. Hur E, Chang KY, Lee E, Lee SK, Park H (2001) Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA binding ability of hypoxia-inducible factor-1alpha. Mol Pharmacol 59:1216–1224

    PubMed  CAS  Google Scholar 

  76. Kietzmann T, Jungermann K, Gorlach A (2003) Regulation of the hypoxia-dependent plasminogen activator inhibitor 1 expression by MAP kinases in HepG2 cells. Thromb Haemost 89:666–674

    PubMed  CAS  Google Scholar 

  77. Dimova EY, Moller U, Herzig S, Fink T, Zachar V, Ebbesen P et al (2005) Transcriptional regulation of plasminogen activator inhibitor-1 expression by insulin-like growth factor-1 via MAP kinases and hypoxia-inducible factor-1 in HepG2 cells. Thromb Haemost 93:1176–1184

    PubMed  CAS  Google Scholar 

  78. Comerford KM, Cummins EP, Taylor CT (2004) c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1alpha-dependent P-glycoprotein expression in hypoxia. Cancer Res 64:9057–9061

    Article  PubMed  CAS  Google Scholar 

  79. Mylonis I, Chachami G, Samiotaki M, Panayotou G, Paraskeva E, Kalousi A et al (2006) Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem 281:33095–33106

    Article  PubMed  CAS  Google Scholar 

  80. Triantafyllou A, Mylonis I, Simos G, Bonanou S, Tsakalof A (2008) Flavonoids induce HIF-1alpha but impair its nuclear accumulation and activity. Free Radic Biol Med 44:657–670

    Article  PubMed  CAS  Google Scholar 

  81. Mylonis I, Chachami G, Paraskeva E, Simos G (2008) Atypical CRM1-dependent Nuclear Export Signal Mediates Regulation of Hypoxia-inducible Factor-1{alpha} by MAPK. J Biol Chem 283:27620–27627

    Article  PubMed  CAS  Google Scholar 

  82. Zundel W, Schindler C, Haas KD, Koong A, Kaper F, Chen E et al (2000) Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391–396

    PubMed  CAS  Google Scholar 

  83. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM et al (2000) Modulation of hypoxia-inducible factor 1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–1545

    PubMed  CAS  Google Scholar 

  84. Jiang BH, Jiang G, Zheng JZ, Lu Z, Hunter T, Vogt PK (2001) Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ 12:363–369

    PubMed  CAS  Google Scholar 

  85. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F et al (2002) Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22:7004–7014

    Article  PubMed  CAS  Google Scholar 

  86. Flugel D, Gorlach A, Michiels C, Kietzmann T (2007) Glycogen synthase kinase 3 phosphorylates hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Mol Cell Biol 27:3253–3265

    Article  PubMed  CAS  Google Scholar 

  87. Bardos JI, Chau NM, Ashcroft M (2004) Growth factor-mediated induction of HDM2 positively regulates hypoxia-inducible factor 1alpha expression. Mol Cell Biol 24:2905–2914

    Article  PubMed  CAS  Google Scholar 

  88. Land SC, Tee AR (2007) Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem 282:20534–20543

    Article  PubMed  CAS  Google Scholar 

  89. Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M et al (2003) Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem 278:31277–31285

    Article  PubMed  CAS  Google Scholar 

  90. Palmer LA, Gaston B, Johns RA (2000) Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Mol Pharmacol 58:1197–1203

    PubMed  CAS  Google Scholar 

  91. Sandau KB, Zhou J, Kietzmann T, Brune B (2001) Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J Biol Chem 276:39805–39811

    Article  PubMed  CAS  Google Scholar 

  92. Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hydroxylases. Mol Biol Cell 14:3470–3481

    Article  PubMed  CAS  Google Scholar 

  93. Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J (2007) Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem 282:1788–1796

    Article  PubMed  CAS  Google Scholar 

  94. Sumbayev VV, Budde A, Zhou J, Brune B (2003) HIF-1 alpha protein as a target for S-nitrosation. FEBS Lett 535:106–112

    Article  PubMed  CAS  Google Scholar 

  95. Cho H, Ahn DR, Park H, Yang EG (2007) Modulation of p300 binding by Post-translational modifications of the C-terminal activation domain of hypoxia-inducible factor-1alpha. FEBS Lett 581:1542–1548

    Article  PubMed  CAS  Google Scholar 

  96. Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q et al (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26:63–74

    Article  PubMed  CAS  Google Scholar 

  97. Bae SH, Jeong JW, Park JA, Kim SH, Bae MK, Choi SJ et al (2004) Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 324:394–400

    Article  PubMed  CAS  Google Scholar 

  98. Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK et al (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131:309–323

    Article  PubMed  CAS  Google Scholar 

  99. Berta MA, Mazure N, Hattab M, Pouyssegur J, Brahimi-Horn MC (2007) SUMOylation of hypoxia-inducible factor-1alpha reduces its transcriptional activity. Biochem Biophys Res Commun 360:646–652

    Article  PubMed  CAS  Google Scholar 

  100. Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131:584–595

    Article  PubMed  CAS  Google Scholar 

  101. Baader E, Tschank G, Baringhaus KH, Burghard H, Gunzler V (1994) Inhibition of prolyl 4-hydroxylase by oxalyl amino acid derivatives in vitro, in isolated microsomes and in embryonic chicken tissues. Biochem J 300(Pt 2):525–530

    PubMed  CAS  Google Scholar 

  102. Kivirikko KI, Myllyla R (1982) Post-transl‑ational enzymes in the biosynthesis of collagen: intracellular enzymes. Methods Enzymol 82 Pt A:245–304

    Article  PubMed  CAS  Google Scholar 

  103. Koivunen P, Hirsila M, Kivirikko KI, Myllyharju J (2006) The length of peptide substrates has a marked effect on hydroxylation by the hypoxia-inducible factor prolyl 4-hydroxylases. J Biol Chem 281:28712–28720

    Article  PubMed  CAS  Google Scholar 

  104. Sugiura N, Adams SM, Corriveau RA (2003) An evolutionarily conserved N-terminal acetyltransferase complex associated with neuronal development. J Biol Chem 278:40113–40120

    Article  PubMed  CAS  Google Scholar 

  105. Liu Q, Berchner-Pfannschmidt U, Moller U, Brecht M, Wotzlaw C, Acker H et al (2004) A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc Natl Acad Sci USA 101:4302–4307

    Article  PubMed  CAS  Google Scholar 

  106. Liu Q, Moller U, Flugel D, Kietzmann T (2004) Induction of plasminogen activator inhibitor I gene expression by intracellular calcium via hypoxia-inducible factor-1. Blood 104:3993–4001

    Article  PubMed  CAS  Google Scholar 

  107. Bradford (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  108. Graham FL, Vandereb AJ (1973) New technique for assay of infectivity of human adenovirus 5 DNA Virology 52:456–467

    Google Scholar 

Download references

Acknowledgments

Our studies were supported by grants from Fonds der Chemischen Industrie and Deutsche Krebshilfe 106929.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kietzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dimova, E.Y., Kietzmann, T. (2010). Hypoxia-Inducible Factors: Post-translational Crosstalk of Signaling Pathways. In: Higgins, P. (eds) Transcription Factors. Methods in Molecular Biology, vol 647. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-738-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-738-9_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-737-2

  • Online ISBN: 978-1-60761-738-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics